

5151 E. Broadway, Suite 1680, Tucson, Arizona 85711

August 11, 2022

Mr. Craig Thorstenson
Director of Air Quality
North Dakota Department of Environmental Quality
Division of Air Quality
4201 Normandy Street 2nd Floor
Bismarck ND 58503-1324

Re: Air Permit Revision – ACP-18145 v 1.0
Replace (2) Waukesha Series 5 Engines with (2) Waukesha Series 4 Engines
Hiland Partners Holdings LLC
4Runner Compressor Station

Williams County, North Dakota

Dear Mr. Thorstenson:

In December 2021, Hiland Partners Holdings LLC (Hiland) submitted an air permit application to construct a new 4Runner Compressor Station. Additional information was provided in February 2022.

A Permit to Construct, ACP-18145 v 1.0 was issued on March 16, 2022 for (4) Waukesha Series 5 rich burn engines and (2) Caterpillar lean burn engines. Earlier, two Waukesha Series 5 units were available and two Waukesha Series 5 units are pending with the manufacturer. The Waukesha Series 5 units are not available, therefore, (2) Waukesha Series 4 units will need to be installed.

The following permit revisions are needed:

- The compressor station name changed from Four Runner Compressor Station to 4Runner Compressor Station.
- Emissions Unit C1 and Emissions Unit C6 are Waukesha L7044GSI Series 5 (4SRB). Earlier, it was our understanding that the two Series 5 units would be C1 and C2.
- Emissions Unit C2 and Emissions Unit C3 revised to "Waukesha L7044GSI Series 4 (4SRB)
 natural gas-fired compressor engine rated at 1680 bhp (NSPS JJJJ) (NSPS OOOOa)
 (MACT ZZZZ)"

- Emissions Unit Table revised to reflect (2) Waukesha L7044GSI Series 4 (4SRB) natural gasfired compressor engines
 - \circ NOx = 3.52 lb/hr and 0.95 grams/hp-hr or 82 ppmvd@ 15 % O₂
 - o CO = 3.52 lb/hr and 0.95 grams/hp-hr or 270 ppmvd@ 15 % O₂
 - o VOC = 2.37 lb/hr and 0.64 grams/hp-hr or 60 ppmvd@ 15 %

Attached is updated Emissions Calculations, several NDDEQ forms, and Waukesha Series 4 Engine Specifications. All other forms are not submitted since only (2) engines need to be changed from Waukesha Series 5 to Waukesha Series 4.

A draft permit is also included with the submittal.

The Project Engineer would like to ship the Waukesha Series 4 to the station during the first week of September. As possible, please issue the revised permit by September 2nd.

If you need additional information or have any questions, please contact me at (520) 349-0611 or by email at Anu_Pundari@KinderMorgan.com.

Sincerely,

Anu Pundari

Engineer – EHS Staff

ann Pundan

EMISSIONS CALCULATIONS

4Runner Compressor Station Site Emissions Summary

Emissions Summary

Emission Unit #	Emission Unit Description	PM-10 (tpy)	NOx (tpy)	CO (tpy)	SOx (tpy)	VOC (tpy)	HAPS (tpy)	Formaldehyde (tpy)	CO2e (tpy)	GHG (tpy)
C1	Waukesha L7044 GSI Series 5 - 1,900 bhp w/NSCR	1.34	15.41	15.41	0.04	10.11	0.43	0.020	8,009	7,598
C2	Waukesha L7044 GSI Series 4 - 1,680 bhp w/NSCR	1.32	15.41	15.41	0.04	10.40	0.43	0.016	7,872	7.469
C3	Waukesha L7044 GSI Series 4 - 1,680 bhp w/NSCR	1.32	15.41	15.41	0.04	10.40	0.43	0.016	7,872	7,469
C4	Caterpillar 3606 A4 - 1875 bhp w oxidation catalyst	1.19	18.11	18.11	0.04	13.58	1.29	0.905	7,150	6,783
C5	Caterpillar 3606 A4 - 1875 bhp w oxidation catalyst	1.19	18.11	18.11	0.04	13.58	1.29	0.905	7,150	6,783
C6	Waukesha L7044 GSI Series 5 - 1,900 bhp w/NSCR	1.34	15.41	15.41	0.04	10.11	0.43	0.020	8,009	7,598
EU7	TEG Reboiler (1.5 MMBtu/hr)	0.05	0.44	0.37	0.00	0.04	0.01		529	526
EU8	TEG Still Vent (TEG Dehy Unit rated at 60 MMscfd)					3.41	0.66			
EU9	Produced Water Tank - 400 bbl - 15,000 bbl/year					1.22				
EU10	Produced Water Tank - 400 bbl - 15,000 bbl/year					1.22				
PW-TL	Produced Water Truck Loading					0.44				
FUG	Fugitives	0.00	0.00	0.00	0.00	5.40	0.05	0.00	0.00	0
TK	Three Methanol Chemical Storage Tanks					0.03				
BD	Compressor Blowdowns w/recycle					17.97	0.22			
PIG	Pigging					1.00				
	Total Sitewide Emissions	7.75	98.29	98.22	0.23	98.92	5.24	1.88	46591	44227
	Total Sitewide Emissions ACP-18145 v1.0 Permitted PTE	7.80	98.29	98.22	0.23	98.34	5.24	1.89	46864	44486
	Total Sitewide Emissions without Fugitives	7.75	98.29	98.22	0.23	93.52	5.19	1.88	46591	44227

Notes:

^{1.} Pigging emissions are conservatively assumed to be 1.00 tpy of VOC.

^{2.} Methanol storage tank emissions are conservatively assumed to be 0.01 tpy of VOC for each tank.

4Runner Compressor Station **Engine Emissions**

4Runner Compressor Station

Equipment Data:

E	04 1 00
Emission Unit (EU):	C1 and C6
	Waukesha
	L7044GSI
Emission Unit Name:	Series 5
Engine Type:	4SRB

Fuel Usage = Horsepower = Speed = Hours of Operation =	91.908 MMscf/yr 1,900 bhp 1,200 rpm 8,760 hr/yr	(Calculated value based on max fuel combustion rate.)
Max. Fuel Combustion Rate (HHV) = Fuel Heating Value (HHV) = Max. Heat Rate (HHV) =	8,283 Btu/bhp-hr 1,500 MMBtu/MMscf 15,74 MMBtu/hr	(Based on Manufacturer Specs) estimated
CO ₂ GWP (100 year) =	1	7,891 cubic feet per min 0.785 area
CH_4 GWP (100 year) = N_2O GWP (100 year) =	25 298	10052.2293 feet per minute 167.537155

	Emission		Emission Factor	Hourly Emissions	Annual Emissions
Pollutant	Factor	Units	Reference	(lb/hr)	(ton/yr)
PM-10 (Front and Back Half)	0.01941	lb/MMBtu	AP-42 Table 3.2-3 (07/00)	0.31	1.34
NOx	0.84	g/BHP-hr	Permit Limit	3.52	15.41
CO	0.84	g/BHP-hr	Permit Limit	3.52	15.41
SOx	5.88E-04	lb/MMBtu	AP-42 Table 3.2-3 (07/00)	0.01	0.04
VOC	0.55	g/BHP-hr	Permit Limit	2.31	10.11
Total HAPs			Engine Vendor/AP-42 Table 3.2-3	0.10	0.43
Formaldehyde	0.001	g/BHP-hr	Manufacturer Estimate	0.004	0.02
	Emission		Emission Factor	Hourly Emissions	Annual Emissions
Pollutant	Factor	Units	Reference	(lb/hr)	(ton/yr)
CO₂e	-			1,829	8,009
GHG	-			1,735	7,598
CO ₂	110	lb/MMBtu	AP-42 Table 3.2-3 (07/00)	1,731	7,582
CH ₄	0.23	lb/MMBtu	AP-42 Table 3.2-3 (07/00)	3.62	15.85
N ₂ O	2.2	lb/MMscf	AP-42 Table 1.4-2 (07/00)	0.02	0.10

- Notes:

 1. NO_x and VOC emissions based on 40 CFR 60 Subpart JJJJ standards. Formaldehyde emissions are based on manufacturer data. PM/PM₁₀ and SO₂ emissions based on AP-42 Table 3.2-3.
- 2. Per AP-42, all particulate is considered to be less than 1.0 micrometer in diameter.
- 3. VOC emissions include formaldehyde.

Sample Calculation:

PM-10 Emissions (ton/yr) = PM-10 Emissions (ton/yr) =	$\label{eq:localization} \begin{tabular}{l} (Emission Factor, lb/MMBtu) x (Max Heat Input Rate (HHV), MMBtu/hr) x (Hours of Operation, hr/yr) / (2,000 lb/ton) $$(0.01941 lb/MMBtu) x (15.74 MMBtu/hr) x (8,760 hr/yr) / (2,000 lb/ton) $$= 1.34 ton/yr$ (1.000 lb/ton) $$(0.01941 lb/MMBtu) x (1.000 lb/ton) $$= 1.34 ton/yr$ (1.000 lb/ton) $$= 1.000 lb/ton $$
VOC Emissions (ton/yr) = VOC Emissions (ton/yr) =	(Emission Factor, g/bhp-hr) x (Horsepower, bhp) x (Hours of Operation, hr/yr) / $(2,000 \text{ lb/ton})$ / $(453.59 \text{ grams/1 lb})$ (0.55 g/bhp-hr) x (1900 bhp) x (8,760 hr/yr) / $(2,000 \text{ lb/ton})$ / (453.59 g/lb) = 10.11 ton/yr
CO ₂ e Emissions (ton/yr) =	(CO ₂ emissions x 1) + (CH ₄ emissions x 25) + (N ₂ O emissions x 298)
CO ₂ e Emissions (ton/yr) =	$((7582.42 \text{ ton/yr} \times 1) + (15.85 \text{ ton/yr} \times 25) + (0.10 \text{ ton/yr} \times 298)) = 8008.91 \text{ ton/yr}$
GHG Emissions (ton/yr) = GHG Emissions (ton/yr) =	$(CO_2 \text{ emissions}) + (CH_4 \text{ emissions}) + (N_2O \text{ emissions})$ (7582.42 ton/yr) + (15.85 ton/yr) + (0.10 ton/yr) = 7598.38 ton/yr

July 2022 4Runner Compressor Station

4Runner Compressor Station Site Emissions Summary

4Runner Compressor Station

HAP Emissions per engine

HAP Emissions from Rich-Burn Compressor Engines

			Heat Input	Fuel Input
Engines	Horsepower (hp)	Hours per Year	(MMBtu/yr)	(MMscf/yr)
Engine C-1 and C-6	1,900	8,760	137,862	91.91

	Emission	Emission	Control	Emissions	
	Factor	Factor	Efficiency	(tpy)	
НАР	(lb/MMBtu)	(g/bhp-hr)	(%)	(Controlled)	Notes
1.1.2.2-Tetrachloroethane	2.53E-05		50%	8.72E-04	1,4
1.1.2-Trichloroethane	1.53E-05		50%	5.27E-04	1,4
1.1-Dichloroethane	1.13E-05		50%	3.89E-04	1,4
1.2-Dichloroethane	1.13E-05		50%	3.89E-04	1.4
1,2-Dichloropropane	1.30E-05		50%	4.48E-04	1,4
1.3-Butadiene	6.63E-04		50%	2.29E-02	1,4
1,3-Dichloropropene	1.27E-05		50%	4.38E-04	1,4
Acetaldehyde	2.79E-03		50%	9.62E-02	1,4
Acrolein	2.63E-03		50%	9.02E-02 9.06E-02	1.4
Benzene	1.58E-03		50%	5.45E-02	1,4
Carbon Tetrachloride					
<u> </u>	1.77E-05		50%	6.10E-04	1,4
Chlorobenzene	1.29E-05		50%	4.45E-04	1,4
Chloroform	1.37E-05		50%	4.72E-04	1,4
Ethylbenzene	2.48E-05		50%	8.55E-04	1,4
Ethylene Dibromide	2.13E-05		50%	7.34E-04	1,4
Formaldehyde		0.001	NA	0.018	2
Methanol	3.06E-03		50%	1.05E-01	1,4
Methylene Chloride	4.12E-05		50%	1.42E-03	1,4
Naphthalene	9.71E-05		50%	3.35E-03	1,4
PAH	1.41E-04		50%	4.86E-03	1,4
Styrene	1.19E-05		50%	4.10E-04	1,4
Toluene	5.58E-04		50%	1.92E-02	1,4
Vinyl Chloride	7.18E-06		50%	2.47E-04	1,4
Xylene	1.95E-04		50%	6.72E-03	1,4
	Emission		Control	Emissions	
	Factor		Efficiency	(tpy)	
HAP	(lb/MMscf)		(%)	(Uncontrolled)	Notes
Arsenic	2.04E-04		0%	9.37E-06	3
Bervllium	1.20E-05		0%	5.51E-07	3
Cadmium	1.10E-03		0%	5.05E-05	3
Chromium	1.40E-03		0%	6.43E-05	3
Cobalt	8.40E-05		0%	3.86E-06	3
Manganese	3.80E-04		0%	1.75E-05	3
Mercury	2.60E-04		0%	1.19E-05	3
Nickel	2.10E-03		0%	9.65E-05	3
Selenium	2.40E-05		0%	1.10E-06	3
	Z.40L-00	<u></u>	1 070		<u> </u>
Total HAP Emissions				0.43	

^{1.} Emission factor from AP-42 Table 3.2-3, Uncontrolled Emission Factors for 4-Stroke Rich-Burn Engines (July 2000)

² Vendor Information

^{3.} Emission factor from AP-42 Table 1.4-4, Emission Factors for Metals from Natural Gas Combustion (July 1998)

^{4.} Control efficiency from the dual catalytic converter unit was conservatively assumed to be 50% per verbal guidance by NDDH on 4/29/10.

4Runner Compressor Station Engine Emissions

4Runner Compressor Station

Equipment Data:

Emission Unit (EU):	C2 to C3
	Waukesha L7044GSI
Emission Unit Name:	Series 4
Engine Type:	4SRB

Fuel Usage =	90.342 MMscf/yr	(Calculated value based on max fuel combustion rate.)
Horsepower =	1,680 bhp	
Speed =	1,200 rpm	
Hours of Operation =	8,760 hr/yr	
Max. Fuel Combustion Rate (HHV) =	9,208 Btu/bhp-hr	(Based on Manufacturer Specs)
Fuel Heating Value (HHV) =	1,500 MMBtu/MMscf	estimated
Max. Heat Rate (HHV) =	15.47 MMBtu/hr	

	Emission		Emission Factor	Hourly Emissions	Annual Emissions
Pollutant	Factor	Units	Reference	(lb/hr)	(ton/yr)
PM-10 (Front and Back Half)	0.01941	lb/MMBtu	AP-42 Table 3.2-3 (07/00)	0.30	1.32
NOx	0.95	g/BHP-hr	Permit Limit	3.52	15.41
CO	0.95	g/BHP-hr	Permit Limit	3.52	15.41
SOx	5.88E-04	lb/MMBtu	AP-42 Table 3.2-3 (07/00)	0.01	0.04
VOC	0.64	g/BHP-hr	Permit Limit	2.37	10.40
Total HAPs			Engine Vendor/AP-42 Table 3.2-3	0.10	0.43
Formaldehyde	0.001	g/BHP-hr	Manufacturer Estimate	0.004	0.02
	Emission		Emission Factor	Hourly Emissions	Annual Emissions
Pollutant	Factor	Units	Reference	(lb/hr)	(ton/yr)
CO₂e		-		1,797	7,872
GHG				1,705	7,469
CO ₂	110	lb/MMBtu	AP-42 Table 3.2-3 (07/00)	1,702	7,453
CH₄	0.23	lb/MMBtu	AP-42 Table 3.2-3 (07/00)	3.56	15.58
N ₂ O	2.2	lb/MMscf	AP-42 Table 1.4-2 (07/00)	0.02	0.10

- 2. Per AP-42, all particulate is considered to be less than 1.0 micrometer in diameter.
- 3. VOC emissions include formaldehyde.

Sample Calculation:

PM-10 Emissions (ton/yr) = PM-10 Emissions (ton/yr) =	$(Emission\ Factor,\ lb/MMBtu)\ x\ (Max\ Heat\ Input\ Rate\ (HHV),\ MMBtu/hr)\ x\ (Hours\ of\ Operation,\ hr/yr)\ /\ (2,000\ lb/ton)\ (0.01941\ lb/MMBtu)\ x\ (15.47\ MMBtu/hr)\ x\ (8,760\ hr/yr)\ /\ (2,000\ lb/ton)\ =\ 1.32\ ton/yr$
VOC Emissions (ton/yr) = VOC Emissions (ton/yr) =	(Emission Factor, g/bhp-hr) x (Horsepower, bhp) x (Hours of Operation, hr/yr) / (2,000 lb/ton) / (453.59 grams/1 lb) (0.64 g/bhp-hr) x (1680 bhp) x (8,760 hr/yr) / (2,000 lb/ton) / (453.59 g/lb) = 10.4 ton/yr
CO ₂ e Emissions (ton/yr) =	(CO $_2$ emissions x 1) + (CH $_4$ emissions x 25) + (N $_2$ O emissions x 298)
CO ₂ e Emissions (ton/yr) =	((7453.18 ton/yr x 1) + (15.58 ton/yr x 25) + (0.10 ton/yr x 298)) = 7872.39 ton/yr
GHG Emissions (ton/yr) = GHG Emissions (ton/yr) =	$(CO_2 \text{ emissions}) + (CH_4 \text{ emissions}) + (N_2O \text{ emissions})$ (7453.18 ton/yr) + (15.58 ton/yr) + (0.10 ton/yr) = 7468.86 ton/yr
GITO LITISSIONS (ION/yI) =	$(7433.16 \text{ tothys}) \cdot (13.36 \text{ tothys}) \cdot (0.16 \text{ tothys}) = 7460.06 \text{ tothys}$

July 2022 4Runner Compressor Station

Notes:

1. NO_x and VOC emissions based on 40 CFR 60 Subpart JJJJ standards. Formaldehyde emissions are based on manufacturer data. PM/PM₁₀ and SO₂ emissions based on AP-42

4Runner Compressor Station Site Emissions Summary

HAP Emissions per engine

HAP Emissions from Rich-Burn Compressor Engines

			Heat Input	Fuel Input
Engines	Horsepower (hp)	Hours per Year	(MMBtu/yr)	(MMscf/yr)
Engine C-2 and C-3	1,680	8,760	137,862	91.91

	Emission	Emission	Control	Emissions	
	Factor	Factor	Efficiency	(tpy)	
НАР	(lb/MMBtu)	(g/bhp-hr)	(%)	(Controlled)	Notes
1,1,2,2-Tetrachloroethane	2.53E-05		50%	8.72E-04	1,4
1,1,2-Trichloroethane	1.53E-05		50%	5.27E-04	1,4
1,1-Dichloroethane	1.13E-05		50%	3.89E-04	1,4
1,2-Dichloroethane	1.13E-05		50%	3.89E-04	1,4
1,2-Dichloropropane	1.30E-05		50%	4.48E-04	1,4
1,3-Butadiene	6.63E-04		50%	2.29E-02	1,4
1,3-Dichloropropene	1.27E-05		50%	4.38E-04	1,4
Acetaldehyde	2.79E-03		50%	9.62E-02	1,4
Acrolein	2.63E-03		50%	9.06E-02	1,4
Benzene	1.58E-03		50%	5.45E-02	1,4
Carbon Tetrachloride	1.77E-05		50%	6.10E-04	1,4
Chlorobenzene	1.29E-05		50%	4.45E-04	1,4
Chloroform	1.37E-05		50%	4.72E-04	1,4
Ethylbenzene	2.48E-05		50%	8.55E-04	1,4
Ethylene Dibromide	2.13E-05		50%	7.34E-04	1,4
Formaldehyde		0.001	NA	0.016	2
Methanol	3.06E-03		50%	1.05E-01	1,4
Methylene Chloride	4.12E-05		50%	1.42E-03	1,4
Naphthalene	9.71E-05		50%	3.35E-03	1,4
PAH	1.41E-04		50%	4.86E-03	1,4
Styrene	1.19E-05		50%	4.10E-04	1,4
Toluene	5.58E-04		50%	1.92E-02	1,4
Vinyl Chloride	7.18E-06		50%	2.47E-04	1,4
Xylene	1.95E-04		50%	6.72E-03	1,4
	Emission		Control	Emissions	
	Factor		Efficiency	(tpy)	
HAP	(lb/MMscf)		(%)	(Uncontrolled)	Notes
Arsenic	2.04E-04		l 0%	9.37E-06	3
Beryllium	1.20E-05		0%	5.51E-07	3
Cadmium	1.10E-03		0%	5.05E-05	3
Chromium	1.40E-03		0%	6.43E-05	3
Cobalt	8.40E-05		0%	3.86E-06	3
Manganese	3.80E-04		0%	1.75E-05	3
Mercury	2.60E-04		0%	1.19E-05	3
Nickel	2.10E-03		0%	9.65E-05	3
Selenium	2.40E-05		0%	1.10E-06	3
Total HAP Emissions				0.43	

^{1.} Emission factor from AP-42 Table 3.2-3, Uncontrolled Emission Factors for 4-Stroke Rich-Burn Engines (July 2000)

^{2.} Vendor Information.

^{3.} Emission factor from AP-42 Table 1.4-4, Emission Factors for Metals from Natural Gas Combustion (July 1998)

^{4.} Control efficiency from the dual catalytic converter unit was conservatively assumed to be 50% per verbal guidance by NDDH on 4/29/10.

4Runner Compressor Station Engine Emissions

Equipment Data:

Equipment Data.	
Emission Unit (EU):	C4 to C5
	, and the second
	Caterpillar G3606
Emission Unit Name:	1875 bhp
Engine Type:	4SLB

Unit Conversion:

Fuel Usage = 82.048 MMscf/yr (Calculated value based on max fuel combustion rate.) Horsepower = 1,875 bhp 1,000 rpm Speed = Hours of Operation = 8,760 hr/yr 7,493 Btu/bhp-hr Max. Fuel Combustion Rate (HHV) = (Based on Manufacturer Specs) 1,500 MMBtu/MMscf Fuel Heating Value (HHV) = estimated Max. Heat Rate (HHV) = 14.05 MMBtu/hr

2000 lb/ton

Pollutant	Emission Factor	Units	Emission Factor Reference	Hourly Emissions (lb/hr)	Annual Emissions (ton/yr)
PM-10 (Front and Back Half)	0.01941	lb/MMBtu	AP-42 Table 3.2-3 (07/00)	0.27	1.19
NOx	1.00	g/BHP-hr	NSPS JJJJ Lean Burn Limit	4.13	
co	1.00	g/BHP-hr	Permit Limit	4.13	18.11
SOx	5.88E-04	lb/MMBtu	AP-42 Table 3.2-3 (07/00)	0.01	0.04
VOC	0.70	g/BHP-hr	NSPS JJJJ Lean Burn Limit	3.10	13.58
Total HAPs			Engine Vendor/AP-42 Table 3.2-3	0.29	1.29
Formaldehyde	0.05	g/BHP-hr	Manufacturer Estimate + 25 % safety factor	0.207	0.91
	Emission		Emission Factor	Hourly Emissions	Annual Emissions
Pollutant	Factor	Units	Reference	(lb/hr)	(ton/yr)
CO₂e				1,632	7,150
GHG				1,549	6,783
CO ₂	110	lb/MMBtu	AP-42 Table 3.2-3 (07/00)	1,545	6,769
CH₄	0.23	lb/MMBtu	AP-42 Table 3.2-3 (07/00)	3.23	14.15
N ₂ O	2.2	lb/MMscf	AP-42 Table 1.4-2 (07/00)	0.02	0.09

Notes

1. NO_x and VOC emissions based on manufacturer data. Formaldehyde emissions are based on manufacturer data with assumption of 50 % reduction, similar to VOC percent reduction. PM/PM₁₀ and SO₂ emissions based on AP-42 Table 3.2-3.

- 2. Per AP-42, all particulate is considered to be less than 1.0 micrometer in diameter.
- 3. VOC emissions include formaldehyde.

Sample Calculation:

PM-10 Emissions (ton/yr) = (Emission Factor, lb/MMBtu) x (Max Heat Input Rate (HHV), MMBtu/hr) x (Hours of Operation, hr/yr) / (2,000 lb/ton)

PM-10 Emissions (ton/yr) = $(0.01941 \text{ lb/MMBtu}) \times (14.05 \text{ MMBtu/hr}) \times (8,760 \text{ hr/yr}) / (2,000 \text{ lb/ton}) = 1.19 \text{ ton/yr}$

VOC Emissions (ton/yr) = (Emission Factor, g/bhp-hr) x (Horsepower, bhp) x (Hours of Operation, hr/yr) / (2,000 lb/ton) / (453.59 grams/1 lb)

VOC Emissions (ton/yr) = (0.7 g/bhp-hr) x (1875 bhp) x (8,760 hr/yr) / (2,000 lb/ton) / (453.59 g/lb) = 13.58 ton/yr

 CO_2e Emissions (ton/yr) = $(CO_2 \text{ emissions x 1}) + (CH_4 \text{ emissions x 25}) + (N_2O \text{ emissions x 298})$

 CO_2e Emissions (ton/yr) = ((6768.99 ton/yr x 1) + (14.15 ton/yr x 25) + (0.09 ton/yr x 298)) = 7149.72 ton/yr

 $\begin{aligned} \text{GHG Emissions (ton/yr)} &= & (\text{CO}_2 \text{ emissions}) + (\text{CH}_4 \text{ emissions}) + (\text{N}_2 \text{O emissions}) \\ \text{GHG Emissions (ton/yr)} &= & (6768.99 \text{ ton/yr}) + (14.15 \text{ ton/yr}) + (0.09 \text{ ton/yr}) = 6783.23 \text{ ton/yr} \end{aligned}$

4Runner Compressor Station Site Emissions Summary

HAP Emissions per engine

HAP Emissions from 4 Stroke Lean-Burn Compressor Engines

			Heat Input	Fuel Input
Engines	Horsepower (hp)	Hours per Year	(MMBtu/yr)	(MMscf/yr)
Engines C4 and C5	1,875	8,760	123,073	82.05

	Emission	Emission	Control	Emissions	
	Factor	Factor	Efficiency	(tpy)	
HAP	(lb/MMBtu)	(g/bhp-hr)	(%)	(Controlled)	Notes
1,1,2,2-Tetrachloroethane	4.00E-05		0%	2.46E-03	1
1,1,2-Trichloroethane	3.18E-05		0%	1.96E-03	1
1,3-Butadiene	2.67E-04		0%	1.64E-02	1
1,3-Dichloropropene	2.64E-05		0%	1.62E-03	1
2-Methylnaphthalene	3.32E-05		0%	2.04E-03	1
2,2,4-Trimethylpentane	2.50E-04		0%	1.54E-02	1
Acenaphthene	1.25E-06		0%	7.69E-05	1
Acenaphthylene	5.53E-06		0%	3.40E-04	1
Acetaldehyde	8.36E-03		0%	5.14E-01	1
Acrolein	5.14E-03		0%	3.16E-01	1
Benzene	4.40E-04		0%	2.71E-02	1
Benzo(e)fluoranthene	1.66E-07		0%	1.02E-05	1
Benzo(e)pyrene	4.15E-07		0%	2.55E-05	1
Benzo(e)perylene	4.14E-07		0%	2.55E-05	1
Biphenyl	2.12E-04		0%	1.30E-02	1
Carbon Tetrachloride	3.67E-05		0%	2.26E-03	1
Chlorobenzene	3.04E-05		0%	1.87E-03	1
Chloroform	2.85E-05		0%	1.75E-03	1
Chrysene	6.93E-07		0%	4.26E-05	1
Ethylbenzene	3.97E-05		0%	2.44E-03	1
Ethylene Dibromide	4.43E-05		0%	2.73E-03	1
Fluoranthene	1.11E-06		0%	6.83E-05	1
Fluorene	5.67E-06		0%	3.49E-04	1
Formaldehyde	-	0.050	NA	0.21	1
Methanol	2.50E-03		0%	1.54E-01	1
Methylene Chloride	2.00E-05		0%	1.23E-03	1
n-Hexane	1.11E-03		0%	6.83E-02	1
Naphthalene	7.44E-05		0%	4.58E-03	1
PAH	2.69E-05		0%	1.66E-03	1
Phenanthrene	1.04E-05		0%	6.40E-04	1
Phenol	2.40E-05		0%	1.48E-03	1
Pyrene	1.36E-06		0%	5.58E-08	1
Styrene	2.36E-05		0%	9.68E-07	1
Tetrachloroethane	2.48E-06		0%	1.02E-07	1
Toluene	4.08E-04		0%	1.67E-05	1
Vinyl Chloride	1.49E-05		0%	6.11E-07	1
Xylene (mixed isomers)	1.84E-04		0%	7.55E-06	1
Total				1.29	

¹⁾ Emission factor based on EPA's AP-42 Section 3.2, Table 3.2-2 (07/00) [4-Stroke Lean-Burn Engines].

4Runner Compressor Station Glycol Reboiler Emissions

Equipment Data:

Emission Unit (EU):	EU8
Emission Unit Name:	TEG Reboiler
Rating:	1.5 MMBtu/hr

Maximum Fuel Usage = 8.76 MMscf/yr (Calculated value based on max fuel combustion rate)

Maximum Fuel Usage = 0.0010 MMscf/hr
Hours of Operation = 8,760 hr/yr
design Heat Input Rate = 1.50 MMBtu/hr
Fuel Heating Value (HHV) = 1,500 MMBtu/MMscf

 CO_2 GWP (100 year) = 1 CH_4 GWP (100 year) = 25 N_2 O GWP (100 year) = 298

Pollutant	Emission Factor	Units	Emission Factor Reference	Hourly Emissions (lb/hr)	Annual Emissions (ton/yr)
PM-10 (Front and Back Half)	7.6	lb/MMscf	AP-42 Table 1.4-2 (07/98)	0.011	0.05
NOx	100	lb/MMscf	AP-42 Table 1.4-1 (07/98)	0.10	0.44
CO	84	lb/MMscf	AP-42 Table 1.4-1 (07/98)	0.08	0.37
SOx	0.6	lb/MMscf	AP-42 Table 1.4-2 (07/98)	0.0009	0.004
VOC	5.5	lb/MMscf	AP-42 Table 1.4-2 (07/98)	0.008	0.04
	Emission		Emission Factor	Hourly Emissions	Annual Emissions
Pollutant	Factor	Units	Reference	(lb/hr)	(tons/yr)
CO₂e				120.71	528.72
GHG				120.00	525.62
CO ₂	120,000	lb/MMscf	AP-42 Table 3.2-2 (07/00)	120.00	525.60
CH ₄	2.3	lb/MMscf	AP-42 Table 3.2-2 (07/00)	0.002	0.010
N ₂ O	2.2	lb/MMscf	AP-42 Table 3.2-2 (07/00)	0.002	0.010

Notes:

Sample Calculation:

Fuel Usage (MMscf/yr) = (Design Heat Input Rate, MMBtu/hr) / (Fuel heating Value, MMBtu/MMscf) * (Hours of Operation, hr/yr)

Fuel Usage (MMscf/yr) = (1.5 MMBtu/hr) / (1500 MMBtu/MMscf) x (8,760 hr/yr) = 8.76 MMscf/yr

PM Total Emissions (lb/hr) = (Emission Factor, lb/MMscf) x (Fuel Heating Value, MMBtu/MMscf) / (1,020 MMBtu/MMscf) x (Fuel Usage, MMscf/yr) / (Hours of Operation, hr/yr)

PM Total Emissions (lb/hr) = (7.6 lb/MMscf) x (1500 MMBtu/scf) / (1,020 MMBtu/MMscf) x (7.6 MMscf/yr) / (8760 hr/yr) = 0.011 lb/hr

PM-10 Emissions (ton/yr) = $\frac{\text{(Hourly Emissions, lb/hr)} \times (8,760 \text{ hrs/yr}) / (2,000 \text{ lb/ton})}{(0.011 \text{ lb/hr}) \times (8760 \text{ hr/yr}) / (2000 \text{ lb/ton}) = 0.05 \text{ ton/yr}}$

^{1.} Emission factors based on AP-42 Table 1.4-1 and Table 1.4-2. Per AP-42, all particulate is considered to be less than 1.0 micrometer in diameter.

4Runner Compressor Station Glycol Reboiler HAPs Emissions

Emission Unit 7 - TEG Reboiler - 1.5 MMBtu/hr

HAP Emissions

	Heat Input Rate	Fuel Consumption
Equipment	(MMBtu/hr)	(MMscf/yr)
Rating:	1.50	8.76

	Emission	Control	Emissions
	Factor ¹	Efficiency	(tpy)
НАР	(lb/MMscf)	(%)	(Uncontrolled)
2-Methylanpthalene	2.40E-05	0%	1.55E-07
3-Methylchloranthrene	1.80E-06	0%	1.16E-08
7,12-Dimethylben(a)anthracene	1.60E-05	0%	1.03E-07
Acenapthene	1.80E-06	0%	1.16E-08
Acenapthylene	1.80E-06	0%	1.16E-08
Anthracene	2.40E-06	0%	1.55E-08
Benz(a)anthracene	1.80E-06	0%	1.16E-08
Benzene	2.10E-03	0%	1.35E-05
Benzo(a)pyrene	1.20E-06	0%	7.73E-09
Benzo(b)fluorathene	1.80E-06	0%	1.16E-08
Benzo(g,h,i)perylene	1.20E-06	0%	7.73E-09
Benzo(k)fluorathene	1.80E-06	0%	1.16E-08
Chrysene	1.80E-06	0%	1.16E-08
Dibenzo(a,h)anthracene	1.20E-06	0%	7.73E-09
Dichlorobenzene	1.20E-03	0%	7.73E-06
Fluoranthene	3.00E-06	0%	1.93E-08
Fluorene	2.80E-06	0%	1.80E-08
Formaldehyde	7.50E-02	0%	4.83E-04
Hexane	1.80E+00	0%	0.01
Indeno(1,2,3-cd)pyrene	1.80E-05	0%	1.16E-07
Napthalene	6.10E-04	0%	3.93E-06
Phenanathrene	1.70E-05	0%	1.10E-07
Pyrene	5.00E-06	0%	3.22E-08
Toluene	3.40E-03	0%	2.19E-05
	Emission	Control	Emissions
	Factor ²	Efficiency	(tpy)
НАР	(lb/MMscf)	(%)	(Uncontrolled)
Arsenic	2.04E-04	0%	8.94E-07
Beryllium	1.20E-05	0%	5.26E-08
Cadmium	1.10E-03	0%	4.82E-06
Chromium	1.40E-03	0%	6.13E-06
Cobalt	8.40E-05	0%	3.68E-07
Manganese	3.80E-04	0%	1.66E-06
Mercury	2.60E-04	0%	1.14E-06
Nickel	2.10E-03	0%	9.20E-06
Selenium	2.40E-05	0%	1.05E-07
Total HAP Emissions	1		0.012
1. Emission factor from AD 42 Table 1.4.2 Emission Fact		ı	1

^{1.} Emission factor from AP-42 Table 1.4-3, Emission Factors for Speciated Organic Compounds from Natural Gas Combustion (July 1998).

^{2.} Emission factor from AP-42 Table 1.4-4, Emission Factors for Metals from Natural Gas Combustion (July 1998).

4Runner Compressor Station Glycol Still Vent Emissions

Equipment Data:

Equipment Data:	
Emission Unit (EU):	EU8
	TEG Dehydrator Still
Emission Unit Name:	Vent
Emissions Data:	Model
Wet Gas Pressure (psig)	1100
Wet Gas Temperature (°F)	100
Gas Throughput (mmscf/day)	60
Dry Gas Water Content (lb/H2O/mmscf)	4
Glycol Type =	TEG
Lean Glycol Water Content (wt% H20)	1.5
Lean Glycol Flow Rate (gpm)	13.366
Glycol Pump Type	Gas Injection
Gas Injection Pump Ratio (acfm gas/gpm glycol)	0.08
Flash Tank Pressure (psig)	55
Flash Tank Temperature (°F)	150
Flash Tank Control	Recycle/Recomp.
Regen Controls:	
Condenser Pressure (psig)	14.7
Condenser Temperature (°F)	100
Combustion Device:	
Destruction Efficiency:	95
Excess Oxygen:	5
Ambient Air Temperature (°F)	100
• • • • • •	

Dellutent	Controlled			
Pollutant	Hourly Emissions	Annual Emissions		
	lb/hr	tpy		
-Propane	0.2105	0.9221		
-Isobutane	0.0473	0.2070		
-n-Butane	0.1984	0.8691		
-Isopentane	0.0407	0.1784		
-n-Pentane	0.0687	0.3009		
-Cyclopentane	0.0046	0.0203		
-n-Hexane	0.0163	0.0715		
-Cyclohexane	0.0170	0.0746		
-Other Hexanes	0.0190	0.0830		
-Heptanes	0.0165	0.0725		
-Methylcyclohexane	0.0063	0.0277		
-2,2,4-Trimethylpentane	0.0002	0.0010		
-Benzene	0.0923	0.4044		
-Toluene	0.0311	0.1362		
-Ethylbenzene	0.0000	0.0000		
-Xylenes	0.0103	0.0451		
-C8+ Heavies	0.0001	0.0005		
Total VOC	0.7795	3.4142		
Total HAPs	0.1503	0.6582		
Total BTEX	0.1337	0.5857		

Notes:

- 1. The flash tank off-gas will be recycled.
- 2. There is a condenser controlling the BTEX emissions.
- 3. The non-condensable gas from the condenser will be routed to the reboiler firebox.

4Runner Compressor Station Fugitive Emissions

Component Type	Service	Emission Factor ¹ (lb/hr/comp)	Component Count	Total Loss (lb/hr)	Total Loss (tpy)
Valves	Gas/Vapor	0.00992	103	1.02	4.48
Valves	Light Liquid	0.0055	35	0.19	0.84
Pumps	Gas Vapor	0.00529	0	0.00	0.00
Pullips	Light Liquid	0.02866	1	0.03	0.13
FI 2	Gas/Vapor	0.00086	1749	1.50	6.59
Flanges ²	Light Liquid	0.000243	72	0.02	0.08
Connectors	Gas/Vapor	0.00044	0	0.00	0.00
Connectors	Light Liquid	0.000463	0	0.00	0.00
Open Ended Lines	Gas/Vapor	0.00441	0	0.00	0.00
Open Ended Lines	Light Liquid	0.00309	0	0.00	0.00
Other ³	Gas/Vapor	0.0194	0	0.00	0.00
Other	Light Liquid	0.0165	0	0.00	0.00
Compressors	Gas/Vapor	0.0194	6	0.12	0.51
Compressors	Light Liquid	0.0165	0	0.00	0.00
Component Emission Total Losses				2.88	12.62
		Gas/V	apor Emissions	2.64	11.57
Light Liquid Emissions				0.24	1.05

Component	Gas	Gas/Vapor	Emissions	Total Em	issions ⁴
Component	(wt%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
CO ₂	1.4377	0.038	0.166	0.038	0.166
Nitrogen	2.4518	0.065	0.284	0.065	0.284
H ₂ S	0.0000	0.00E+00	0.00E+00	0.000	0.000
Methane	35.5342	0.939	4.112	0.939	4.112
Ethane	22.9403	0.606	2.655	0.606	2.655
Propane	19.0675	0.504	2.207	0.504	2.207
i-Butane	2.9837	0.079	0.345	0.079	0.345
n-Butane	9.4381	0.249	1.092	0.249	1.092
i-Pentane	1.9540	0.052	0.226	0.052	0.226
n-Pentane	2.6219	0.069	0.303	0.069	0.303
Benzene	0.0299	0.001	0.003	0.001	0.003
n-Hexane	0.4121	0.011	0.048	0.011	0.048
Hexanes	0.7088	0.019	0.082	0.019	0.082
Toluene	0.0141	0.000	0.002	0.000	0.002
Heptanes	0.0524	0.001	0.006	0.001	0.006
Ethylbenzene	0.0000	0.000	0.000	0.000	0.000
Xylenes	0.0081	0.000	0.001	0.000	0.001
Octanes	0.0524	0.001	0.006	0.001	0.006
Nonanes	0.0049	0.000	0.001	0.000	0.001
C10+	0.2880	0.008	0.033	0.008	0.033
Total	100.000	2.642	11.573	2.642	11.573
Total VOC	37.636	0.994	4.356	1.233	5.401
Total HAPs	0.464	0.012	0.054	0.012	0.054

Notes:

- 1. Emission factors are from EPA's "Protocol for Equipment Leak Emission Estimates" EPA-453/R-95-017, 11/1995, Table 2-4.
- 2. Maintenance Plugs & Blind Flanges are treated as screwed connectors. Per TCEQ's "Air Permit Technical Guidance for Chemical Sources: Equipment Leak Fugitives" dated October 2000, screwed fittings should be estimated as flanges.
- 3. For Oil and Gas Production Operations, "Other" includes compressors, diaphrams, drains, dump arms, hatches, instruments, meters, pressure relief valves, polished rods, relief valves, and vents.
- 4. The total emissions include the light liquid emissions assuming 100% VOC of light liquid.
- 5. Water/Oil emissions are assumed to be 100% VOC.
 - 6. Assume n-hexane weight percent is sum of n-hexane, cyclohexane, other hexanes, and methylcyclohexane weight percent.

4Runner Compressor Station Produced Water Storage Tank Emissions

Equipment Data:

Emission Unit (EU):	EU9	EU10
	Produced Water	Produced Water
Emission Unit Name:	Storage Tank	Storage Tank

Emissions Data:

Tank Contents = Produced Water
Tank Type = Vertical Fixed Roof

Tank Capacity = 16,800 gallons

Annual Throughput = 15,000 bbl/year per tank
Annual Throughput = 630,000 gallons/year per tank

Emission Unit	Standing Losses (lb/hr)	Working Losses (lb/hr)	Total Losses (lb/hr)	Standing Losses (ton/yr)	Working Losses (ton/yr)	Total Losses (ton/yr)
Produced Water Storage Tank EU5	0.089	0.190	0.279	0.39	0.83	1.223
Produced Water Storage Tank EU6	0.089	0.190	0.279	0.39	0.83	1.223

Notes:

^{1.} Emissions calculated using ProMax model.

^{2.} The liquid stored is essentially water. To be conservative, an additional 20 % safety factor was added to the emissions calculated via ProMax.

4Runner Compressor Station Compressor Blowdown Emissions

Emission Units	Designation	Compressor Volume	Compressor Pressure	Number of Events	Gas VOC Weight %	Gas MW	Average Gas Temperature	Estimated MCF per event	Estimated SCF per event	Estimated SCF per year	Potential VOC Emissions		ons
		(ft³)	(psig)	(#/ per Year)	(%)	(lb/lb-mol)	(°F)				lb/scf	lb/year	(tpy)
6	Compressor	197	100	60	37.64	26.14	60	1.58	1580	568800	0.026	14746	7.37
1	Compressor	197	1,250	24	37.64	26.14	60	34.06	34060	817440	0.026	21192	10.60
												Total Losses	17.97

Emission Units	Designation	Compressor Volume	Compressor Pressure	Number of Events	Gas HAPs Weight %	Gas MW	Average Gas Temperature	Estimated MCF per event	Estimated SCF per event	Estimated SCF per year	Potential HAPs Emissions		ons
		(ft³)	(psig)	(#/ per Year)	(%)	(lb/lb-mol)	(°F)				lb/scf	lb/year	(tpy)
6	Compressor	197	100	60	0.47	26.14	60	1.58	1580	568800	0.00032	184	0.09
1	Compressor	197	1,250	24	0.47	26.14	60	34.06	34060	817440	0.00032	264	0.13
												Total Losses	0.22

Notes:

- 1. To be conservative, a 20% buffer is added to the total number of controlled blowdown events at 100 psig.
- 2. Assumes the majority of blowdowns are using the recycle process of reducing the pressure to 100 psig.
- 3. Assumes 24 blowdowns/year released to atmosphere at 1250 psig.
- 4. Number of Events based on Sacramento CS and Stony Creek CS since Four Runner CS has no data.

Calculation:

VOC weight percentage is from Stony Creek Inlet Gas Analysis 10/13/2020.

Molecular Weight of Gas = 26.14 approx Molecular Weight of Gas = 26.14 VOC Weight Percent = 37.64% approx HAPs Weight Percent = 0.4697%

Universal Gas Content = 379.5 ft³/lb-mol @ 60 F and 14.696 psia

Specific Gravity = 0.90264

Calculation:

Pound " X"/ scf = Wt Fraction (wt%) * MW of Gas * 1 lb mol/379.5 scf

Estimated MCF per event from using Blowdown Volumes Compressibility Spreadsheet Emissions (tpy) = (Estimated scf/event * number of events per year * lb/scf)/2000 (lb/ton)

4Runner Compressor Station Tank Truck Loading Emissions

Parameter	
Product	Produced Water
Saturation Factor, S ¹	0.6
Vapor MW ²	62.00 lb/lb-mol
Maximum Vapor Pressure	10.06 psia
Average Vapor Pressure	7.93 psia
Max Temperature	78.28 °F
Average Temperature	64.9 °F
Short-Term Loading Loss Factor ^{4, 5}	8.67 lb/1000 gal
Annual Loading Loss Factor ^{4, 5}	7.01 lb/1000 gal
Hourly Throughput	7,560 gal/hr
Annual Throughput	1,260,000 gal/yr
Water Content Reduction (%) ⁷	90%

Fugitive Losses		
Hourly Losses	65.52	lb/hr
Annual Losses	4.41	tpy
Hourly Losses (minus water)	6.55	lb/hr
Annual Losses (minus water)	0.44	tpy

Notes:

- 1. Saturation factor is from EPA's AP-42, 5th Edition, Section 5.2, Table 5.2-1; for submerged loading; dedicated normal service.
- 2. Molecular weight of vapors was taken from Tanks 4.09d.
- 3. Vapor pressure was determined using AP-42, Figure 7.1-13b.
- 4. Losses are based on the loading losses equation from EPA's AP-42, Section 2, 5th Edition, June, 2008, Equation 1:

where:

L = Loading Losses, lb/1000 gallons

S = Saturation Factor, see Table 5.2-1 in AP-42, Section 5.2.

P = True vapor pressure, psia

M = Molecular weight of vapors, lb/lb-mol

T = Temperature of bulk liquid loaded, R (F + 460)

- 5. Short-term loading loss factor is calculated based on the worst-case (highest) temperature and vapor pressure.
- 6. Annual loading loss factor is calculated based on the average temperature and vapor pressure.
- 7. The volume of liquids loaded are estimated to be 90% water; therefore, overall fugitive losses from loading are assumed to be 10% of the total emissions.

4Runner Compressor Station Pigging Blowdown Emissions

Pig Receiver/Pig Launcher	Designation	Pigging Volume	Pig Receiver or Launcher Pressure	Number of Events	Gas VOC Weight %	Gas MW	Average Gas Temperature	Estimated MCF per event	Estimated SCF per event	Estimated SCF per year	Pot	ential VOC Emissio	ons
		(ft ³)	(psig)	(#/ per Year)	(%)	(lb/lb-mol)	(°F)				lb/scf	lb/year	(tpy)
High Pressure	Pigging	7	1,250	12	37.64	26.14	60	1.21	1210	14520	0.026	376	0.19
Low Pressure	Pigging	12	250	52	37.64	26.14	60	0.2	200	10400	0.026	270	0.13
Low Pressure	Pigging	12	250	52	37.64	26.14	60	0.2	200	10400	0.026	270	0.13
			•									Total Losses	0.46

Notes:

1. Assume 12 events per year for each high pressure (HP) launcher/receiver and 52 events per year for each low pressure(LP) launcher/receiver.

VOC weight percentage is from Stony Creek Inlet Gas Analysis 10/13/2020.

Calculation:

Pound "X"/scf = Wt Fraction (wt%) * MW of Gas * 1 lb mol/379.5 scf

lbs NM/E VOC/scf = 0.026

Estimated MCF per event from using Blowdown Volumes Compressibility Spreadsheet Emissions (tpy) = (Estimated scf/event * number of events per year * lb/scf)/2000 (lb/ton)

4Runner Compressor Station Gas Analysis

Sample name	Gas Taken	Before Dehyo	drator					
Sample location	Stony Cree	ek Compresso	r Station					
Sample temperature and pressure	80 °F, 1050	80 °F, 1050 psig						
Date of sample	10/13/202	0						
Component	MW (g/mol)	Mole %	Gas Weight (lb/lbmol)	Weight %				
CO2	44.010	0.8540	0.376	1.4377				
Nitrogen	28.013	2.2880	0.641	2.4518				
methane (C1)	16.042	57.9040	9.289	35.5342				
ethane (C2)	30.069	19.9440	5.997	22.9403				
propane (C3)	44.096	11.3040	4.985	19.0675				
iso-butane (C4)	58.122	1.3420	0.780	2.9837				
nor-butane (C4)	58.122	4.2450	2.467	9.4381				
iso-pentane (C5)	72.149	0.7080	0.511	1.9540				
n-pentane	72.149	0.9500	0.685	2.6219				
Cyclopentane	72.149	0.0110	0.008	0.0304				
2,2,4 Trimethyl pentane	72.149	0.0020	0.001	0.0055				
n-Hexane	86.180	0.1250	0.108	0.4121				
Cyclohexane	86.180	0.0230	0.020	0.0758				
Other Hexanes	86.180	0.1830	0.158	0.6033				
Methylcyclohexane	86.180	0.0090	0.008	0.0297				
heptane (C7+)	100.200	0.0780	0.078	0.2990				
octane (C8+)	114.230	0.0120	0.014	0.0524				
nonane (C9+)	128.260	0.0010	0.001	0.0049				
decane (C10+)	142.290	0.0010	0.001	0.0054				
benzene	78.110	0.0100	0.008	0.0299				
toluene	92.140	0.0040	0.004	0.0141				
Ethylbenzene	106.170	0.0000	0.000	0.0000				
xylenes (M, P, O)	106.170	0.0020	0.002	0.0081				
H2S	34.082	0.0000	0.000	0.0000				
	Total	100.0000	26.1416	100.0000				
Va	por MW (lb/lb-mol)	26.142						
	VOC Weight (%)	37.6360						
	HAPs Weight (%)	0.4697						

Specific Gravity = 0.90264

NDDEQ FORMS

PERMIT APPLICATION FOR AIR CONTAMINANT SOURCES NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF AIR QUALITY SFN 8516 (3-2019)

Name of Firm or Organization Hiland Partners Holdings LLC - 4Runner		ation	
Applicant's Name And Pundari	Compressor of	attori	
Title Senior Engineer - EHS Staff		Telephone Number 520-663-4249	E-mail Address anu_pundari@kindermorgan.com
Contact Person for Air Pollution Ma		-	and_pundan@kindermorgani.com
Anu Pundari Title		Telephone Number	E-mail Address
Senior Engineer - EHS Staff		520-663-4249	anu_pundari@kindermorgan.com
Mailing Address (Street & No.) 5151 E. Broadway, Suite 1680			
City Tucson		State AZ	ZIP Code 85711
Facility Name 4Runner Compressor Station		1,	
Facility Address (Street & No.) Located approximately 15 miles southwe	st of Williston, I		
City Williston		State ND	ZIP Code 58849
County Williams	Latitude (Ne 48° 3'23,89"N	arest Second)	Longitude (Nearest Second) -103°23'35.39"W
Legal Description of Facility Site			
Quarter Quarter SE	Secti 22	on Towr 153N	nship Range 99W
Land Area at Facility Site 6 Acres (or) S	q. Ft.	MSL Elevation at Fac 1930 feet	cility
SECTION B - GENERAL NAT			,
Describe Nature of Business		can Industry n System Number	Standard Industrial Classification Number (SIC)
Natural Gas Compressor Station	2	213112	1389
SECTION C - GENERAL PER			(270)
Type of Permit? Permit to Cor	nstruct (PTC)	☐ Permit to Ope	erate (P10)
If application is for a Permit to Con-	struct, please		
Planned Start Construction Date Construction of Emissions Sources in Su	ımmer/Fall 2022	Planned End Co November 1, 2022	

SECTION D - SOURCE IDENTIFICATION AND CATEGORY OF EACH SOURCE INCLUDED ON THIS PERMIT APPLICATION

p	INCLUDE					LICA						
		Pe	rmit to	Constr	uct		Minor	Source	<u>Permi</u>	t to Ope	erate	
Your Source ID Number	Source or Unit (Equipment, Machines, Devices, Boilers, Processes, Incinerators, Etc.)	New Source	Existing Source Modification	Existing Source Expansion	Existing Source Change of Location	New Source	Existing Source Initial Application	Existing Source After Modification	Existing Source After Expansion	Existing Source After Change of Location	Existing Source Affer Change of Ownership	Other
C2 and C3	Compressor Engine C2 and C3	✓										
:												

Add additional pages if necessary

SECTION D2 - APPLICABLE REGULATIONS

)(i Lio)(DEL (Loon)(iii)
Source ID No.	Applicable Regulations (NSPS/MACT/NESHAP/etc.)
Facility-wide	NSPS OOOOa - Fugitive Emissions at a Compressor Station
1-6	NSPS OOOOa - Reciprocating Compressors
1-6	NSPS JJJJ - Compressor Engines
1-6	MACT ZZZZ - Compressor Engines
8	MACT HH - TEG Still Vent

SECTION E - TOTAL POTENTIAL EMISSIONS

Pollutant	Amount (Tons Per Year)
NO _x	98.29
СО	98.22
PM	7.75

Pollutant	Amount (Tons Per Year)
PM ₁₀ (filterable and condensable)	7.75
PM _{2.5} (filterable and condensable)	7.75
SO ₂	0.23
VOC	98.92
GHG (as CO₂e)	46591
Largest Single HAP	1.88
Total HAPS	5.24

^{&#}x27;If performance test results are available for the unit, submit a copy of test with this application. If manufacturer guarantee is used provide spec sheet.

SECTION F1 - ADDITIONAL FORMS

OL'	SECTION I I - ADDITIONAL FORMS						
	Indicate which of the following forms are attached and made part of the application						
	Air Pollution Control Equipment		Fuel Burning Equipment Used for Indirect				
	(SFN 8532)		Heating (SFN 8518)				
	Construct/Operate Incinerators		Hazardous Air Pollutant (HAP) Sources				
	(SFN 8522)		(SFN 8329)				
	Natural Gas Processing Plants		Manufacturing or Processing Equipment				
	(SFN 11408)		(SFN 8520)				
	Glycol Dehydration Units		Volatile Organic Compounds Storage Tank				
	(SFN 58923)		(SFN 8535)				
	Flares		Internal Combustion Engines and Turbines				
	(SFN 59652)		(SFN 8891)				
	Grain, Feed, and Fertilizer Operations		Oil/Gas Production Facility Registration				
	(SFN 8524)		(SFN 14334)				

SECTION F2 – OTHER ATTACHMENTS INCLUDED AS PART OF THIS APPLICATION

1.	NDDEQ Engine Forms	4.	
2.	Emissions Estimate Calculations	5.	• .
3.	Engine Specifications	6.	

I, the undersigned applicant, am fully aware that statements made in this application and the attached exhibits and statements constitute the application for Permit(s) to Construct and/or Operate Air Contaminant sources from the North Dakota Department of Environmental Quality and certify that the information in this application is true, correct and complete to the best of my knowledge and belief. Further, I agree to comply with the provisions of Chapter 23.1-06 of the North Dakota Century Code and all rules and regulations of the Department, or revisions thereof. I also understand the permit is nontransferable and, if granted a permit, I will promptly notify the Department upon sale or legal transfer of this permitted establishment.

Signature		Λ Λ ·	Date	
	ann	Pundani	8/11/22	;

PERMIT APPLICATION FOR INTERNAL COMBUSTION ENGINES AND TURBINES

NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF AIR QUALITY SFN 8891 (3-2019)

NOTE: READ INSTRUCTIONS BEFORE COMPLETING THIS FORM.
- Must include SFN 8516 or SFN 52858

SECTION A - GENERAL INFORM	MATION						
Name of Firm or Organization		Facility Name					
Hiland Partners Holdings LLC	4Runner Compressor Station						
SECTION B - FACILITY AND UNIT INFORMATION Source ID Number (From form SFN 8516)							
C1 to C6		······································					
Type of Unit (check all Stationary Natural G that apply) Stationary Diesel and Stationary Gasoline	d Dual Fuel En			ency Uso nergenc			
Stationary Natural G		ne l		d Respo	onse		
☐ Other – Specify:			Advisor Control of Con		All an annual to the second		
SECTION C - MANUFACTURER							
Make Waukesha	Model L7044 GSI Serie	es 5			Date of Manufacture Post July 2010		
Reciprocating Internal Combustion Eng			`				
■ Spark Igniti ■ 4 Stroke □ 2 Stroke			Compression Rich Buri		n Lean Burn		
Maximum Rating (BHP @ rpm)							
1900 @1200 rpm		Operating Capacity (BHP @ rpm) 1900 @ 1200 rpm					
Engine Subject to: 40 CFR 60, Subpart IIII 40 CFR 60, Subpart OOOO	40 CFR 60		art JJJJ art OOOOa		40 CFR 63, Subpart ZZZZ		
Turbine			Dry Low E	mission			
Heat Input (MMBtu/hr) Maximum R	Rating (HP)	75% Rating (HP) Efficie			Efficiency		
Turbine Subject to: 40	0 CFR 60, Subp	bpart GG 🔲 40 CFR 60, Subpart KKKK					
SECTION D - FUELS USED							
Natural Gas (10 ⁶ cu ft/year) 91.908 MMscf/year		Percent Sulfur Negligible			Percent H₂S Negligible		
Oil (gal/year)		Percent Sulfur Grade No.			Grade No.		
LP Gas (gal/year)			Other - Specify:				
SECTION E – NORMAL OPERATING SCHEDULE							
Hours Per Day Days Per Week 7 52	eeks Per Year	r Hours Per Year Peak Production Season 8760 (if any)					
SECTION F - STACK PARAMET	TERS						
Emission Point ID Number Engines C1 and C6		Stack Height Above Ground Level (feet 1.5 X Building Height (approximately 35 feet)					
	charged (SCFN	V)	Exit Temp		Gas Velocity (FPS)		

SECTION G - EMISSION CONTROL EQUIPMENT

Is any emission contr	ol equipment installed on this unit?
□No	■ Yes – Complete and attach form SFN 8532

SECTION H - MAXIMUM AIR CONTAMINANTS EMITTED

	Maximum Pounds Per	Amount (Tons Per	
Pollutant	Hour	Year)	Basis of Estimate*
NO _x	3.52	15.41	Permit Limit
СО	3.52	15.41	Permit Limit
PM	0.31	1.34	AP-42 Table 3.2-3
PM ₁₀ (filterable and condensable)	0.31	1.34	AP-42 Table 3.2-3
PM _{2.5} (filterable and condensable)	0.31	1.34	AP-42 Table 3.2-3
SO ₂	0.01	0.04	AP-42 Table 3.2-3
VOC	2.31	10.11	Permit Limit
GHG (as CO ₂ e)	1829	8009	AP-42 Table 3.2-3
Largest Single HAP	0.004	0.02	Vendor Data
Total HAPS	0.10	0.43	Vendor Data/AP-42

^{*} If performance test results are available for the unit, submit a copy of test with this application, if manufacture data used, submit manufacturers specification sheets.

	If "NO" a Compliance Schedule (SFN 61008) must be completed and attached.
YES NO	

Attach and label separate sheet(s) if you need more space to explain any system or answers or to provide complete listings of Emissions, Contaminants, or other items.

SEND COMPLETED APPLICATION AND ALL ATTACHMENTS TO:

North Dakota Department of Environmental Quality Division of Air Quality 918 E Divide Avenue, 2nd Floor Bismarck, ND 58501-1947 (701) 328-5188

PERMIT APPLICATION FOR AIR POLLUTION CONTROL EQUIPMENT

NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF AIR QUALITY SFN 8532 (3-2019)

NOTE: READ INSTRUCTIONS BEFORE COMPLETING THIS FORM.
- Must also include forms SFN 8516 or SFN 52858

SECTION	$\Delta = GENER$	AL INFORMATION
OECHOIA.		

Name of Firm or Organization Facility Name Hiland Partners Holdings LLC Facility Name 4Runner Compressor Station								
Source ID No. of Ec C1 and C6	luipmer	nt being	Controlled					
SECTION B – EC	MAINC	TENT				.,		
Type: Cycl			Multiclo	ne	Bagho	use	☐ Electro	ostatic Precipitator
□Wet	Scrubb	er	☐ Spray D	ryer	☐ Flare/C	Comb	ustor	
■ Othe	er – Spe	ecify: N	ISCR					
Name of Manufactu Waukesha INNIO	rer		Model Nur emPACT	nber			Date to Be I	nstalled
Application:		Kiln	П	Engine	. [Oth	er – Specify:	
Pollutants Removed	d _	NOx	<u> </u>	СО			NE HC (VO	3)
Design Efficiency (%	%)	98.7	%	97.0	%	8	5.7 %	
Operating Efficiency	y (%)	TBD		TBD)	Т	BD	
Describe method us	sed to c	determin	e operating	efficien	cy:			1

SECTION CD -	GAS C	ONDIT	TONS					
Gas Conditions	4. 00°E	. 447	I_\			Inlet		Outlet
Gas Volume (SCFN		; 14.7 ps 	ıa) 					8857
Gas Temperature (°F)							1,150
Gas Pressure (in. F	l ₂ O)							
Gas Velocity (ft/sec)					-	i	56.5
Pollutant Concentration	Pollut	ant	Unit of	Conce	ntration	···	•	
(Specify Pollutant and Unit of		VOx	g	/bhp·	-hr		11.6	0.15 (permitting 0.84)
Concentration)		СО		/bhp-			9.9	0.3 (permitting 0.84)
	١	/OC	g	/bhp-	-hr		0.07	0.01(permitting 0.55)
Pressure Drop Thro	ough Ga	as Clean	ing Device	(in. H ₂ C))			

PERMIT APPLICATION FOR HAZARDOUS AIR POLLUTANT (HAP) SOURCES NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY

NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF AIR QUALITY SFN 8329 (3-2019)

SECTION A1 - APPLICANT IN	NFORMATIC	N				
Name of Firm or Organization Hiland Partners Holdings LLC - 4Runner					•	
Applicant's Name Anu Pundari						
Title Senior Engineer - EHS		Telephor 520-663-42	e Number	E-mail Add	ress @kindermorgar	
Mailing Address (Street & No.)		020-000-42	.49	anu_pundan	<u> wkindennorgar</u>	I.COITI
5151 E. Broadway, Suite 1680 City			State		ZIP Code	
Tucson			AZ		85711	
SECTION A2 - FACILITY INFO						
Anu Pundari	uters					
Title Senior Engineer - EHS		Telephor 520-663-42	ie Number 249	E-mail Add	lress @kindermorga:	n.com
Facility Address (Street & No. or La Located approximately 15 miles southwe				,		***************************************
City Williston			State ND		ZIP Code 58849	
County Williams		Num 0	ber of Empl	oyees at Loc	ation	
Land Area at Plant Site 6 Acres (or)		0 a E4	1	evation at Pl	ant	
(61)		Sq. Ft	, 1900			
Describe Nature of Business/Proce						
Natural gas compressor station	on					
					,	
SECTION B – STACK DATA						
Inside Diameter (ft) 12 " (estimated)	Height Above			-		
Gas Temperature at Exit (°F)	Gas Velocity 56	at Exit (ft	sec)	Gas Volun 8857	ne (scfm)	
Basis of any Estimates (attach sep	arate sheet if r	necessary)		***************************************	
Are Emission Control Devices in P	lace? If VES _	Complete	SEN 8532	6) Yes	(No
Nearest Residences or Building	Distance (ft)	· · · · · · · · · · · · · · · · · · ·	. 0, 11 0002	Direction	, 100	<u> </u>
Residence Nearest Property Line	4224 (0.8 mile Distance (ft))		West Direction		
, rounded i roporty Enio	2,5,64,100 (10)			Di COGOTI		

SECTION C - EMISSION STREAM DATA

Source ID No. From SFN 8516 C1 and C6	Mean Particle Diameter (um) Unknown
Flow Rate (scfm) 8857	Drift Velocity (ft/sec) Unknown
Stream Temperature (°F) 1,150	Particulate Concentration (gr/dscf) Unknown
Moisture Content (%) Unknown	Halogens or Metals Present? Unknown
Pressure (in. Hg) Unknown	Organic Content (ppmv) Unknown
Heat Content (Btu/scfm) Unknown	O ₂ Content (%) Unknown

SECTION D - POLLUTANT SPECIFIC DATA

(Complete One Box for Each Pollutant in Emission Stream)

Pollutant Emitted Formaldehyde	Chemical Abstract Services (CAS) Number 50-00-0
Proposed Emission Rate (lb/hr) 0.001	Emission Source (describe) 1900 hp Compressor Engines #1 and Engine #2
Source Classification	Pollutant Class and Form
(process point, process fugitive, area fugitive)	(organic/inorganic - particulate/vapor)
Process point	Organic- Vapor
Concentration in Emission Stream (ppmv)	Vapor Pressure (in. Hg @ °F)
Unknown	3890 mm Hg at 25 degrees Celius
Solubility	Molecular Weight (lb/lb-mole)
>100 g/100 ml (20 degrees Celius)	30
Absorptive Properties Unknown	

Pollutant Emitted	Chemical Abstract Services (CAS) Number
Proposed Emission Rate (lb/hr)	Emission Source (describe)
Source Classification (process point, process fugitive, area fugitive)	Pollutant Class and Form (organic/inorganic - particulate/vapor)
Concentration in Emission Stream (ppmv)	Vapor Pressure (in. Hg @ °F)
Solubility	Molecular Weight (lb/lb-mole)

(Add additional pages if necessary)

Signature of Applicant	0		Date
	Unn	Pundan'	8/11/22

SEND COMPLETED APPLICATION AND ALL ATTACHMENTS TO:

North Dakota Department of Environmental Quality Division of Air Quality 918 E Divide Avenue, 2nd Floor Bismarck, ND 58501-1947 (701) 328-5188

PERMIT APPLICATION FOR INTERNAL COMBUSTION ENGINES AND TURBINES

NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF AIR QUALITY SFN 8891 (3-2019)

NOTE: READ INSTRUCTIONS BEFORE COMPLETING THIS FORM.
- Must include SFN 8516 or SFN 52858

SECTION A - GENERAL INFORT	WATION							
Name of Firm or Organization	F	acility	Name					
Hiland Partners Holdings LLC	4F	Runner	Compressor	Station				
SECTION B – FACILITY AND UN	IIT INFORMA	TION						
Source ID Number (From form SFN 85 C2 and C3	16)							
Type of Unit Stationary Natural G	as-Fired Engine		☐ Emerge	ency Use	e Only			
(check all Stationary Diesel and		ine	Non-En		y Use			
that apply)			Peaking					
Stationary Natural G	as-Fired Turbine	€	Deman	d Respo	onse			
U Other – Specify:	Other – Specify:							
SECTION C - MANUFACTURER	DATA							
Make	Model				Date of Manufa	cture		
Waukesha	L7044 GSI Series	s 4			Post July 2010			
Reciprocating Internal Combustion Eng								
Spark Igniti			Compressio					
4 Stroke 2 Stroke		Rich Burn Lean Burn						
Maximum Rating (BHP @ rpm) 1680 @1200 rpm		Operating Capacity (BHP @ rpm) 1680 @ 1200 rpm						
Engine Subject to:								
40 CFR 60, Subpart IIII	40 CFR 60,				10 CFR 63, Sub _l	part ZZZZ		
Turbine 40 CFR 60, Subpart OOOO	☐ 40 CFR 60,	Supp	aπ 0000a Dry Low E		s? Yes	□ No		
Heat Input (MMBtu/hr) Maximum R	Pating (HD)	75% B	Rating (HP)	HISSIOH	Efficiency			
Picat Input (Wild Bta/III)	tating (Tir)	10701	(ating (in)		Linolonoy			
Turbine Subject to: 40	CFR 60, Subpa	art GC	3	R 60, S	Subpart KKKK			
-					,			
SECTION D - FUELS USED								
Natural Gas (10 ⁶ cu ft/year)			nt Sulfur		Percent H₂S			
90.342 MMscf/year		Negligible			Negligible			
Oil (gal/year)	F	Percent Sulfur			Grade No.			
LP Gas (gal/year)		Other - Specify:						
	- una speeny.							
SECTION E - NORMAL OPERA								
	1		s Per Year	ſ	Production Season			
24 7 52		8760		(if any)	<u> </u>			
SECTION F – STACK PARAMET	ERS							
Emission Point ID Number		l	Stack Helg	ht Abov	e Ground Level	(feet)		
Engines 2 and 3					approximately 35			
	charged (SCFM))	Exit Temp	(°F)	Gas Velocit	ty (FPS)		
12 inches estimated 3094			1208		51.6			

SECTION G - EMISSION CONTROL EQUIPMENT

Is any emission control equipment installed on this unit?	,
☐ No ☐ Yes – Complete and attach form SFN 8532	

SECTION H - MAXIMUM AIR CONTAMINANTS EMITTED

Pollutant	Maximum Pounds Per Hour	Amount (Tons Per Year)	Basis of Estimate*
NO _x	3.52	15.41	Permit Limit
со	3.52	15.41	Permit Limit
PM	0.30	1.32	AP-42 Table 3.2-3
PM ₁₀ (filterable and condensable)	0.30	1.32	AP-42 Table 3.2-3
PM _{2.5} (filterable and condensable)	0.30	1.32	AP-42 Table 3.2-3
SO ₂	0.01	0.04	AP-42 Table 3.2-3
VOC	2.37	10.40	Permit Limit
GHG (as CO₂e)	1797	7872	AP-42 Table 3.2-3
Largest Single HAP	0.004	0.02	Vendor Data
Total HAPS	0.10	0.43	Vendor Data/AP-42

If performance test results are available for the unit, submit a copy of test with this application, if manufacture data used, submit manufacturers specification sheets.

IS THIS UNIT IN COMPLIANCE WITH ALL APPLICABLE AIR POLLUTION RULES AND REGULATIONS?	If "NO" a Compliance Schedule (SFN 61008) must be completed and attached.
■ YES □ NO	

Attach and label separate sheet(s) if you need more space to explain any system or answers or to provide complete listings of Emissions, Contaminants, or other items.

SEND COMPLETED APPLICATION AND ALL ATTACHMENTS TO:

North Dakota Department of Environmental Quality Division of Air Quality 918 E Divide Avenue, 2nd Floor Bismarck, ND 58501-1947 (701) 328-5188

PERMIT APPLICATION FOR AIR POLLUTION CONTROL EQUIPMENT

NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF AIR QUALITY SFN 8532 (3-2019)

NOTE: READ INSTRUCTIONS BEFORE COMPLETING THIS FORM.
- Must also include forms SFN 8516 or SFN 52858

SECTION A – GENERAL INFORMATION

Name of Firm or O Hiland Partners Holdin	rganizal ngs LLC	ion	2 33		Facility Na 4Runner Co		sor Station	····	
Source ID No. of E C2 and C3		nt being	Controlled	-					
SECTION B - E	QUIPN	IENT							
	clone		☐ Multiclor	ne	Bagh	ouse	☐ Elec	ctrost	atic Precipitator
☐ We	et Scrubl	er	☐ Spray D	ryer	☐ Flare	/Coml	oustor		
■ Oth	ner – Sp	ecify:	NSCR						
				•					
Name of Manufact Waukesha INNIO	turer		Model Nur emPACT	nber			Date to B upon startu		talled
Application: Boiler] Kiln		Engine	€	□ Ot	her – Specif	y:	
Pollutants Remove	ed	NOx		СО		N	MNE HC (V	OC)	
Design Efficiency	(%)	98.9	%	97.6	3 %	2	3.7 %		
Operating Efficiency (%) TBD TBD						TBD			
Describe method	used to	determin	e operating	efficier	ncy:				1
Compared ENGI VOC efficiency lo g/hp-hr.									
SECTION CD -	- GAS (CONDI	TIONS						V
Gas Conditions			\			Inlet			Outlet
Gas Volume (SCF	FM; 68°F	; 14.7 ps	sia)						7891
Gas Temperature	(°F)				J				1208
Gas Pressure (in.	H ₂ O)	<u></u>	with the control of t		,				
Gas Velocity (ft/se	ec)								51.6
Pollutant Concentration	Pollu	tant	Unit of	Conce	entration				
(Specify Pollutant and Unit of		NOx	g	/bhp	-hr		14.1	C).15 (permitting 0.95)
Concentration)		CO	g	/bhp	-hr		12.7	C).30(permitting 0.95)
	,	VOC	g	/bhp	-hr	***************************************	0.59	C	0.45(permitting 0.64)
						enone of the second of the sec			
Pressure Drop Th	rough G	as Clear	ning Device	(in. H ₂ (O)	·			

PERMIT APPLICATION FOR HAZARDOUS AIR POLLUTANT (HAP) SOURCES NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF AIR QUALITY SFN 8329 (3-2019)

SECTION A1 - APPLICANT INFORMATIO	MATION	INFOR	CANT	APPL	I A 1	CTION	SEC
-----------------------------------	--------	-------	------	------	-------	-------	-----

SECTION A1 - APPLICANT II	<u>VFORMATIC</u>	<u> </u>				
Name of Firm or Organization Hiland Partners Holdings LLC - 4Runner	Compressor Sta	ation				-
Applicant's Name Anu Pundari						· W ·
Title Senior Engineer - EHS		Telephor 520-663-4	ne Number 249	E-mail Address anu pundari@kindermorgan.com		
Mailing Address (Street & No.) 5151 E. Broadway, Suite 1680						
City Tucson			State AZ		ZIP Code 85711	
SECTION A2 - FACILITY INF	ORMATION		•			
Contact Person for Air Pollution Ma Anu Pundari	atters				***************************************	
Title Senior Engineer - EHS		Telephoi 520-663-4	ne Number 249	E-mail Add	lress @kindermorga	n.com
Facility Address (Street & No. or La Located approximately 15 miles southwe						
City Williston			State ND		ZIP Code 58849	
County Williams		Num 0		oyees at Lo		
Land Area at Plant Site 6 Acres (or)		Sq. Ft	I	evation at P	lant 	
Describe Nature of Business/Proce						
Natural gas compressor static	on					
			,			
			· · · · · · · · · · · · · · · · · · ·			
SECTION B - STACK DATA	Height Abov	o Crodo (f	'IX	1		
Inside Diameter (ft) 12 " (estimated)	1.5 X Building He					
Gas Temperature at Exit (°F) 1,208	Gas Velocity 52	at Exit (ft	/sec)	Gas Volun 7891	ne (scfm)	
Basis of any Estimates (attach sep	arate sheet if	necessary	')			
Are Emission Control Devices in P	lace? If YES -	- Complete	SFN 8532	6) Yes	O No
Nearest Residences or Building Residence	Distance (ft) 4224 (0.8 mile			Direction West		<u> </u>
Nearest Property Line	Distance (ft)			Direction		
<u> </u>			······			

SECTION C - EMISSION STREAM DATA

Source ID No. From SFN 8516 C2 and C3	Mean Particle Diameter (um) Unknown
Flow Rate (scfm) 3094	Drift Velocity (ft/sec) Unknown
Stream Temperature (°F) 1208	Particulate Concentration (gr/dscf) Unknown
Moisture Content (%) Unknown	Halogens or Metals Present? Unknown
Pressure (in. Hg) Unknown	Organic Content (ppmv) Unknown
Heat Content (Btu/scfm) Unknown	O ₂ Content (%) Unknown

SECTION D - POLLUTANT SPECIFIC DATA

(Complete One Box for Each Pollutant in Emission Stream)

Pollutant Emitted Formaldehyde	Chemical Abstract Services (CAS) Number 50-00-0
Proposed Emission Rate (lb/hr) 0.004	Emission Source (describe) 1680 hp Compressor Engines #C2 and Engine # C3
Source Classification	Pollutant Class and Form
(process point, process fugitive, area fugitive)	(organic/inorganic - particulate/vapor)
Process point	Organic- Vapor
Concentration in Emission Stream (ppmv)	Vapor Pressure (in. Hg @ °F)
Unknown	3890 mm Hg at 25 degrees Celius
Solubility	Molecular Weight (lb/lb-mole)
>100 g/100 ml (20 degrees Celius)	30
Absorptive Properties Unknown	,

Pollutant Emitted	Chemical Abstract Services (CAS) Number
Proposed Emission Rate (lb/hr)	Emission Source (describe)
Source Classification (process point, process fugitive, area fugitive)	Pollutant Class and Form (organic/inorganic - particulate/vapor)
Concentration in Emission Stream (ppmv)	Vapor Pressure (in. Hg @ °F)
Solubility	Molecular Weight (lb/lb-mole)

(Add additional pages if necessary)

Cianatura of Annligant	^	Date
Signature of Applicant		Date
ann 1	undan'	8/11/22

SEND COMPLETED APPLICATION AND ALL ATTACHMENTS TO:

North Dakota Department of Environmental Quality Division of Air Quality 918 E Divide Avenue, 2nd Floor Bismarck, ND 58501-1947 (701) 328-5188

WAUKESHA SERIES 4 ENGINE SPECIFICATIONS

GE Power

Kinder Morgan - 4 Runner - ND

VHP - L7044GSI

Archrock Tom Gas Compression

ENGINE SPEED (rpm):	1200	NOx SELECTION (g/bhp-hr):	Customer Catalyst
DISPLACEMENT (in3):	7040	COOLING SYSTEM:	JW, IC + OC
COMPRESSION RATIO:	8:1	INTERCOOLER WATER INLET (°F):	130
IGNITION SYSTEM:	ESM2	JACKET WATER OUTLET (°F):	180
EXHAUST MANIFOLD:	Water Cooled	JACKET WATER CAPACITY (gal):	100
COMBUSTION:	Rich Burn, Turbocharged	AUXILIARY WATER CAPACITY (gal):	11
ENGINE DRY WEIGHT (lbs):	24250	LUBE OIL CAPACITY (gal):	190
AIR/FUEL RATIO SETTING:	0.38% CO	MAX. EXHAUST BACKPRESSURE (in. H2O):	18
ENGINE SOUND LEVEL (dBA)	104	MAX. AIR INLET RESTRICTION (in. H2O):	15
IGNITION TIMING:	ESM2 Controlled	EXHAUST SOUND LEVEL (dBA)	111

SITE CONDITIONS: FUEL: Natural Gas ALTITUDE (ft): 2000 FUEL PRESSURE RANGE (psig): 30 - 60 MAXIMUM INLET AIR TEMPERATURE (°F): 100 FUEL HHV (BTU/ft3): 1,336.2 FUEL WKI: 56.1 FUEL LHV (BTU/ft3): 1,208.0

CITE CDECIEI	C TECHNICAL	DVIV
OLIE OFFICIE	CIECHINICAL	LAIA

SITE SPECIFIC TECHNICAL DATA		MAX RATING AT 100 °F	SITE RATING AT MAXIMUM INLET AIR TEMPERATURE OF 100 °F			
POWER RATING	UNITS	SHEDAVA	AIR TEMP	100%	75%	53%
CONTINUOUS ENGINE POWER OVERLOAD	BHP % 2/24 hr		1593 0	1593 0	1196 -	843 -
MECHANICAL EFFICIENCY (LHV) CONTINUOUS POWER AT FLYWHEEL	% BHP		27.7 1442	27.7 1442	25.5 1045	23.4 692
based on 75 HP cooling fan, 76 HP misc. power						

AVAILABLE TURNDOWN SPEED RANGE	RPM	700 - 1200

FUEL CONSUMPTION						
FUEL CONSUMPTION (LHV)		BTU/BHP-hr	8324	8324	8729	8941
FUEL CONSUMPTION (HHV)		BTU/BHP-hr	9208	9208	9657	9891
FUEL FLOW	based on fuel analysis LHV	SCFM	183	183	144	104

HEAT REJECTION					
JACKET WATER (JW)	BTU/hr x 1000	3974	3974	3289	2505
LUBE OIL (OC)	BTU/hr x 1000	560	560	509	428
INTERCOOLER (IC)	BTU/hr x 1000	257	257	176	92
EXHAUST	BTU/hr x 1000	3976	3976	2985	1958
RADIATION	BTU/hr x 1000	699	699	644	552

EMISSIONS (ENGINE OUT):					
NOx (NO + NO2)	g/bhp-hr	14.1	14.1	15.1	16.3
CO	g/bhp-hr	12.7	12.7	12.6	11.5
THC	g/bhp-hr	2.2	2.2	2.2	2.2
NMHC	g/bhp-hr	1.19	1.19	1.14	0.97
NM,NEHC (VOC)	g/bhp-hr	0.59	0.59	0.57	0.48
CO2	g/bhp-hr	543	543	569	583
CO2e	g/bhp-hr	569	569	594	604
CH2O	g/bhp-hr	0.050	0.050	0.050	0.050
CH4	g/bhp-hr	1.05	1.05	1.00	0.85

AIR INTAKE / EXHAUST GAS					
INDUCTION AIR FLOW	SCFM	2429	2429	1913	1380
EXHAUST GAS MASS FLOW	lb/hr	11294	11294	8894	6416
EXHAUST GAS FLOW at exha	nust temp, 14.5 psia ACFM	8423	8423	6451	4406
EXHAUST TEMPERATURE	°F	1218	1218	1172	1085

HEAT EXCHANGER SIZING ¹²		
TOTAL JACKET WATER CIRCUIT (JW)	BTU/hr x 1000	4507
TOTAL AUXILIARY WATER CIRCUIT (IC + OC)	BTU/hr x 1000	926

COOLING SYSTEM WITH ENGINE MOUNTED WATER PUMPS		
JACKET WATER PUMP MIN. DESIGN FLOW	GPM	450
JACKET WATER PUMP MAX. EXTERNAL RESTRICTION	psig	16
AUX WATER PUMP MIN. DESIGN FLOW	GPM	79
AUX WATER PUMP MAX. EXTERNAL RESTRICTION	psig	44

GE Power

Kinder Morgan - 4 Runner - ND

VHP - L7044GSI Gas Compression Archrock Tom

FUEL	COM		TION
FUEL	CON	เคตอเ	HUN

HYDROCARBONS:	<u>Mole</u>	e or Volume %	FUEL:	Natural Gas
Methane	CH4	64.13	FUEL PRESSURE RANGE (psig):	30 - 60
Ethane	C2H6	19.56	FUEL WKI:	56.1
Propane	C3H8	8.9		
Iso-Butane	I-C4H10	0.69	FUEL SLHV (BTU/ft3):	1186.93
Normal Butane	N-C4H10	1.87	FUEL SLHV (MJ/Nm3):	46.67
Iso-Pentane	I-C5H12	0.17	, ,	
Normal Pentane	N-C5H12	0.19	FUEL LHV (BTU/ft3):	1207.95
Hexane	C6H14	0.15	FUEL LHV (MJ/Nm3):	47.50
Heptane	C7H16	0	, ,	
Ethene	C2H4	0	FUEL HHV (BTU/ft3):	1336.23
Propene	C3H6	0	FUEL HHV (MJ/Nm3):	52.55
	SUM HYDROCARBONS 95.66		FUEL DENSITY (SG):	0.81
NON-HYDROCARBONS:				
Nitrogen	N2	3.39	Standard Conditions per ASTM D3588-91 [60°F and	d 14.696psia] and
Oxygen	O2	0	ISO 6976:1996-02-01[25, V(0;101.325)]. Based on the fuel composition, supply pressure and	tomporatura liquid
Helium	He	0	hydrocarbons may be present in the fuel. No liquid h	
Carbon Dioxide	CO2	0.97	allowed in the fuel. The fuel must not contain any liquid water. Waukesha	
Carbon Monoxide	CO	0	recommends both of the following:	
Hydrogen	H2	0	 Dew point of the fuel gas to be at least 20°F (11°C) below the measured temperature of the gas at the inlet of the engine fuel regulator. 	
Water Vapor	H2O	0	A fuel filter separator to be used on all fuels exce	•
·			natural gas.	
	TOTAL FUEL	100.02	Refer to the 'Fuel and Lubrication' section of 'Techni the Waukesha Application Engineering Department	
			information on fuels, or LHV and WKI* calculations.	Tor additional
			* Trademark of General Electric Company	

FUEL CONTAMINANTS	
Total Sulfur Compounds	

I OLL CONTAININAITIO				
Total Sulfur Compounds	0	% volume	Total Sulfur Compounds	0 μg/BTU
Total Halogen as Cloride	0	% volume	Total Halogen as Cloride	0 μg/BTU
Total Ammonia	0	% volume	Total Ammonia	0 μg/BTU
Siloxanes			Total Siloxanes (as Si)	0 μg/BTU
Tetramethyl silane	0	% volume		
Trimethyl silanol	0	% volume		
Hexamethyldisiloxane (L2)	0	% volume	Calculated fuel contaminant anal	ysis will depend on
Hexamethylcyclotrisiloxane (D3)	0	% volume	the entered fuel composition and	selected engine
Octamethyltrisiloxane (L3)	0	% volume	model.	_
Octamethylcyclotetrasiloxane (D4)	0	% volume		
Decamethyltetrasiloxane (L4)	0	% volume		
Decamethylcyclopentasiloxane (D5)	0	% volume		
Dodecamethylpentasiloxane (L5)	0	% volume		
Dodecamethylcyclohexasiloxane (D6)	0	% volume		
Others	0	% volume		

No water or hydrocarbon condensates are allowed in the engine. Requires liquids removal.

GE Power

VHP - L7044GSI Gas Compression

Kinder Morgan - 4 Runner - ND

Archrock Tom

NOTES

- 1. All data is based on engines with standard configurations unless noted otherwise.
- 2. Power rating is adjusted for fuel, site altitude, and site air inlet temperature, in accordance with ISO 3046/1 with tolerance of ± 3%.
- 3. Fuel consumption is presented in accordance with ISO 3046/1 with a tolerance of -0 / +5% at maximum rating. Fuel flow calculation based on fuel LHV and fuel consumption with a tolerance of -0/+5 %. For sizing piping and fuel equipment, it is recommended to include the 5% tolerance.
- 4. Heat rejection tolerances are ± 30% for radiation, and ± 8% for jacket water, lube oil, intercooler, and exhaust energy.
- 5. Emission levels for engines with GE supplied 3-way catalyst are given at catalyst outlet flange. For all other engine models, emission levels are given at engine exhaust outlet flange prior to any after treatment. Values are based on a new engine operating at indicated site conditions, and adjusted to the specified timing and air/fuel ratio at rated load. Catalyst out emission levels represent emission levels the catalyst is sized to achieve. Manual adjustment may be necessary to achieve compliance as catalyst/engine age. Catalyst-out emission levels are valid for the duration of the engine warranty. Emissions are at an absolute humidity of 75 grains H2O/lb (10.71 g H2O/kg) of dry air. Emission levels may vary subject to instrumentation, measurement, ambient conditions, fuel quality, and engine variation. Engine may require adjustment on-site to meet emission values, which may affect engine performance and heat output. NOx, CO, THC, and NMHC emission levels are listed as a not to exceed limit, all other emission levels are estimated. CO2 emissions based on EPA Federal Register/Vol. 74, No. 209/Friday, October 30, 2009 Rules and Regulations 56398, 56399 (3) Tier 3 Calculation Methodology, Equation C-5.
- 6. Air flow is based on undried air with a tolerance of \pm 7%.
- 7. Exhaust temperature given at engine exhaust outlet flange with a tolerance of ± 50°F (28°C).
- 8. Exhaust gas mass flow value is based on a "wet basis" with a tolerance of \pm 7%.
- 9. Inlet air restrictions based on full rated engine load. Exhaust backpressure based on 158 PSI BMEP and 1200 RPM. Refer to the engine specification section of Waukesha's standard technical data for more information.
- 10. Cooling circuit capacity, lube oil capacity, and engine dry weight values are typical.
- 11. Fuel must conform to Waukesha's "Gaseous Fuel Specification" S7884-7 or most current version. Fuel may require treatment to meet current fuel specification.
- 12. Heat exchanger sizing values given as the maximum heat rejection of the circuit, with applied tolerances and an additional 5% reserve factor.
- 13. Fuel volume flow calculation in english units is based on 100% relative humidity of the fuel gas at standard conditions of 60°F and 14.696 psia (29.92 inches of mercury; 101.325 kPa).
- 14. Fuel volume flow calculation in metric units is based on 100% relative humidity of the fuel gas at a combustion temperature of 25°C and metering conditions of 0°C and 101.325 kPa (14.696 psia; 29.92 inches of mercury). This is expressed as [25, V(0;101.325)].
- 15. Engine sound data taken with the microphone at 1 m (3.3 ft) from the side of the engine at the approximate front-to-back centerline. Microphone height was at intake manifold level. Engine sound pressure data may be different at front, back and opposite side locations. Exhaust sound data taken with microphone 1 meter (3.3 ft) away and 1 meter (3.3 ft) to the side of the exhaust outlet.
- 16. Due to variation between test conditions and final site conditions, such as exhaust configuration and background sound level, sound pressure levels under site conditions may be different than those tabulated above.
- 17. Cooling system design flow is based on minimum allowable cooling system flow. Cooling system maximum external restriction is defined as the allowable restriction at the minimum cooling system flow.
- 18. Continuous Power Rating: The highest load and speed that can be applied 24 hours per day, seven days per week, 365 days per year except for normal maintenance at indicated ambient reference conditions and fuel. No engine overload power rating is available.
- 19. emPact emission compliance available for entire range of operable fuels; however, fuel system and/or O2 set point may need to be adjusted in order to maintain compliance.
- 20. In cold ambient temperatures, heating of the engine jacket water, lube oil and combustion air may be required. See Waukesha Technical Data.
- 21. Available Turndown Speed Range refers to the constant torque speed range available. Reduced power may be available at speeds outside of this range. Contact application engineering.

SPECIAL REQUIREMENTS

VHP - L7044GSI

Gas Compression

ENGINE SPEED (rpm):	1200	NOx SELECTION (g/bhp-hr):	0.15
DISPLACEMENT (in3):	7040	COOLING SYSTEM:	JW, IC + OC
COMPRESSION RATIO:	8:1	INTERCOOLER WATER INLET (°F):	130
IGNITION SYSTEM:	ESM2	JACKET WATER OUTLET (°F):	180
EXHAUST MANIFOLD:	Water Cooled	JACKET WATER CAPACITY (gal):	100
COMBUSTION:	Rich Burn, Turbocharged	AUXILIARY WATER CAPACITY (gal):	11
ENGINE DRY WEIGHT (lbs):	24250	LUBE OIL CAPACITY (gal):	190
AIR/FUEL RATIO SETTING:	0.38% CO	MAX. EXHAUST BACKPRESSURE (in. H2O):	18
ENGINE SOUND LEVEL (dBA)	104	MAX. AIR INLET RESTRICTION (in. H2O):	15
IGNITION TIMING:	ESM2 Controlled	EXHAUST SOUND LEVEL (dBA)	111

SITE CONDITIONS: FUEL: Natural Gas ALTITUDE (ft): 2000 FUEL PRESSURE RANGE (psig): 30 - 60 MAXIMUM INLET AIR TEMPERATURE (°F): 100 1,336.2 FUEL WKI: FUEL HHV (BTU/ft3): 56.1 FUEL LHV (BTU/ft3): 1,208.0

SITE SPECIFIC TECHNICAL DATA	4
------------------------------	---

SITE SPECIFIC TECHNICAL DATA		MAX RATING AT 100 °F	SITE RATING AT MAXIMUM INLET AIR TEMPERATURE OF 100 °F			
POWER RATING	UNITS		AIR TEMP	100%	85%	79%
CONTINUOUS ENGINE POWER OVERLOAD	BHP % 2/24 hr		1593 0	1593 0	1356 -	1260 -
MECHANICAL EFFICIENCY (LHV) CONTINUOUS POWER AT FLYWHEEL	% BHP		30.6 1593	30.6 1593	29.5 1356	29.1 1260
based on no auxiliary engine driven equipment						

AVAILABLE TURNDOWN SPEED RANGE	RPM	700 - 1200

FUEL CONSUMPTION						
FUEL CONSUMPTION (LHV)		BTU/BHP-hr	8324	8324	8627	8752
FUEL CONSUMPTION (HHV)		BTU/BHP-hr	9208	9208	9544	9681
FUEL FLOW	based on fuel analysis LHV	SCFM	183	183	161	152

HEAT REJECTION					
JACKET WATER (JW)	BTU/hr x 1000	3974	3974	3612	3452
LUBE OIL (OC)	BTU/hr x 1000	560	560	535	522
INTERCOOLER (IC)	BTU/hr x 1000	257	257	211	192
EXHAUST	BTU/hr x 1000	3976	3976	3441	3204
RADIATION	BTU/hr x 1000	699	699	676	663

EMISSIONS (CATALYST OUT):					
NOx (NO + NO2)	g/bhp-hr	0.15	0.15	0.15	0.15
CO	g/bhp-hr	0.3	0.3	0.3	0.3
THC	g/bhp-hr	1.70	1.70	1.70	1.70
NMHC	g/bhp-hr	0.90	0.90	0.90	0.90
NM,NEHC (VOC)	g/bhp-hr	0.45	0.45	0.45	0.45
CO2	g/bhp-hr	562	562	582	590
CO2e	g/bhp-hr	582	582	602	610
CH2O	g/bhp-hr	0.001	0.001	0.001	0.001
CH4	g/bhp-hr	0.80	0.80	0.80	0.80

AIR INTAKE / EXHAUST GAS					
INDUCTION AIR FLOW	SCFM	2429	2429	2142	2019
EXHAUST GAS MASS FLOW	lb/hr	11294	11294	9963	9389
EXHAUST GAS FLOW at exhaust temp, 14.	5 psia ACFM	8423	8423	7346	6877
EXHAUST TEMPERATURE	°F	1218	1218	1199	1188

HEAT EXCHANGER SIZING ¹²		
TOTAL JACKET WATER CIRCUIT (JW)	BTU/hr x 1000	4507
TOTAL AUXILIARY WATER CIRCUIT (IC + OC)	BTU/hr x 1000	926

COOLING SYSTEM WITH ENGINE MOUNTED WATER PUMPS		
JACKET WATER PUMP MIN. DESIGN FLOW	GPM	450
JACKET WATER PUMP MAX. EXTERNAL RESTRICTION	psig	16
AUX WATER PUMP MIN. DESIGN FLOW	GPM	79
AUX WATER PUMP MAX. EXTERNAL RESTRICTION	psig	44

FUFI	DOCIT	
FUEL	PUSI I	11 717

HYDROCARBONS:	<u>Mole</u>	or Volume %	FUEL:	Natural Gas
Methane	CH4	64.13	FUEL PRESSURE RANGE (psig):	30 - 60
Ethane	C2H6	19.56	FUEL WKI:	56.1
Propane	C3H8	8.9		
Iso-Butane	I-C4H10	0.69	FUEL SLHV (BTU/ft3):	1186.93
Normal Butane	N-C4H10	1.87	FUEL SLHV (MJ/Nm3):	46.67
Iso-Pentane	I-C5H12	0.17	,	
Normal Pentane	N-C5H12	0.19	FUEL LHV (BTU/ft3):	1207.95
Hexane	C6H14	0.15	FUEL LHV (MJ/Nm3):	47.50
Heptane	C7H16	0	, ,	
Ethene	C2H4	0	FUEL HHV (BTU/ft3):	1336.23
Propene	C3H6	0	FUEL HHV (MJ/Nm3):	52.55
	SUM HYDROCARBO	DNS 95.66	FUEL DENSITY (SG):	0.81
NON-HYDROCARBONS:				
Nitrogen	N2	3.39	Standard Conditions per ASTM D3588-91 [60°F and	d 14.696psia] and
Oxygen	O2	0	ISO 6976:1996-02-01[25, V(0;101.325)]. Based on the fuel composition, supply pressure and	temperature liquid
Helium	He	0	hydrocarbons may be present in the fuel. No liquid h	
Carbon Dioxide	CO2	0.97	allowed in the fuel. The fuel must not contain any liq	uid water. Waukesha
Carbon Monoxide	CO	0	recommends both of the following: 1) Dew point of the fuel gas to be at least 20°F (11°)	C) holow the
Hydrogen	H2	0	measured temperature of the gas at the inlet of the	,
Water Vapor	H2O	0	2) A fuel filter separator to be used on all fuels exce	
	TOTAL FUEL	100.02	natural gas. Refer to the 'Fuel and Lubrication' section of 'Techni the Waukesha Application Engineering Department information on fuels, or LHV and WKI* calculations. * Trademark of INNIO Waukesha Gas Engines Inc.	

FUFI	CONTAMINANT	S

Total Sulfur Compounds	0	% volume	Total Sulfur Compounds	0 μg/BTU
Total Halogen as Cloride	0	% volume	Total Halogen as Cloride	0 μg/BTU
Total Ammonia	0	% volume	Total Ammonia	0 μg/BTU
<u>Siloxanes</u>			Total Siloxanes (as Si)	0 μg/BTU
Tetramethyl silane	0	% volume		
Trimethyl silanol	0	% volume		
Hexamethyldisiloxane (L2)	0	% volume	Calculated fuel contaminant anal	ysis will depend on
Hexamethylcyclotrisiloxane (D3)	0	% volume	the entered fuel composition and	selected engine
Octamethyltrisiloxane (L3)	0	% volume	model.	_
Octamethylcyclotetrasiloxane (D4)	0	% volume		
Decamethyltetrasiloxane (L4)	0	% volume		
Decamethylcyclopentasiloxane (D5)	0	% volume		
Dodecamethylpentasiloxane (L5)	0	% volume		
Dodecamethylcyclohexasiloxane (D6)	0	% volume		
Others	0	% volume		

No water or hydrocarbon condensates are allowed in the engine. Requires liquids removal.

NOTES

- 1. All data is based on engines with standard configurations unless noted otherwise.
- 2. Power rating is adjusted for fuel, site altitude, and site air inlet temperature, in accordance with ISO 3046/1 with tolerance of ± 3%.
- 3. Fuel consumption is presented in accordance with ISO 3046/1 with a tolerance of -0 / +5% at maximum rating. Fuel flow calculation based on fuel LHV and fuel consumption with a tolerance of -0/+5 %. For sizing piping and fuel equipment, it is recommended to include the 5% tolerance.
- 4. Heat rejection tolerances are ± 30% for radiation, and ± 8% for jacket water, lube oil, intercooler, and exhaust energy.
- 5. Emission levels for engines with Waukesha supplied 3-way catalyst are given at catalyst outlet flange. For all other engine models, emission levels are given at engine exhaust outlet flange prior to any after treatment. Values are based on a new engine operating at indicated site conditions, and adjusted to the specified timing and air/fuel ratio at rated load. Catalyst out emission levels represent emission levels the catalyst is sized to achieve. Manual adjustment may be necessary to achieve compliance as catalyst/engine age. Catalyst-out emission levels are valid for the duration of the engine warranty. Emissions are at an absolute humidity of 75 grains H2O/lb (10.71 g H2O/kg) of dry air. Emission levels may vary subject to instrumentation, measurement, ambient conditions, fuel quality, and engine variation. Engine may require adjustment on-site to meet emission values, which may affect engine performance and heat output. NOx, CO, THC, and NMHC emission levels are listed as a not to exceed limit, all other emission levels are estimated. CO2 emissions based on EPA Federal Register/Vol. 74, No. 209/Friday, October 30, 2009 Rules and Regulations 56398, 56399 (3) Tier 3 Calculation Methodology, Equation C-5.
- 6. Air flow is based on undried air with a tolerance of \pm 7%.
- 7. Exhaust temperature given at engine exhaust outlet flange with a tolerance of ± 50°F (28°C).
- 8. Exhaust gas mass flow value is based on a "wet basis" with a tolerance of \pm 7%.
- 9. Inlet air restrictions based on full rated engine load. Exhaust backpressure based on 158 PSI BMEP and 1200 RPM. Refer to the engine specification section of Waukesha's standard technical data for more information.
- 10. Cooling circuit capacity, lube oil capacity, and engine dry weight values are typical.
- 11. Fuel must conform to Waukesha's "Gaseous Fuel Specification" S7884-7 or most current version. Fuel may require treatment to meet current fuel specification.
- 12. Heat exchanger sizing values given as the maximum heat rejection of the circuit, with applied tolerances and an additional 5% reserve factor.
- 13. Fuel volume flow calculation in english units is based on 100% relative humidity of the fuel gas at standard conditions of 60°F and 14.696 psia (29.92 inches of mercury; 101.325 kPa).
- 14. Fuel volume flow calculation in metric units is based on 100% relative humidity of the fuel gas at a combustion temperature of 25°C and metering conditions of 0°C and 101.325 kPa (14.696 psia; 29.92 inches of mercury). This is expressed as [25, V(0;101.325)].
- 15. Engine sound data taken with the microphone at 1 m (3.3 ft) from the side of the engine at the approximate front-to-back centerline. Microphone height was at intake manifold level. Engine sound pressure data may be different at front, back and opposite side locations. Exhaust sound data taken with microphone 1 meter (3.3 ft) away and 1 meter (3.3 ft) to the side of the exhaust outlet.
- 16. Due to variation between test conditions and final site conditions, such as exhaust configuration and background sound level, sound pressure levels under site conditions may be different than those tabulated above.
- 17. Cooling system design flow is based on minimum allowable cooling system flow. Cooling system maximum external restriction is defined as the allowable restriction at the minimum cooling system flow.
- 18. Continuous Power Rating: The highest load and speed that can be applied 24 hours per day, seven days per week, 365 days per year except for normal maintenance at indicated ambient reference conditions and fuel. No engine overload power rating is available.
- 19. emPact emission compliance available for entire range of operable fuels; however, fuel system and/or O2 set point may need to be adjusted in order to maintain compliance.
- 20. In cold ambient temperatures, heating of the engine jacket water, lube oil and combustion air may be required. See Waukesha Technical Data.
- 21. Available Turndown Speed Range refers to the constant torque speed range available. Reduced power may be available at speeds outside of this range. Contact application engineering.

SPECIAL REQUIREMENTS

Requires option code 1005 for 0.15g/bhp-hr catalyst.

DRAFT PERMIT

AIR POLLUTION CONTROL PERMIT TO CONSTRUCT

Pursuant to Chapter 23.1-06 of the North Dakota Century Code, and the Air Pollution Control Rules of the State of North Dakota (Article 33.1-15 of the North Dakota Administrative Code), and in reliance on statements and representations heretofore made by the owner designated below, a Permit to Construct is hereby issued authorizing such owner to construct and initially operate the source unit(s) at the location designated below. This Permit to Construct is subject to all applicable rules and orders now or hereafter in effect of the North Dakota Department of Environmental Quality (Department) and to any conditions specified below:

I. General Information:

A. **Permit to Construct Number**: ACP-18145 v2.0

B. **Source**:

Name: Hiland Partners Holdings LLC
 Location: 4Runner Compressor Station

48.056636, -103.393164 SE Sec. 22, T153N, R99W Williams County, North Dakota

3. Source Type: Compressor Station

4. Equipment to be installed at the Facility:

Table 1 - New Equipment List

Table 1 - New Equipment List				
Emission Unit Description	Emission Unit (EU)	Emission Point (EP)	Air Pollution Control Equipment	
Waukesha L7044GSI Series 5 (4SRB) natural gas-fired compressor engine rated at 1,900 bhp (NSPS JJJJ) (NSPS OOOOa) (MACT ZZZZ)	C-1	C-1	Non-Selective Catalytic Reduction (NSCR)	
Waukesha L7044GSI Series 4 (4SRB) natural gas-fired compressor engine rated at 1,680 bhp (NSPS JJJJ) (NSPS OOOOa) (MACT ZZZZ)	C-2	C-2	NSCR	
Waukesha L7044GSI Series 4 (4SRB) natural gas-fired compressor engine rated at 1,680 bhp (NSPS JJJJ) (NSPS OOOOa) (MACT ZZZZ)	C-3	C-3	NSCR	
Caterpillar G3606 (4SLB) natural gas-fired compressor engine rated at 1,875 bhp (NSPS JJJJ) (NSPS OOOOa) (MACT ZZZZ)	C-4	<mark>C-4</mark>	Catalytic Oxidation	
Caterpillar G3606 (4SLB) natural gas-fired compressor engine rated at 1,875 bhp (NSPS JJJJ) (NSPS OOOOa) (MACT ZZZZ)	C-5	C-5	Catalytic Oxidation	
Waukesha L7044GSI Series 5 (4SRB) natural gas-fired compressor engine rated at 1,900 bhp (NSPS JJJJ) (NSPS OOOOa) (MACT ZZZZ)	<u>C-6</u>	<mark>C-6</mark>	NSCR	
TEG regenerator reboiler rated at 1.5 x 10 ⁶ Btu/hr	7 A	7 0 and	BTEX Condenser	
Triethylene glycol (TEG) Dehydration Unit rated at 60 x 10 ⁶ scfd (MACT HH)	ıf		and TEG Reboiler	
400-bbl produced water tank (atmospheric)	9	9	Submerged Fill Pipe (SFP)	
400-bbl produced water tank (atmospheric)	10	10	SFP	
Truck loading – produced water	PW-TL ^D	PW-TL	None	
Compressor engine and equipment blowdowns	BD C	BD	None	
Pipeline pigging	PIG ^d	PIG	None	
Fugitive emissions	FUG	FUG	Leak Detection and Repair (LDAR)	

The reboiler may use both pipeline quality natural gas, field gas, and/or non-condensables from the TEG regeneration system.

Emissions from the TEG dehydration unit flash tank are recycled back into the process. Emissions from the TEG reboiler still column are controlled by a BTEX condenser, with

non-condensable vapors exiting the condenser combusted in the TEG reboiler firebox and condensed liquids routed to the produced water tanks (EU9 and EU10).

Blowdown emissions are based on 1.39 x 10⁶ SCF of gas vented annually.

D Insignificant source of emissions.

C. Owner/Operator (Permit Applicant):

Name: Hiland Partners Holdings LLC
 Address: 1001 Louisiana Street, Suite 1000

Houston, TX 77002

3. Application Date: December 15, 2021 (updated on February 22 and

March 14, 2022 and August 11, 2022)

II. **Conditions**: This Permit to Construct allows operation of the above-mentioned new and modified equipment at the source. The source may be operated under this Permit to Construct until a Permit to Operate is issued unless this permit is suspended or revoked. The source is subject to all applicable rules, regulations, and orders now or hereafter in effect of the North Dakota Department of Environmental Quality and to the conditions specified below.

A. **Emission Limits**: Emission limits from the operation of the source unit(s) identified in Item I.B of this Permit to Construct (hereafter referred to as "permit") are as follows. Source units not listed are subject to the applicable emission limits specified in the North Dakota Air Pollution Control Rules.

Emission				
Unit			Pollutant /	
Description	\mathbf{EU}	EP	Parameter	Emission Limit ^A
Two	C-1 and	C-1 and	NOx	3.52 lb/hr and
Waukesha	<mark>C-6</mark>	<mark>C-6</mark>		0.84 g/hp-hr or 82 ppmvd @
L7044GSI				15% O ₂ ^B
Series 5				
(4SRB)			CO	3.52 lb/hr and
natural gas-				0.84 g/hp-hr or 270 ppmvd @
fired				15% O ₂ B
compressor				
engines			VOC	2.31 lb/hr and
				0.55 g/hp-hr or 60 ppmvd @
				$15\% O_2^{B}$
			Opacity	20% ^C

Emission				
Emission			D-11-4	
Unit	****	777	Pollutant /	
Description	EU	EP	Parameter	Emission Limit ^A
Two	C-2 and	C-2 and	NO_{x}	3.52 lb/hr and
Waukesha	C-3	C-3		0.95 g/hp-hr or 82 ppmvd @
L7044GSI				15% O ₂ B
Series 4				
(4SRB)			CO	3.52 lb/hr and
natural gas-				0.95 g/hp-hr or 270 ppmvd @
fired				15% O ₂ B
				13% O2
compressor			VOC	2.30 lb/hr and
engines engines			VOC	
				0.64 g/hp-hr or 60 ppmvd @
				15% O ₂ B
			Opacity Opacity	20% [€]
Two	C-4 and	C-4 and	NO_x	4.13 lb/hr and
Caterpillar	<mark>C-5</mark>	C-5		1.00 g/hp-hr or 82 ppmvd @
G3606				$15\% O_2^B$
(4SLB)				
natural gas-			CO	4.13 lb/hr and
fired				1.00 g/hp-hr or 270 ppmvd @
compressor				15% O ₂ B
engines				1370 02
clightes			VOC	3.10 lb/hr and
			VOC	
				0.70 g/hp-hr or 60 ppmvd @
				15% O ₂ ^B
				200/ C
			Opacity	20% ^C
TEC	7	7	0 '	200/ C
TEG	7	7	Opacity	20% ^C
regenerator				
reboiler				

A Emission limits apply to each individual emission point.

B. Emissions Testing:

1. <u>Initial Testing of Compressor Engines</u>: Within 180 days after initial startup of new compressor engines (EUs C-1 through C-6), the permittee shall conduct emissions tests at the emission units listed below using an independent testing firm, to determine the compliance status of the facility with respect to the emission limits specified in Condition II.A. Emissions testing shall be conducted for the pollutant(s) listed below in accordance with EPA Reference Methods listed in 40 CFR 60, Appendix A. Test

The emission limits in ppmvd at 15% O₂ are from 40 CFR 60, Subpart JJJJ.

^{40%} permissible for not more than one six-minute period per hour.

methods other than those listed below may be used upon approval by the Department.

Emission Unit Description	EP	Pollutant/ Parameter	Number of Runs	Length of Runs	EPA Ref. Method(s)
Two Waukesha L7044GSI Series 5 (4SRB) natural gasfired compressor engines	C-1 and C-6	NO _x CO VOC	3	60 minutes	7E, 10, and 25, or 320
Two Waukesha L7044GSI Series 4 (4SRB) natural gasfired compressor engines	C-2 and C-3	NO _x CO VOC	3	60 minutes	7E, 10, and 25, or 320
Two Caterpillar G3606 (4SLB) natural gas- fired compressor engines	C-4 and C-5	NO _x CO VOC	3	60 minutes	7E, 10, and 25, or 320

A signed copy of the test results shall be furnished to the Department within 60 days of the test date. The basis for this condition is NDAC 33.1-15-01-12 which is hereby incorporated into this permit by reference. To facilitate preparing for and conducting such tests, and to facilitate reporting the test results to the Department, the permittee shall follow the procedures and formats in the Department's Emission Testing Guideline.

2. <u>Notification</u>: The permittee shall notify the Department using the form in the Emission Testing Guideline, or its equivalent, at least 30 calendar days in advance of any tests of emissions of air contaminants required by the Department. If the permittee is unable to conduct the performance test on the scheduled date, the permittee shall notify the Department at least five

days prior to the scheduled test date and coordinate a new test date with the Department.

3. <u>Sampling Ports/Access</u>: Sampling ports shall be provided downstream of all emission control devices and in a flue, conduit, duct, stack or chimney arranged to conduct emissions to the ambient air.

The ports shall be located to allow for reliable sampling and shall be adequate for test methods applicable to the facility. Safe sampling platforms and safe access to the platforms shall be provided. Plans and specifications showing the size and location of the ports, platform and utilities shall be submitted to the Department for review and approval.

4. <u>Other Testing</u>:

a) The Department may require the permittee to have tests conducted to determine the emission of air contaminants from any source, whenever the Department has reason to believe that an emission of a contaminant not addressed by the permit applicant is occurring, or the emission of a contaminant in excess of that allowed by this permit is occurring. The Department may specify testing methods to be used in accordance with good professional practice. The Department may observe the testing. All tests shall be conducted by reputable, qualified personnel. A signed copy of the test results shall be furnished to the Department within 60 days of the test date.

All tests shall be completed and the results calculated in accordance with test procedures approved by the Department. All tests shall be made under the direction of persons qualified by training or experience in the field of air pollution control as approved by the Department.

b) The Department may conduct tests of emissions of air contaminants from any source. Upon request of the Department, the permittee shall provide necessary holes in stacks or ducts and such other safe and proper sampling and testing facilities, exclusive of instruments and sensing devices, as may be necessary for proper determination of the emission of air contaminants.

C. Fuel Restriction:

- 1. The compressor engines (EUs C-1 through C-6) are restricted to combusting only field gas or natural gas containing no more than 2 grains of sulfur per 100 standard cubic feet.
- 2. The TEG regenerator reboiler (EU 7) is restricted to combusting field gas,

natural gas, or non-condensed hydrocarbons from the TEG regeneration process containing no more than 2 grains of sulfur per 100 standard cubic feet.

- D. **New Source Performance Standards (NSPS)**: The owner/operator shall comply with all applicable requirements of the following NSPS subparts as referenced in Chapter 33.1-15-12 of the North Dakota Air Pollution Control Rules and 40 CFR 60:
 - 1. **40 CFR 60, Subpart JJJJ** The owner/operator shall comply with all applicable requirements of 40 CFR 60, Subpart JJJJ Standards of Performance for Stationary Spark Ignition Internal Combustion Engines (EUs C-1 through C-6).
 - 2. **40 CFR 60, Subpart OOOO and OOOOa** Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After August 23, 2011, and on or before September 18, 2015, and Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015 (EUs C-1 through C-6 and FUG).
- E. **Maximum Achievable Control Technology Standards (MACT)**: The permittee shall comply with all applicable requirements of the following MACT subparts as referenced in Chapter 33.1-15-22 of the North Dakota Air Pollution Control Rules and 40 CFR 63.
 - 1. **40 CFR 63, Subpart ZZZZ** National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines (EUs C-1 through C-6). The North Dakota Department of Environmental Quality has not adopted the area source provisions of this subpart. Please send all documentation to EPA at the address below.

U.S. EPA Region 8 1595 Wynkoop Street Mail Code 8ENF – AT Denver, CO 80202-1129

- 2. **40 CFR 63, Subpart HH** National Emission Standards for Hazardous Air Pollutants from Oil and Natural Gas Production Facilities (EU 8). The North Dakota Department of Environmental Quality has not adopted the area source provisions of this subpart. Please send all documentation to EPA at the address above.
- F. **Construction**: Construction of the above-described facility shall be in accordance with information provided in the permit application as well as any plans, specifications and supporting data submitted to the Department. The Department

shall be notified ten days in advance of any significant deviations from the specifications furnished. The issuance of this Permit to Construct may be suspended or revoked if the Department determines that a significant deviation from the plans and specifications furnished has been or is to be made.

Any violation of a condition issued as part of this permit to construct as well as any construction which proceeds in variance with any information submitted in the application, is regarded as a violation of construction authority and is subject to enforcement action.

- G. **Startup Notice**: A notification of the actual date of initial startup shall be submitted to the Department within 15 days after the date of initial startup.
- H. **Like-Kind Engine Replacement**: This permit allows the permittee to replace an existing compressor engine with a like-kind engine. Replacement is subject to the following conditions:
 - 1. The Department must be notified within 10 days after change-out of the engine.
 - 2. The replacement engine shall operate in the same manner, provide no increase in throughput and have equal or less emissions than the engine it is replacing.
 - 3. The date of manufacture of the replacement engine must be included in the notification. The facility must comply with any applicable federal standards (e.g. NSPS, MACT) triggered by the replacement.
 - 4. The replacement engine is subject to the same state emission limits as the existing engine in addition to any NSPS or MACT emission limit that is applicable. Testing shall be conducted to confirm compliance with the emission limits within 180 days after start-up of the engine.
- I. **Stack Heights**: The stack height of each engine shall be at least 1.5 times the nearby building height. A nearby building is any building located a distance of less than five times the building height from the stack.
- J. **Storage Tanks**: All stationary volatile organic compounds storage tanks shall be equipped with a submerged fill pipe in accordance with NDAC 33.1-15-07-01.3.
- K. **Organic Compounds Emissions**: The permittee shall comply with all applicable requirements of NDAC 33.1-15-07 Control of Organic Compounds Emissions.
- L. **Permit Invalidation**: This permit shall become invalid if construction is not commenced within eighteen months after issuance of such permit, if construction

- is discontinued for a period of eighteen months or more; or if construction is not completed within a reasonable time.
- M. **Fugitive Emissions**: The release of fugitive emissions shall comply with the applicable requirements in NDAC 33.1-15-17.
- N. **Annual Emission Inventory/Annual Production Reports**: The owner/operator shall submit an annual emission inventory report and/or an annual production report upon Department request, on forms supplied or approved by the Department.
- O. **Source Operations**: Operations at the installation shall be in accordance with statements, representations, procedures and supporting data contained in the initial application, and any supplemental information or application(s) submitted thereafter. Any operations not listed in this permit are subject to all applicable North Dakota Air Pollution Control Rules.
- P. Alterations, Modifications or Changes: Any alteration, repairing, expansion, or change in the method of operation of the source which results in the emission of an additional type or greater amount of air contaminants or which results in an increase in the ambient concentration of any air contaminant, must be reviewed and approved by the Department prior to the start of such alteration, repairing, expansion or change in the method of operation.
- Q. **Air Pollution from Internal Combustion Engines**: The permittee shall comply with all applicable requirements of NDAC 33.1-15-08-01 Internal Combustion Engine Emissions Restricted.
- R. **Recordkeeping**: The owner/operator shall maintain any compliance monitoring records required by this permit or applicable requirements. The owner/operator shall retain records of all required monitoring data and support information for a period of at least five years from the date of the monitoring sample, measurement, report or application. Support information may include all calibration and maintenance records and all original strip-chart recordings/computer printouts for continuous monitoring instrumentation, and copies of all reports required by the permit.
- S. **Nuisance or Danger**: This permit shall in no way authorize the maintenance of a nuisance or a danger to public health or safety.
- T. **Malfunction Notification**: The owner/operator shall notify the Department of any malfunction which can be expected to last longer than twenty-four hours and can cause the emission of air contaminants in violation of applicable rules and regulations.

- U. **Operation of Air Pollution Control Equipment**: The owner/operator shall maintain and operate all air pollution control equipment in a manner consistent with good air pollution control practice for minimizing emissions.
- V. **Transfer of Permit to Construct**: The holder of a permit to construct may not transfer such permit without prior approval from the Department.
- W. **Right of Entry**: Any duly authorized officer, employee or agent of the North Dakota Department of Environmental Quality may enter and inspect any property, premise or place at which the source listed in Item I.B of this permit is located at any time for the purpose of ascertaining the state of compliance with the North Dakota Air Pollution Control Rules. The Department may conduct tests and take samples of air contaminants, fuel, processing material, and other materials which affect or may affect emissions of air contaminants from any source. The Department shall have the right to access and copy any records required by the Department's rules and to inspect monitoring equipment located on the premises.
- X. **Other Regulations**: The owner/operator of the source unit(s) described in Item I.B of this permit shall comply with all State and Federal environmental laws and rules. In addition, the owner/operator shall comply with all local burning, fire, zoning, and other applicable ordinances, codes, rules and regulations.
- Y. **Permit Issuance**: This permit is issued in reliance upon the accuracy and completeness of the information set forth in the application. Not withstanding the tentative nature of this information, the conditions of this permit herein become, upon the effective date of this permit, enforceable by the Department pursuant to any remedies it now has, or may in the future have, under the North Dakota Air Pollution Control Law, NDCC Chapter 23.1-06.
- Z. **Odor Restrictions**: The owner/operator shall not discharge into the ambient air any objectionable odorous air contaminant which is in excess of the limits established in NDAC 33.1-15-16.

The owner/operator shall not discharge into the ambient air hydrogen sulfide (H₂S) in concentrations that would be objectionable on land owned or leased by the complainant or in areas normally accessed by the general public. For the purpose of complaint resolution, two samples with concentrations greater than 0.05 parts per million (50 parts per billion) sampled at least 15 minutes apart within a two-hour period and measured in accordance with Section 33.1-15-16-04 constitute a violation.

AA. **Sampling and Testing**: The Department may require the owner/operator to conduct tests to determine the emission rate of air contaminants from the source. The Department may observe the testing and may specify testing methods to be used. A signed copy of the test results shall be furnished to the Department within 60 days of the test date. The basis for this condition is NDAC 33.1-15-01-12

which is hereby incorporated into this permit by reference. To facilitate preparing for and conducting such tests, and to facilitate reporting the test results to the Department, the owner/operator shall follow the procedures and formats in the Department's Emission Testing Guideline.

FOR THE NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY

Date	By
	James L. Semerad
	Director
	Division of Air Quality