American Crystal Sugar Company

PSD Construction Permit Application

for

Drayton Sugar Beet Processing Facility Drayton, Pembina County, North Dakota

Prepared for: American Crystal Sugar Company 101 North 3rd Street Moorhead, MN 56560

Submitted to: North Dakota Department of Environmental Quality Division of Air Quality 4201 Normandy Street 2nd Floor Bismarck, ND 58503-1324

Prepared by: HDR Engineering, Inc. 701 Xenia Avenue, Suite 600 Minneapolis, MN 55416

FJS

December 2022

This Page Intentionally Left Blank

Executive Summary

American Crystal Sugar Company (ACS) proposes to modify its sugar beet processing plant located two miles north of the city of Drayton, in Pembina County North Dakota. The primary purpose of the modification is to support an approximate 20 percent increase in production that would raise the standard slice rate of the facility to 11,000 tons per day (tpd) from the current standard slice rate of 9,000 tpd.

The proposed modification includes the replacement of Pulp Dryer No. 2 with a larger coal-fired pulp dryer and the addition of a new natural gas-fired package boiler. In addition to the direct emission unit replacements/installations, numerous process-related modifications are proposed to increase operational efficiency and relieve production bottlenecks. The modification would be implemented over a five-year construction schedule with the pulp dryer installation occurring in 2023 and, the package boiler installation occurring in 2025. Other supporting equipment modifications would take place during the period from 2023 through 2028.

The proposed modification is classified as a major modification under the Title V Operating Permits program and the federal New Source Review Prevention of Significant Deterioration (PSD) program. Significant net potential emissions increases will occur for total particulate matter (PM), particulate matter less than 10 micron in diameter (PM_{10}), particulate matter less than 2.5 microns in diameter ($PM_{2.5}$), nitrogen oxides (NO_x), sulfur dioxide (SO_2), carbon monoxide (CO), volatile organic compounds (VOC), and greenhouse gas emissions (GHG).

The Best Available Control Technology (BACT) analyses identified the following requirements:

- Pulp Dryer Use of low sulfur fuels, good combustion practice, and the installation of two cyclones and wet scrubber operated in series; and,
- Package Boiler Use of Ultra Low NO_x Burners and good combustion practice.

An air quality dispersion modeling analysis utilizing the current EPA approved dispersion model, AERMOD, was performed as required by PSD rules. Criteria pollutant emissions of PM₁₀, PM_{2.5}, NO_x, SO₂ and CO were evaluated for compliance with applicable state of North Dakota and National Ambient Air Quality Standards (NDAAQS and NAAQS). Furthermore, a PSD Class II Increment Consumption analysis was performed for PM₁₀, PM_{2.5}, NO_x and SO₂. Results of the modeling analysis, incorporating proposed facility changes and BACT emission limits, demonstrate that the proposed Drayton facility expansion project will comply with all applicable ambient air quality standards and allowable increments. A summary of final proposed air emission permit limits has been provided in Chapter 7.0.

i

This Page Intentionally Left Blank

Table of Contents

Chapter	1.0 –	Introduction1				
1.1	Gen	General1				
1.2	1.2 Application Overview					
Chapter	2.0 –	Project Description				
2.1	Facil	lity Location3				
2.2	Proc	ess Description				
2.3	Prop	oosed Modification4				
2.3.	.1	Coal-Fired Boiler				
2.3.	.2	Coal Handling Operations5				
2.3.	.3	Coal-Fired Pulp Dryer				
2.3.	.4	New Package Boiler5				
2.3.	.5	Lime Kiln Operations				
2.3.	.6	Sugar Dryer and Granulator6				
2.3.	.7	Sugar Handling Equipment6				
2.3.	2.3.8 Pulp Pellet Processing					
2.3.	.9	Process Modifications7				
2.3.	.10	Non-Affected Emission Units8				
2.3.	.11	Physical Modification and Debottlenecked Source Cross Reference8				
2.4	Past	Facility Modifications9				
2.5	Proj	ect Schedule				
Chapter	3.0 –	Estimated Emissions and Applicable Regulations11				
3.1	Emis	ssion Factors				
3.2	3.2 Emission Estimates					
3.2.	3.2.1 General Emission Calculations11					
3.2.	.5	Potential Emission Increase11				
3.3	New	v Source Performance Standards12				
3.4	Prev	rention of Significant Deterioration (PSD)13				
3.5	Max	imum Achievable Control Technology (MACT)13				
3.6	3.6 Process Weight Rate Limits					
3.7	North Dakota Air Toxics Policy14					

Chapter 4.0 –	Best Available Control Technology	16
4.1 Ove	erview	16
4.1.1	Definition of BACT	16
4.1.2	Top-Down BACT Analysis	16
4.1.3	Applicable Pollutants and Affected Sources	17
4.1.4	Project Economic Evaluation Criteria	21
4.1.5	Organization of BACT Analysis	22
4.2 Coa	ll-Fired Pulp Dryer BACT	22
4.2.1	BACT for PM	22
4.2.2	BACT for SO ₂	
4.2.3	BACT for NO _x	
4.2.4	BACT for CO	41
4.2.5	BACT for VOC	43
4.3 Nat	ural Gas-Fired Package Boiler BACT	45
4.3.1	BACT for PM	45
4.3.2	BACT for SO ₂	48
4.3.3	BACT for NO _x	52
4.3.4	BACT for CO	56
4.3.5	BACT for VOC	60
4.7 BAG	CT for GHG	62
4.7.1	Identification of GHG Control Technologies	63
4.7.2	Control Technology Evaluation	64
4.7.3	Proposed GHG BACT Selection	65
4.7.4	RBLC Database Review	65
Chapter 5.0 –	Air Quality Impact Analysis	66
5.1 Ana	ilysis Overview	66
5.1.1	Model Selection and Setup	66
5.1.2	Structural Downwash Input Data	66
5.1.3	Background Concentrations	66
5.1.4	Preconstruction Monitoring Data	67
5.1.5	Elevation Data	67
5.1.6	Receptor Grid	67
ACS Drayton	i	December 2022

5.1	.7	Meteorological Data	69
5.2	Мос	del Input Data	69
5.2	.1	Modeled Background Sources	69
5.2	.2	Modeled Drayton Sources	70
5.2	.3	PSD Increment Consumption	74
5.2	.4	Model Adjustments	75
5.3	Мос	del Results	77
5.3	.1	Post-Modification Emission Impacts	78
5.3	.2	Maximum Predicted PSD Class II Increment Consumption	78
5.4	Con	clusions	79
Chapter	6.0 –	Additional Impacts Analysis	80
6.1	Gro	wth Analysis	80
6.2	Gro	wth and Construction Air Quality Impacts	80
6.3	Soils	s and Vegetation Impacts	80
6.4	Odo	or Impacts	81
6.5	Visik	bility Impacts	81
6.6	Add	litional Impacts Summary	81
Chapter	7.0 –	Proposed Permit Limitations	82

List of Appendices

- Appendix A NPPD Construction Permit Application Forms
- Appendix B Site Location Map and Facility Layout Diagrams
- Appendix C Emission Calculations
- Appendix D Air Toxics Analysis
- Appendix E Model Parameter Data
- Appendix F Modeling File Summary Data

This Page Intentionally Left Blank

Chapter 1.0 – Introduction

1.1 General

Pursuant to North Dakota Rules, Chapter 33-15-15, Prevention of Significant Deterioration of Air Quality (PSD), American Crystal Sugar Company (ACS) is applying for a construction permit for modification of their Drayton, North Dakota processing plant.

The ACS Drayton facility is an existing sugar beet processing facility located approximately 2 miles north of the city of Drayton, in Pembina County in northeastern North Dakota. The facility's principal products are granulated beet sugar, beet pulp pellets and beet molasses. Most emission sources related to sugar beet processing operations at the Drayton facility consist of material and sugar handling sources. However, several combustion related emission sources are utilized to support processing operations, such as: one coal-fired boiler, two coal-fired pulp driers and one natural gas-fired lime kiln.

ACS is proposing to modify the Drayton facility to support an approximate 20 percent increase in production. The production increase would raise the standard slice rate of the facility to 11,000 tons per day (tpd) from the current standard slice rate of 9,000 tpd.

The proposed production increase would affect multiple processing areas of the Drayton facility, such as juice purification, evaporation, sugar handling, and pulp management. Major direct emission unit modifications would include the installation of a new coal-fried rotary pulp dryer to replace one of the two existing pulp dryers and the addition of a new natural gas-fired package boiler.

In addition to the direct emission unit modifications, numerous process equipment modifications would also be necessary to support the increase in production. The process equipment modifications do not involve direct pollutant emissions but allow a relaxation of process bottlenecks and increase the potential product throughput at the Drayton facility. In general, affected process equipment would include carbonation systems and filters, juice softening, evaporator pans, and various piping, pumps and tanks.

The scope of work and investment associated with the proposed production increase is great enough such that project engineering and implementation will occur over a period of five years. This Prevention of Significant Deterioration (PSD) construction permit application addresses the staged construction schedule and combined project elements.

The Drayton facility is currently a major source of air emissions under both the federal New Source Review PSD program and under the Title V Operating Permits program. The proposed modification of the facility to increase the sugar beet processing capacity would be classified as a major modification for both PSD and Title V purposes. This application contains the information required for an air emissions construction permit under state and federal PSD rules. North Dakota Department of Environmental Quality (NDDEQ) construction permit application forms have been included. A Title V Operating Permit application will be required within one-year of completion of construction of the project.

1.2 Application Overview

Chapters 1 and 2 provide a brief introduction and project description. Chapter 3 provides a summary of the estimated emissions of criteria and hazardous air pollutants (HAPs) from the proposed modification, as well as a summary of air pollution control regulations that apply to the proposed facility modification. Chapter 4 presents the Best Available Control Technology (BACT) analysis for each PSD-regulated pollutant potentially emitted in significant amounts by the project. Chapter 5 presents the air quality impact analysis for the project. Chapter 6 presents the additional impact analyses for associated growth and potential impacts on visibility, soils and vegetation. Chapter 7 provides a summary of new and modified emission limits being requested with this permit application.

Chapter 2.0 – Project Description

2.1 Facility Location

The ACS Drayton facility is located approximately two miles north of the city of Drayton, in Pembina County North Dakota. A site location map is provided in Appendix B. Site layout diagrams including a general site orientation map, as well as a stack identification/location diagram, are also provided in Appendix B.

2.2 Process Description

The Drayton facility's principal products are granulated beet sugar, beet pulp pellets and low-grade beet molasses. In general terms, facility operations follow a seasonal pattern. Sugar beets are harvested in the fall and transported by truck to intermediate storage facilities as well as stockpiled on site at the Drayton facility. As the processing campaign commences, sugar beets are continually transported from the intermediate storage facilities to the facility for processing. Toward the end of the processing campaign (generally the last four weeks) the intermediate storage facilities are emptied and the sugar beets stockpiled on site at the facility are processed. The processing campaign typically lasts about 263 standard days but can vary depending on annual harvest amounts and beet quality. During off-campaign periods routine factory maintenance and repairs are performed. Beet sugar, molasses, and pellets are shipped out by rail and truck. Major processing areas are raw beet receiving and storage, beet processing to produce juice, sugar production and refining, pulp drying and pellet production.

The primary production process begins with sugar beets entering the facility through a horizontal beet washer to remove the adhered dirt (tare) prior to introduction to the main process. Beet slicers then cut the beets into cossettes. The cossettes are introduced into the bottom of a counter-flow diffuser tower to begin the diffusion process. The sucrose in water resulting from this osmotic process is known as "raw juice." A solution of caustic lime in recycled sugar juice called "milk of lime" is added to the juice to remove impurities as part of a purification process. Carbon dioxide is then added to the juice to re-precipitate the lime and impurities.

The process juice is filtered to remove suspended matter and softened prior to an evaporation step. Once purified and filtered, the raw juice is referred to as "thin juice". The thin juice is subsequently processed through several evaporator stages. The syrup leaving the evaporators is known as "thick juice" and is mixed with dissolved sugar and standard liquor from storage tanks. This mixture is boiled in vacuum pans to increase the dissolved solids content, and then seeded with a sugar/alcohol slurry which initiates the process of crystallization. Once the crystal size and concentration are appropriate, the sugar crystals are separated from the syrup by centrifuges. The remaining syrup is sent to a second set of vacuum pans where the process is repeated. After the process is repeated a third time the remaining syrup, termed "beet molasses", is stored until it is transported to a different facility to be processed or sold directly to customers. The sugar from the second and third boiling is continuously returned to the high melter where it is dissolved with further evaporated thick juice and reintroduced into the abovedescribed process. Sugar crystals from the centrifuge process are conveyed to the sugar dryer/granulator where heated air removes excess moisture. The dried sugar is then conveyed by an elevator to the sugar cooler where an ambient air-cooled glycol loop heat exchanger is used to cool the sugar prior to transport to bulk storage bins. The sugar is screened for crystal size control prior to distribution.

During a typical sugar beet processing campaign, the plant will operate 24 hours per day for 263 standard days (approximately 6,000 to 6,500 hours per year) from mid-August until the middle of May. The exact length of a given campaign is dependent on many factors and varies from year to year. The size of the harvest influences campaign length the most; however, ambient weather conditions, beet quality and storage capability also play a role.

Many emission sources related to sugar beet processing operations at the Drayton facility consist of material and sugar handling sources. However, there are several combustion related emission sources utilized to support processing operations. In general, current emission sources at the Drayton facility include the following:

- One Babcock & Wilcox coal-fired spreader stoker boiler;
- Two Stearns-Roger coal-fired rotary pulp driers;
- One natural gas-fired vertical shaft lime kiln;
- Lime slaking operations;
- Numerous sugar storage bins and conveying systems;
- Three pulp pellet mills with associated cooler;
- One sugar dryer/granulator system;
- Raw material and pulp handling operations; and,
- Raw material storage stockpiles.

2.3 Proposed Modification

As stated previously, the overall goal of Drayton facility modification is to increase production from a standard slice rate of 9,000 tpd to 11,000 tpd. To accomplish the production increase, multiple processing areas of the Drayton facility, such as juice purification, evaporation, sugar handling, and pulp management would need to be upgraded.

The following sections provide additional details on the proposed new emission units, as well as the impact of the proposed modification on existing emission units and process equipment.

2.3.1 Coal-Fired Boiler

Emission Unit (EU) 1 is a Babcock & Wilcox coal-fired spreader stoker boiler with a nominal heat input capacity of 392 million British thermal units per hour (MMBtu/hr) and a nominal steam load capacity of 300,000 pounds per hour (lbs/hr). The proposed modification would result in no physical modification or change in the method of operation of EU1. The production increase is anticipated to result in a greater annual steam demand and a more consistent short-term peak steam demand. However, the current coal-fired boiler system is capable of accommodating the increased demand as it is currently designed and configured. If the proposed project results in a short-term peak steam demand greater

than the current coal-fired boiler can accommodate, it will be supplied by the proposed natural gas-fired package boiler (See Section 2.3.4).

2.3.2 Coal Handling Operations

Coal handling operations consist of two separate operations:

- EU1a coal handling equipment for the boiler house; and,
- Fug2 fugitive emissions from coal handling associated with onsite stockpiles.

Coal handling equipment for the boiler house would not be physically modified as part of the proposed modification. Operations of Fug2 would experience no change. The onsite coal stockpile provides approximately a two-week supply of coal to allow continuous operations in the event of an interruption in routine daily coal shipments. The same procedures would continue after the proposed modification.

2.3.3 Coal-Fired Pulp Dryer

The Drayton facility currently utilizes two coal-fired pulp dryers to dry beet pulp (spent cossettes) prior to pelletization: Pulp Dryer No. 1 (EU4) and Pulp Dryer No. 2 (EU3). Pulp Dryer No. 1 is a Stearns-Roger rotary direct-fired, traveling grate pulp dryer, with a nominal process rate of approximately 65 tons per hour (tph) of pressed pulp. Pulp Dryer No. 2 is a Stearns-Roger direct-fired, traveling grate pulp dryer, with a nominal process rate of approximately dryer, with a nominal process rate of approximately 33.8 tph pressed pulp.

ACS proposes to decommission Pulp Dryer No. 2 and the associated exhaust stack and replace it with a new, higher-capacity, pulp dryer and exhaust stack. The proposed new pulp dryer (EU36) would be installed in the same factory location as Pulp Dryer No. 2. The new pulp dryer would be a Promill direct-fired triple-pass rotary dryer with a nominal process rate of approximately 65 tph pressed pulp. It would be primarily coal-fired (8.6 tph) with natural gas as a supplemental fuel (40 MMBtu/hour). No physical modifications are proposed to Pulp Dryer No. 1.

The Drayton facility utilizes a common coal hopper feed for the two pulp dryers. The coal hopper is controlled by a baghouse (EU23). No physical modifications are proposed to the current system. Therefore, any change in operation as a result of the proposed modification would be strictly due to an increase in annual utilization.

2.3.4 New Package Boiler

ACS proposes to install a new natural-gas fired package boiler to provide steam to support production operations. The proposed new package boiler would have a nominal capacity rating of 359 MMBtu/hr. The make and model of the package boiler has not been determined at this time.

2.3.5 Lime Kiln Operations

Lime kiln operations at the Drayton facility consist of a natural gas-fired vertical shaft lime kiln (EU28) with a nominal capacity of 500 tons per day (tpd) lime production, a lime slaker (EU30) with a nominal capacity of 20.8 tph lime, and fugitive emissions from lime rock handling (Fug 3). The Drayton facility

also utilizes a small flume lime slaker (EU25) that is used to maintain the pH of flume water entering the diffuser. The flume slaker is not part of the juice purification process, but instead facilitates sugar recovery.

The proposed modification would result in no physical modification or change in the method of operation of the lime kiln operations. However, the factory production increase may result in a greater annual lime demand and a more consistent short-term peak demand. The current lime kiln operations are capable of accommodating the increased demand as currently designed and configured.

2.3.6 Sugar Dryer and Granulator

The current sugar dryer/granulator system (EU29) has a nominal capacity of 100 tph. The proposed modification would result in no physical modification or change in the method of operation of the sugar dryer/granulator. However, the factory production increase may result in a greater annual demand and a more consistent short-term peak demand. The current sugar dryer/granulator is capable of accommodating the increased demand as currently designed and configured.

2.3.7 Sugar Handling Equipment

Sugar handling emission sources located downstream from the dryer/granulator include the MAC2 Flow Headhouse (EU14a), Old Hummer Room Pulsaire (EU14b), Hummer Room MAC (EU14c), Sugar Warehouse (EU18), Bulk Loading Pulsaire (EU19a), North Bulk Sugar Loadout (EU19b), South Bulk Sugar Loadout (EU19c), and Main Warehouse Pulsaire (EU20).

The sugar handling emission sources consist of a number of baghouse controlled pickup points on various sugar transport conveyor systems supporting bulk loadout and bagging operations. Several of the sources are considered insignificant and vent internally in the factory. The baghouse controls utilized by emission units EU18 through EU20, which are associated with bulk loadout and warehouse operations, are classified as inherent product recovery devices which recover sugar and return it to the process.

Proposed modifications to the sugar handling operations include upgrades to the conveying and screening equipment to eliminate current bottlenecks and improve railcar loading through conveyor automation. No changes to current control equipment configurations or equipment capacities are proposed. Based on preliminary design data, changes to bulk loadout to improve efficiency would only impact internally vented and insignificant emission units.

2.3.8 Pulp Pellet Processing

As a result of the increased pulp drying capacity, the downstream pelletization and pulp handling equipment would experience higher utilization. The Drayton facility currently utilizes the following pulp handling equipment:

• Three pulp pellet mills and cooler system (EU31, EU33 and EU34) with an overall nominal 30 tph capacity;

- A collection of dry pulp belt conveyors (EU9) with a nominal 16.8 tph capacity;
- Dry pulp reclaim system (EU10) with a nominal 16.8 tph capacity;
- Dry pulp bucket elevator (EU11) with a 16.8 tph capacity;
- Three pulp pellet storage bins (EU15, EU16 and EU17); and,
- One pulp pellet bulk loadout system (EU32).

The proposed modification would result in no physical modification or change in the method of operation of the pulp pellet processing sources. However, the factory production increase may result in a greater annual demand and a more consistent short-term peak demand. The current pulp pellet processing equipment is capable of accommodating the increased demand as currently designed and configured.

2.3.9 Process Modifications

In addition to the previously discussed direct emission units, the proposed modification of the Drayton facility would include several process modifications that would debottleneck internal production equipment to accommodate an increased slice rate. These process modifications would not directly result in the physical modification of any emission units, but instead would result only in the debottlenecking of emission source operations. To address all proposed process modifications have been summarized below. During the NDDEQ permit review and approval process, ACS will communicate final process changes for incorporation into construction permit documents. Rescinded (or added) process changes will not affect PSD applicability because all emission sources are currently being evaluated at maximum capacity. The proposed process modifications include the following:

- Various heaters, pumps and condensate upgrades
- High melter/STD liquid tank
- Evaporator modifications
- Affination pump upgrade
- Cold water tank modifications
- South 2nd carbonation tank repair
- Diffuser tower and arc screens
- Cossette mixer
- Seal water line
- 50# reducing station
- Low raw vertical vacuum pan (VKT)
- White pan (2) addition
- Two (2) new white centrifugals
- Carbonation clarifier upgrade
- Cooler chiller system/discharge
- Screen house upgrade
- Two (2) new pulp presses
- Two (2) new intermediate centrifugals
- Wet hopper extension
- CO₂ blower addition

- PKF station upgrade
- Standard liquor filters
- Sugar screen modifications
- White pan (1) addition
- USC bulk loadout modifications (Internal modifications inside the bulk loadout building. The building vents to a baghouse, which will not be modified as part of this project.)
- Turbine/generator upgrade
- Molasses tank/loading upgrade
- Pellet bin (Internal modifications inside the bulk loadout building. The building vents to a baghouse, which will not be modified as part of this project.)
- Secondary truck tipper/hopper

These process modifications would enable the Drayton facility to increase sugar production capacity and accommodate a greater slice rate.

2.3.10 Non-Affected Emission Units

Emission sources that would not be affected by the proposed modification to increase the slice rate at the Drayton facility include the Diesel Fire Suppression Pump (EU21), Flume Lime Slaker (EU25) and spent lime wind erosion (FUG4).

The fire suppression pump is used for emergency purposes only and is not impacted by the processing campaign. The flume lime slaker is used for infection control purposes and will not be impacted by the increase in production. Spent lime wind erosion will not be appreciably changed as a result of the proposed modification. Wind erosion emissions are based on the overall pile area and local meteorological conditions. The proposed modification will not significantly alter the spent lime pile size or shape.

2.3.11 Physical Modification and Debottlenecked Source Cross Reference

Table 2.1 provides a listing of the affected emission sources and indicates which sources would experience a change in the method of operation and which sources would be debottlenecked as part of the proposed modification.

Table 2.1 – Affected Emission Sources

Emission Unit	EU	EP	Status
Main Boiler	EU1	EP1	Debottlenecked
Boiler Coal Handling	EU1a	EP1a	Debottlenecked
Pulp Dryer No. 2	EU3	EP3	Removed
Pulp Dryer No. 1	EU4	EP4	Debottlenecked
Dry Pulp Belt Conveyors	EU9	EP9	Debottlenecked
Dry Pulp Reclaim System	EU10	EP10	Debottlenecked
Dry Pulp Bucket Elevator	EU11	EP9	Debottlenecked

Emission Unit	EU	EP	Status
MAC 2 Flow Headhouse	EU14a	EP14a	Debottlenecked
Old Hummer Room Pulsaire	EU14b	EP14b	Debottlenecked
Hummer Room MAC	EU14c	NA	Debottlenecked
Pulp Storage Bin No. 1	EU15	EP15	Debottlenecked
Pulp Storage Bin No. 2	EU16	EP16	Debottlenecked
Pulp Storage Bin No. 3	EU17	EP17	Debottlenecked
Sugar Warehouse (Hi-Vac)	EU18	EP18	Debottlenecked
Bulk Loading Pulsaire	EU19a	EP19a	Debottlenecked
North Bulk Sugar Loadout	EU19b	EP19b	Debottlenecked
South Bulk Sugar Loadout	EU19c	EP19c	Debottlenecked
Main Sugar Warehouse Pulsaire	EU20	EP20	Debottlenecked
Diesel Fire Suppression Pump	EU21	EP21	No Change
Pulp Dryer Coal Hopper	EU23	EP23	Debottlenecked
Flume Lime Slaker	EU25	EP24	No Change
Vertical Shaft Lime Kiln	EU28	EP27a-c	Debottlenecked
Sugar Dryer/Granulator	EU29	EP28	Debottlenecked
Lime Slaker	EU30	EP29	Debottlenecked
Pulp Pellet Mill No.1	EU31	EP30	Debottlenecked
Pulp Pellet Mill No.2	EU33	EP30	Debottlenecked
Pulp Pellet Mill No.3	EU34	EP30	Debottlenecked
Pulp Pellet Loadout	EU32	EP31	Debottlenecked
NEW PACKAGE BOILER	EU35	EP32	NEW SOURCE
NEW PULP DRYER No. 2	EU36	EP33	NEW SOURCE
Coal Handling Fugitive	Fug2	NA	Debottlenecked
Lime Rock Handling Fugitive	Fug3	NA	Debottlenecked
Spent Lime Wind Erosion	Fug4	NA	No Change

2.4 Past Facility Modifications

No modifications have taken place at the ACS Drayton facility since the issuance of Permit to Construct No. PTC17001 issued on July 31, 2017. This permit action was a major PSD modification and there are no contemporaneous changes within the last five years to be included in the current permit action.

2.5 Project Schedule

The expected schedule of project implementation is shown in Table 2.2.

Table 2.2 – Schedule of Construction

Milestone	Date	Description
Preliminary Engineering	2022	Start of preliminary engineering, preconstruction permitting/approvals and ordering of select long-lead equipment.
Engineering	2023	Detailed engineering and project preparation.
Phase I Construction	2023-2024	Pulp dryer installation, condensate upgrades, evaporator upgrades, diffuser tower, and other ancillary equipment installation.
Phase II Construction	2025-2026	White pans, white centrifugals, pulp presses, filtering upgrades, package boiler installation, and other ancillary equipment installation.
Phase III Construction	2027	Turbine generator upgrade, pellet loading upgrades, sugar loadout upgrades, and other ancillary equipment installation.

Chapter 3.0 – Estimated Emissions and Applicable Regulations

3.1 Emission Factors

Emission factors for criteria air pollutants emitted from the Drayton facility were obtained by reviewing data from several sources. These include the Environmental Protection Agency's (EPA) Compilation of Air Pollutant Emission Factors (AP42), emission test data from emission unit performance tests, and permitted allowable emission rates where applicable. Details concerning specific emission factors and emission units are included in calculation spreadsheets provided in Appendix C.

3.2 Emission Estimates

3.2.1 General Emission Calculations

Future potential emission calculations are based on 8,760 hour per year operation for all emission sources at maximum capacity. The proposed project will have the potential to increase emissions of several PSD-regulated pollutants, including nitrogen oxides (NO_x), carbon monoxide (CO), particulate matter (PM), particulate matter with an aerodynamic diameter less than or equal to 10 micrometers (PM₁₀), particulate matter with a nominal aerodynamic diameter less than or equal to 2.5 micrometers (PM_{2.5}), sulfur dioxide (SO₂), volatile organic compounds (VOC) and greenhouse gas (GHG) emissions. The project may also have the potential to increase emissions of several pollutants regulated under North Dakota's Air Toxic Policy.

Past actual emissions were calculated using emission inventory data as submitted to the NDDEQ for the Drayton facility. When available, performance test data were used in conjunction with operational data to calculate actual emission levels. If unit specific performance test data were not available, AP42 emission factors were used in conjunction with actual operational data. For purposes of determining the significant net emission increase related to the proposed project, baseline emissions (past actual) were calculated using a representative two-year average emission rate selected from the last ten years of operational data for the Drayton facility (average of 2017 and 2018 calendar years).

Details concerning future potential and past actual emission calculations are included in calculation spreadsheets provided in Appendix C.

3.2.5 Potential Emission Increase

Calculated maximum potential-to-actual emission increases resulting from the proposed Drayton facility modification are summarized in Table 3.1.

Pollutant	Potential Emissions (tpy)	Past Emissions (tpy)	Emission Increase (tpy)	PSD Significant Emission Rate (tpy)
PM	829	590	239	25
PM ₁₀	994	670	323	15
PM _{2.5}	699	423	276	10
NO _x	1,462	662	800	40
СО	6,582	2,589	3,994	100
VOC	709	63	646	40
SO ₂	2,085	420	1,665	40
Carbon dioxide equivalent (CO ₂ e)	929,356	341,880	587,476	75,000
Lead (Pb)	0.06	0.04	0.02	0.6
Sulfuric acid mist (H ₂ SO ₄)	5.99	1.07	4.92	7
Fluorides (measured as HF)	1.84	0.52	1.32	3

Table 3.1 – Project Maximum Potential Emission Increases

The emission increases presented in Table 3.1 reflect full-year operation at 8,760 hours per year and maximum capacity. Actual operations of the Drayton facility, due to the agricultural campaign-based production schedule, are typically on the order of 6,500 hours per year. Therefore, calculated potential emission increases are somewhat inflated for regulatory purposes. Both PM₁₀ and PM_{2.5} include condensable emission fractions and therefore appear greater than total PM emissions, which reflect filterable emissions only.

3.3 New Source Performance Standards

Federal New Source Performance Standards (NSPS) found in 40 CFR 60 have been adopted by reference within North Dakota Air Pollution Control Rules, Chapter 33-15-12. Due to initial construction dates prior to NSPS promulgation dates, none of the existing emission sources at the Drayton facility are subject to current standards. Furthermore, the definition of modification under 40 CFR 60.2 and 40 CFR 60.14 states that any physical change in or change in the method of operation of an existing facility which increases the amount of any air pollutant (to which a standard applies) emitted into the atmosphere by that facility is considered a modification. The determination of an increase in the amount of an air pollutant is based on an hourly increase in the potential emission rate (short-term maximum capacity) of an affected source, not an annual increase in utilization. The proposed modification of the Drayton facility will not result in an increase to potential hourly emissions of any existing emission unit for which a NSPS exists.

The proposed new natural gas-fired package boiler will be subject to 40 CFR 60, Subpart Db, Standards of Performance for Industrial-Commercial-Institutional Steam Generating units because it will have a rated heat input in excess of 100 MMBtu/hr.

3.4 Prevention of Significant Deterioration (PSD)

As a facility with greater than 250 MMBtu/hr of combined fossil-fuel boiler capacity, the Drayton facility is included as one of the 28 listed source categories in 40 CFR 52.21(b)(1)(i)(a) that are subject to a 100 tpy potential emission threshold to determine major status. By virtue of its current potential emissions, the facility is currently classified as a major source. Therefore, any facility modification that increases emissions by a significant amount as defined in 40 CFR 52.21 must obtain a PSD permit prior to beginning construction on the project.

PSD regulations require that all new or modified major stationary sources undergo a BACT review and ambient air quality analysis for all criteria and other PSD-regulated pollutants emitted over significant amount thresholds. As summarized previously in Table 3.1, the proposed production increase modification at the Drayton facility would be classified as a major modification for PM, PM₁₀, PM_{2.5}, NO_x, SO₂, VOC, and CO₂e.

3.5 Maximum Achievable Control Technology (MACT)

As part of the 1990 Amendments to the Clean Air Act (CAA), Section 112 was established to address emissions of HAPs. Under Section 112, emissions of HAPs are controlled by establishing emission standards and/or control technologies for identified source categories, and by addressing case-by-case analysis of new or reconstructed major sources of HAPs (those sources with greater than 10 tons per year of an individual HAP and greater than 25 tons per year combined HAPs). The emission limitation requirements proposed by subsequent regulations for the listed source categories are called Maximum Achievable Control Technology (MACT) standards and the regulations that contain the MACT standards and their associated compliance and reporting requirements are called the National Emissions Standards for Hazardous Air Pollutants (NESHAPs), which are listed under 40 CFR 63.

The coal-fired boiler at the Drayton facility is classified as an industrial boiler and therefore subject to MACT requirements under 40 CFR 63, Subpart DDDDD, National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters. Under the industrial boiler MACT rule the Drayton facility boiler (EU1) is classified as a unit designed to burn coal/solid fossil fuel and is therefore subject to emission limitations for PM, hydrogen chloride (HCI), mercury (Hg) and CO.

All applicable emission limitations under the boiler MACT rule have been incorporated as part of Permit to Construct No. PTC17001 issued on July 31, 2017.

The proposed new natural gas-fired package boiler (EU35) would be subject to 40 CFR 63, Subpart DDDDD. However, as the boiler is natural gas-fired, it would only be subject to periodic tune up requirements under the rule.

The proposed new pulp dryer at the Drayton facility is not regulated under a specific source category in 40 CFR 63. Therefore, if the total HAP emissions from the new source would exceed 10 tpy for an individual HAP or 25 tpy for the aggregate of all HAPs, a case-by-case MACT analysis would be required. Based on potential HAP emission calculations performed as part of the PTE calculations included in Appendix C, the total potential HAP emissions from the proposed new source would be 1.0 tpy for an

individual HAP (Hydrofluoric Acid) and 2.71 tpy for the aggregate of all HAPs. Therefore, no MACT requirements apply.

3.6 Process Weight Rate Limits

The pulp dryers are currently subject to industrial process PM emission limits under North Dakota Air Pollution Control Rules, Chapter 33-15-05. Maximum allowable PM emission rates from the pulp dryers are based on the process weight rate, which includes solid fuel, and the following formulas:

For process weight rates in excess of 30 tons/hr:

$$E = (55.0)(p^{0.11}) - 40$$

Where,

p = the process rate in tons/hour; and,

E = the emission limit in lb/hr.

The proposed new pulp dryer will be subject to the same process weight rate limits.

3.7 North Dakota Air Toxics Policy

The NDDEQ has a published policy regarding the control of HAPs, also known as an "Air Toxics Policy". This policy requires evaluations of new emission sources or modifications to assure that HAP emissions do not endanger public health.

The proposed modification at the Drayton facility will result in an increase in hourly emissions from the proposed new pulp dryer and package boiler. Therefore, it was necessary to evaluate the HAP emissions from the proposed new pulp dryer and package boiler with respect to the current Air Toxics Policy. The Drayton facility modification will not result in an increase in hourly emissions from any other facility emission sources, but instead will only result in an increase in annual utilization; therefore, no other emission units were included in the analysis. As indicated above, the coal-fired boiler at the Drayton facility is subject to federal MACT requirements under 40 CDR 63, Subpart DDDDD.

HAP emissions for the proposed pulp dryer and package boiler were estimated using the maximum short-term fuel combustion rate and published emission factors from AP-42, Chapter 1.1, Bituminous and Subbituminous Coal Combustion, and Chapter 1.4, Natural Gas Combustion. Annual emissions were estimated assuming 8,760 hours of operation per year.

The Tier 2 Procedure was selected based on the published Air Toxics Policy guidance available from the NDDH. This procedure utilizes a conservative screen model assessment of affected point sources to estimate maximum 1-hour emission impacts that are scaled to determine relative impacts for longer time averaging periods (i.e., 8-hour and annual). No terrain functions were assessed in the screen model analysis due to the fact that the terrain around the Drayton facility is primarily flat.

The modeled impacts were utilized in conjunction with published guideline concentrations and unit risk factors for individual HAPs to determine the maximum individual carcinogenic risk (MICR) for known carcinogenic compounds and overall hazard index for non-carcinogenic compounds. Calculation

spreadsheets detailing the emissions calculations and risk analysis procedures have been included in Appendix D.

Results of the air toxics review indicate an overall hazard index (HI) of 0.1, which is lower than the target threshold of 1.0. This is based on the summation of all individual hazard quotients for each HAP with an associated 1-hour or 8-hour guideline concentration. The overall MICR was calculated as 8.00E-07, which is less than the target threshold of 1.00E-05. Based on these results it has been determined that the proposed Drayton facility modification will not result in a significant risk due to air toxics emissions.

Chapter 4.0 – Best Available Control Technology

4.1 Overview

4.1.1 Definition of BACT

Federal regulation 40 CFR Part 52.21, Subpart (b)(12) defines a Best Available Control Technology (BACT) analysis as:

"an emission limitation (including a visible emission standard) based on the maximum degree of reduction for each pollutant subject to regulation under the Clean Air Act which would be emitted from any proposed major stationary source or major modification which the Administrator [or permitting authority], on a case-by-case basis, taking into account energy, environmental, and economic impacts and other costs, determines is achievable for such source or modification through the application of production processes or available methods, systems, and techniques, including fuel cleaning or treatment, or innovative fuel combustion techniques for control of such pollutant..."

In summary, BACT is defined as an emission limitation established based on the maximum degree of pollutant reduction, determined on a case-by-case basis, considering technical, economic, energy, and environmental factors. However, BACT cannot be less stringent than emission limits established by an applicable NSPS.

4.1.2 Top-Down BACT Analysis

To bring consistency to the BACT process, the EPA has developed a draft guidance document (March 15, 1990) on the use of the "top-down" approach to BACT determinations. The first step in a top-down BACT analysis is to determine, for the pollutant in question, the most stringent control technology and emission limit available for a similar source or source category. Technologies required under Lowest Achievable Emission Rate (LAER) determinations must be considered. These technologies represent the top control alternative under the BACT analysis. If it can be shown that this level of control is infeasible on the basis of technical, economic, energy, and environmental impacts for the source in question, then the next most stringent level of control is identified and similarly evaluated. This process continues until the BACT level under consideration cannot be eliminated by any technical, economic, energy or environmental consideration.

For this study, the economic analysis used to determine the capital and annual costs of the control technologies was based on methodologies shown in the *EPA Best Available Control Technology Draft Guidance Document* (October, 1990), EPA *BACT Guidelines*, the Office of Air Quality Planning and Standards (OAQPS) *Air Pollution Control Cost Manual* (Sixth Edition), internal project developer cost factor, and vendor budgetary cost quotes.

A "Top-Down" BACT analysis basically consists of the following steps:

- *Identify All Control Technologies*. All control technologies for similar processes, as well as LAER technologies are included.
- *Eliminate Technically Infeasible Options*. Technologies demonstrated to be infeasible based on physical, chemical, and engineering principles are excluded from further consideration.
- *Rank Technologies By Control Effectiveness*. Technically feasible control technologies are ranked in the order of highest expected emission reduction to lowest expected emission reduction. The ranking also includes expected emission rate, control effectiveness, energy impacts, environmental impacts (including toxic and hazardous air emissions), and economic impacts.
- *Control Technology Evaluation*. The technology ranking is evaluated and case-by-case consideration is given to energy, environmental, and economic impacts. The most effective option not rejected is chosen as BACT and is used to express an enforceable emission limitation for the affected emission unit.

4.1.3 Applicable Pollutants and Affected Sources

Modification of the Drayton facility will result in potential emission increases of PM/PM₁₀/PM_{2.5}, NO_x, CO, SO₂, VOC and CO₂e in excess of the PSD significant emission rate increase threshold levels set for these pollutants. A BACT analysis is required for each pollutant subject to regulation for which a modification would result in a significant net emissions increase at the source. More specifically, the BACT requirement applies to each proposed emission unit at which a net emissions increase of the regulated pollutant occurs as a result of a physical change or change in the method of operation in the unit [40 CFR 52.21(j)(3)].

As described previously in Section 2.3 two emission units at the Drayton facility would be constructed as new emission units and thus be subject to BACT as a result of the physical modification associated with the project. These units include:

- Coal-Fired Pulp Dryer
- Natural Gas-Fired Package Boiler

The BACT analysis addresses each of the affected regulated air pollutants with respect to their emission from the two affected sources. The following paragraphs provide a brief description regarding the formation and emission of the regulated air pollutants.

4.1.3.1 PM/PM₁₀/PM_{2.5} Formation

For practicality purposes, total suspended particulate (TSP), PM_{10} and $PM_{2.5}$ emissions are addressed concurrently in the BACT analysis. PM_{10} and $PM_{2.5}$, by definition, are a subset of TSP or total PM emissions and, in general terms, the air pollution control equipment used to mitigate these pollutants are the same. General reference to PM in the BACT analysis discussion refers to TSP, PM_{10} and $PM_{2.5}$, unless specifically noted. PM emissions from combustion sources such as the new coal-fired pulp dryer and new package boiler are a function of the burner configuration, operation practices, and fuel properties. Uncontrolled PM emissions include ash from non-combustibles in the fuel, as well as unburned carbon resulting from incomplete combustion. PM emissions are classified as filterable and condensable. Filterable PM is the portion of total PM present in the exhaust stream as a solid or liquid that can be measured on an EPA Method 5 filter (40 CFR 60, Appendix A). Condensable PM is the portion of PM that is initially present as a gas in the exhaust stream but condenses to a liquid or solid state at cooler ambient temperatures.

PM emissions from the coal-fired pulp dryer also have a process related component that results from the direct contact of combustion exhaust gases with the product to be dried. Essentially, the airflow through the pulp dryer results in the entrainment of PM from the drying process.

4.1.3.2 NO_x Formation

In general, there are two mechanisms of NO_x formation from combustion related sources. These mechanisms include oxidation of nitrogen bound in the fuel, and thermal production of NO_x from atmospheric nitrogen and oxygen. High combustion temperatures cause the nitrogen (N₂) and oxygen (O₂) molecules in the combustion air to react and form thermal NO_x. Because thermal NO_x is primarily a function of combustion temperature, NO_x emission rates vary with burner and source design. Experimental measurements of thermal NO_x formation have shown that the NO_x concentration is exponentially dependent on temperature and is proportional to the N₂ concentration in the flame, the square root of the O₂ concentration in the flame, and the gas residence time.

4.1.3.3 SO₂ Formation

 SO_2 emissions are formed from the oxidation of organic sulfur and soluble alkali in the fuel during combustion processes. The majority of sulfur is oxidized to SO_2 , however, a small quantity may be further oxidized to form sulfur trioxide (SO_3). With coal combustion, a large percentage of the sulfur in the fuel will be bound up in the ash produced from the combustion process.

Because of the direct contact nature of the pulp dryer process, where combustion gases come into direct contact with (and filter through) the pulp being dried, there is an inherent level of SO_2 control experienced as a result of the wet pulp adsorbing SO_2 in the exhaust gas stream. This has been observed and demonstrated through performance testing of the pulp dryers and is discussed in more detail in Section 4.2.

4.1.3.4 CO Formation

CO formation occurs primarily through incomplete combustion. The oxidation of CO to carbon dioxide (CO_2) is dependent on temperature, residence time during the combustion process, and the amount of excess O_2 present. Since temperature and residence time are critical factors in the formation of CO, emission units such as pulp dryers, which may have less high-temperature residence time to achieve complete combustion, may have higher CO emission levels than sources such as boilers.

4.1.3.5 VOC Formation

VOC formation generally follows the same principles of CO formation in combustion related emission sources.

4.1.3.6 Greenhouse Gas Formation

Greenhouse gas emissions of concern for the Drayton facility modification include combustion related emissions, such as CO₂, nitrous oxide (N₂O) and methane (CH₄). N₂O and CH₄ are generally produced in small amounts as a combustion byproduct. CO₂ emissions are created in the combustion process as a direct result of the elemental carbon (C) in the fuel combining with free oxygen. For PSD purposes, the combustion related greenhouse gas emissions are scaled based on their global warming potential and combined to form one pollutant, termed carbon dioxide equivalent (CO₂e).

4.1.3.7 Condensable Particulate Matter (CPM) Formation

Condensable particulate matter (CPM) forms from the condensing of gases and/or vapors in a flue gas stream after combustion. This is a result of chemical reactions as well as the physical properties and phenomena of matter phase changes (i.e., solid/liquid/gas). In general, material that is not particulate matter at stack conditions can condense or react upon cooling and dilution by ambient air to form a particulate. This formation generally occurs within a few seconds after discharge from an exhaust stack. However, with typical exhaust gas velocities, the particulate matter is being formed (condensed) up to 100 feet away from the exhaust gas exit.

Aside from questions concerning the accurate quantification of CPM and test method performance, available technological control options for CPM are limited. The fact that CPM formation occurs outside of the exhaust stack exit point, possibly as far as 100 feet away, makes control of CPM very difficult. The difficulty in control can be summarized in the following three questions:

- Can CPM formation be prevented? This would entail a form of combustion control that manages complete combustion and controls moisture in the combustion process. Furthermore, accurate real-time quantification of potential CPM formation would need to be developed to manage such combustion control. Currently no standard methods exist for this option.
- 2.) Can CPM be removed after formation? This is not technically feasible as it would require the capture of emissions formed outside of the exhaust point of the stack. In essence, it is the control of secondary pollution formation in the ambient air.
- 3.) Can the stack conditions be altered to promote the formation and capture of CPM before release to the ambient air? In general, this would involve either significant dilution of flue gases in the exhaust stack or significant artificial cooling of hot combustion gases. Dilution of exhaust gases is strictly prohibited by most state air quality laws. Artificial cooling of the high-volume exhaust gases from larger combustion sources would be extremely cost prohibitive.

The following paragraphs briefly address current particulate matter control technologies with respect to their technical feasibility for controlling CPM.

Mechanical Collectors: Mechanical collectors generally use the inertia of a moving particle in an exhaust gas stream to achieve particulate collection. A particle-laden exhaust stream is forced to rapidly change direction, either through cyclonic flow in a cylinder or by passing through a series of sieve plates in an impingement device. The mass of the particles in the exhaust stream causes them to move outside of the exhaust stream and impact on a collection surface where they then settle into a hopper or are collected in some other manner. Some mechanical collectors are specifically designed (and generally operated in series) to provide high efficiency particulate matter collection down to a particle size of one micrometer. However, as stated previously, at stack conditions, CPM is in a vapor or gaseous form, and thus has no significant difference in mass as compared to the surrounding exhaust gas. Therefore, inertial type mechanical collectors are not technically feasible for the capture of CPM.

Particulate Scrubbers: Particulate wet scrubbers exist in many forms. All particulate wet scrubber designs utilize particle and/or droplet inertia as the fundamental force to transfer particles from the gas steam to the liquid steam. Within a scrubber, particle laden air is forced to contact liquid droplets, sheets of liquid on packing material, or jets of liquid from a plate. As with the mechanical collectors, but on a smaller scale, the inertia of droplets or particles causes an impact with the collection media. However, vapors or gases with no significant mass with respect to the surrounding exhaust gases will pass around the "target" droplets, steams, or media. The ability of a particulate wet scrubber to remove particles primarily depends on the aerodynamic diameter of a particle, the velocity of a particle, and the velocity of droplets or collection media. Due to the extremely small (molecular) size of gases and vapors, they tend to follow Brownian diffusion, which means they diffuse slowly and primarily due to their interactions with gas molecules in the exhaust gas steam and are not significantly influenced by inertia.

The only advantage provided by a wet particulate scrubber is the potential ability to reduce the exhaust gas stream temperature to a degree which will promote the condensation of a portion of the CPM. After condensation, the particulate matter will then have a larger diameter and mass, which will allow the mechanics of particle collection to function. However, based on the high temperature and flowrate of exhaust gases produced by most combustion sources, the wet particulate scrubbers cannot sufficiently reduce the exhaust gas temperature to result in particle condensation. Therefore, wet particulate scrubbers are not technically feasible for the capture of CPM.

Electrostatic Precipitators: Electrostatic Precipitators (ESP) utilize non-uniform high voltage fields to apply large electrical charges to particulates moving through the field. The charged particles are then attracted to oppositely charged collection plates to promote particulate capture. Gases and vapors are not significantly influenced by the electrical fields and therefore are not captured by ESP devices. As with the other particulate collection devices, the temperature of the exhaust gas steam would need to be reduced to a degree that promotes the condensation of CPM to facilitate capture. As discussed, it is not economically feasible to reduce the exhaust gas temperature, therefore ESP devices are not technologically feasible for the capture of CPM.

Fabric Filtration: Fabric filters are used to collect particulate matter on the surface of filter bags. Most particles are collected by inertial impaction, interception and sieving. As particles are collected, the layer of particles, or filter cake, that develops increases the chances of capture by reducing the size of the fabric filter holes and increasing the chance for interception and sieving. Fabric filters have some limitations in that they cannot be used with corrosive or high moisture exhaust gas streams. Corrosive gases can destroy the integrity of the filters, leading to leaks. High moisture exhaust gases will result in blinding (plugging) of the fabric filters when absorbed by the filter cake.

Despite the limitations, fabric filters offer some advantage for the capture of some specific CPM, especially when used in conjunction with other control devices. For example, sulfur trioxides (SO_3), which may react with moisture in the exhaust gases to form sulfuric acid mist (H_2SO_4), which is a CPM, can be collected on the surface of a fabric filter in the presence of a reagent such as lime. The presence of the lime, due to the implementation of SO_2 controls upstream of the fabric filter, results in a chemical reaction to remove the specific CPM. Fabric filters are therefore considered a technically feasible option for the control of limited and specific CPM emissions when used in conjunction with other control devices.

Absorption: Absorption will only be discussed briefly as such systems are generally cost-prohibitive with respect to the level of CPM control offered. In general, the use of an absorbent such as activated carbon can capture numerous gases and vapors prior to, and without necessity of, condensation. However, due to the large flowrates of most combustion sources, the surface area and size of an absorption tower or bed would have to be prohibitively large to provide for proper residence time and collection efficiency. Therefore, although absorption is theoretically feasible, it is not practical

Given the limitations of PM control equipment with respect to control of CPM, the BACT analysis and subsequent proposed BACT emission limits will focus on filterable PM emissions.

4.1.4 Project Economic Evaluation Criteria

Table 4.1 lists the economic criteria used in the BACT analysis for determination of capital and annual costs of the control technologies.

Table 4.1 – Economic Evaluation Criteria

Economic Parameters	Value
Interest Rate, percent	7^
Control Equipment Economic Life, years	15 ^B
Base Labor Cost, \$/hr	60 ^c
Energy Cost, \$/kW-hr	0.06 ^D

^A EPA Air Pollution Control Cost Manual, Seventh Edition, November 2017, Chapter 2, Section 2.5.2.

^B EPA Memorandum, Calculating Amortized Capital Costs, July 24, 1987, Robert D. Bauman, Chief Standards and Implementation Branch.

- ^c Loaded labor rate obtained from ACS.
- ^D Actual ACS electricity cost.

4.1.5 Organization of BACT Analysis

The BACT analysis focuses specifically on emissions associated with the two new emission sources associated with the project: the coal-fired pulp dryer and the natural gas-fired package boiler. The BACT analysis has been divided into sections that individually address PM, NO_x, SO₂, CO and VOC emissions. GHG emissions are addressed separately in a final section that combines all applicable emission units.

4.2 Coal-Fired Pulp Dryer BACT

The following subsections address each applicable pollutant emitted from the proposed new coal-fired direct contact pulp dryer at the Drayton facility. As previously mentioned, ACS proposes to replace the existing Pulp Dryer No. 2 (EU3), which has a nominal process rate of approximately 33.8 tph of pressed pulp, with a new larger pulp dryer with a nominal process rate of approximately 65 tph of pressed pulp.

4.2.1 BACT for PM

PM emissions from coal-fired combustion result from the combination of the burner firing configuration, operation, and fuel properties. PM emissions from coal-fired sources typically include ash from the combustion of the fuel, potential burning embers, and unburned carbon resulting from incomplete combustion. Because of the direct contact nature of the pulp dryer, the most significant portion of PM emissions results from the dryer process itself (particles of dried pulp).

As discussed in Section 4.1.3.7, condensable particulate matter (CPM) will not be considered further in this BACT analysis.

The final proposed BACT emission limit contains a CPM component for compliance purposes, but the control technology evaluation is based on filterable emissions only. Additionally, all cost evaluations assume that TSP and PM₁₀ size fractions are equivalent as this presents the most conservative (worst-case) analysis.

4.2.1.1 Identification of PM Control Technologies

The following sections identify potentially available control technologies for coal-fired combustion processes. Additionally, the feasibility of the control technologies as applied to the operation of the proposed new coal-fired direct contact pulp dryer is addressed.

Control of PM emissions is achieved through the addition of equipment added downstream of the combustion device and pulp dryer drum. Five control technologies have been identified as alternatives for the proposed pulp dryer: fabric filter baghouse, electrostatic precipitator (ESP), wet electrostatic precipitator (WESP), wet scrubber, and mechanical separator (cyclone). These technologies are considered to have the highest control efficiency of all particulate control options.

Fabric Filter Baghouse

Fabric filtration in a baghouse consists of a number of filtering bags that are suspended in a housing. The particulate-laden gas passes through the housing and collects on the fabric of the filter bag. Accumulated particulate matter on the bag surfaces enhance the filtering efficiency. Periodically, the accumulated material or "cake" is removed from the bags using a physical mechanism such as shaking or pulsing the bags with compressed air. The dust is collected in a hopper and eventually removed.

Because of the very high moisture content of the exhaust gas stream from the pulp dryer, there is great potential for blinding and plugging any fabric filter control device used on the system. Furthermore, because of the direct contact nature of the dryer, there is also potential for burning pulp or coal embers to be transported to the fabric filter, which presents a fire safety issue. Therefore, the application of a fabric filter to control PM emissions from the pulp dryer is not considered technically feasible.

Electrostatic Precipitator

Electrostatic precipitators (ESPs) remove PM from the flue gas stream using the principle of electrostatic attraction. PM in the exhaust stream is charged with a very high direct current (DC) voltage and the charged particles are attracted to oppositely charged collection plates in the ESP. PM collected by the ESP continues to accumulate on the plates until removed by rapping the electrodes. The dust is then collected in a hopper for disposal. ESPs can handle large gas streams and high particulate loading and can operate at high temperatures. However, like baghouse fabric filters, ESPs do not function well with wet exhaust gas streams. Because the exhaust gas from the pulp dryer is saturated with moisture, there is the potential for buildup of particles on the collection plates, which will reduce the effectiveness and require additional maintenance, as well as the potential for electrical shorting. As a result of the saturated exhaust gas steam, ESPs are not considered a technically feasible option for the pulp dryer.

Wet Electrostatic Precipitator

Wet electrostatic precipitators (WESP) operate using the same principles as a standard ESP, but the final cleaning step is different. The collection surfaces are cleaned with water that can be delivered from spray nozzles or by condensing moisture from the flue gas. WESPs effectively reduce particle reentrainment since the surfaces of the collection plates are constantly cleaned with liquid. WESPs also operate under higher electrical power than standard ESPs and enable higher reduction of very small particles. Operation of a WESP requires the collection and treatment and/or disposal of wastewater containing fly ash from the combustion device.

The operation of a WESP on the pulp dryer is assumed technically feasible. However, it should be noted that there are no known direct-fired pulp dryer operations that currently utilize WESP control, therefore, unknowns concerning particle resistivity could reduce anticipated collection efficiencies. However, humidity lowers the resistivity of most materials, therefore, it is anticipated that adequate collection efficiency could be maintained.

Wet Scrubber

Numerous wet scrubber designs can be used to control PM emissions with varying degrees of efficiency. Final design generally depends on the specific source type and target pollutants. Designs include mechanically-aided scrubbers, orifice scrubbers, packed-bed scrubbers, packed tower scrubbers, spray chamber/spray tower scrubbers and venturi scrubbers.

Because PM is the sole pollutant of concern for the pulp dryer, the most effective wet scrubber design considering exhaust gas flow rate and particulate loading is a mechanically-aided scrubber. Particulate laden gas enters the scrubber and is spun in a vortex-like fashion due to the offset configuration of the gas inlet. The gas then passes upward through a series of spray rings where nozzles spray water downward into the rising gas. The spray nozzles produce rapidly moving water droplets that sweep PM from their path. Some droplets interact with each other and agglomerate into larger droplets that settle to the bottom of the scrubber. Other droplets move upward and enter turning vanes that work to spin and throw the droplets outwards to the scrubber wall where they collect and drop to the bottom of the scrubber.

Mechanically-aided scrubbers are designed for many applications and are used extensively on a wide variety of industrial applications. Therefore, they are considered a technically feasible option for controlling PM emissions from the pulp dryer.

Mechanical Separator

Mechanical separators (cyclones) operate through inertial separation of particles entrained in an exhaust gas stream. The collection efficiency varies as a function of particle size and cyclone design. Cyclone efficiency generally increases with particle size density, inlet duct velocity, cyclone body length, number of revolutions in the cyclone, ratio of cyclone body diameter to gas exit diameter, dust loading and cyclone wall smoothness.

Cyclones are designed for many applications and are used extensively on a wide variety of industrial applications. Cyclones are considered a technically feasible option for controlling PM emissions from the pulp dryer.

4.2.1.2 PM Control Technology Summary

Table 4.2 summarizes the different PM control technologies and indicates which technologies have been chosen as technically feasible options for the proposed new pulp dryer.

Table 4.2 – PM Control Technology Summary

Identified Control Technology	Available and Demonstrated Effective	In Service On Similar Units	Technically Feasible for Pulp Dryer
Fabric Filter	Yes	No	No
ESP	Yes	No	No
WESP	Yes	No	Yes
Wet Scrubber	Yes	Yes	Yes
Cyclone	Yes	Yes	Yes

December 2022

4.2.1.3 Top-Down Ranking

The PM control technologies that are considered technically feasible for implementation on the proposed pulp dryer have been ranked from most to least effective in terms of emission reduction potential. Table 4.3 summarizes the control technology ranking. The particulate control is expressed as a range to reflect the varied particle size distribution of PM_{2.5}, PM₁₀ and TSP.

Table 4.3 – Top-Down Ranking of PM Control Technologies

Identified Control Technology	Percent PM Reduction
WESP	90-99
Wet Scrubber	70-90
Cyclone	40-80

4.2.1.4 Control Technology Evaluation

The following sections present detailed evaluations of the feasible PM control technologies. Energy, environmental and economic impacts are considered.

Wet ESP

As stated previously, WESPs remove PM from the flue gas stream using the principle of electrostatic attraction. PM in the exhaust stream is charged with a very high direct current (DC) voltage, and the charge particles are attracted to oppositely charged collection plates in the WESP. Collected PM is continually removed as the surfaces of the collection plates are constantly cleaned with liquid.

Under high pollutant loading conditions and where PM consists of relatively large particles (i.e., greater than 2 microns), it is typical to use wet scrubbers or spray chambers to reduce the load on the WESP. The use of wet scrubbers will also be necessary to reduce the exhaust gas temperature of the direct-fired dryer to an acceptable range of 170 to 190°F. Additionally, for very large particles (i.e., greater than 10 microns), mechanical collectors such as cyclones are also used upstream of the WESP. The direct-contact process of the pulp dryer, in conjunction with high airflow, is anticipated to generate a high concentration of large particles as compared to other combustion related sources. Therefore, it will be necessary to employ a cyclone and wet scrubber prior to the WESP to prevent overloading of this control system.

For BACT analysis purposes, a conservative 75 percent capacity factor was incorporated into emission estimates to provide a more accurate analysis with respect to annual control effectiveness costs. As indicated previously, typical processing campaigns do not last for an entire year. Furthermore, pulp processing operations do not last the entire length of the processing campaign. Operating and control

costs were performed assuming base (maximum) load operations and the 75 percent annual capacity factor. A summary of the estimated baseline and controlled PM emissions is provided in Table 4.4.

Emission	Baseline E	missions	Controlled	Emissions
Unit Description	Baseline Emission Rate (lb/hr) ^A	Annual Emissions (tpy) ^B	BACT Emission Rate (lb/hr) ^c	Annual Emissions (tpy) ^{B,C}
Pulp Dryer	31.9	104.8	1.60	5.24

Table 4.4 – Pulp Dryer Baseline PM Emission Rate

^A Based on a controlled (multiclone/wet scrubber) emission rate of 0.49 lb/ton of wet pulp (NDDEQ process throughput rule). This is equivalent to AP42, Table 9.10.1.2-1 for a wet scrubber-controlled source.

^B Assumed annual capacity factor of 75 percent.

^c Based on an assumed control efficiency of 95 percent of baseline emissions.

As indicated in Table 4.4, the target controlled PM emission rate is 1.60 lb/hr. This corresponds to approximately 95 percent control of baseline PM emissions. Incorporating the 75 percent historical annual capacity factor, the overall reduction in PM emissions would be 99.6 tons per year. The reasons for the anticipated low control efficiency of 95 percent for the WESP system include the high flue gas flowrate of the pulp dryer, unknown resistivity of particulate and variable/inconsistent operation of the pulp dryer.

Energy: Direct energy penalties associated with the operation of a WESP system on the pulp dryer are mainly associated with electricity consumption required to operate the WESP. However, additional pumps and water supply will also create energy penalties. The amount of electricity consumed is related to the concentration of PM in the exhaust stream to be controlled.

Environmental: Detrimental environmental effects resulting from the use of a WESP system to control PM emissions from the pulp dryer include the production of wastewater sludge as a result of the collection of particles with water and a small amount of secondary air pollutant emissions as a result of power generation to meet the WESPs power consumption demand.

Economic: Table 4.5 presents the capital costs associated with the installation of a WESP for the pulp dryer to achieve a PM emission level of 1.60 lb/hr. Capital costs were based on standard engineering estimating practices presented in the EPA Air Pollution Control Cost Manual, Sixth Edition, January 2002, as well as additional applicable guidance from the EPA and other resources.

Description of Cost	Cost (\$) ^A	Remarks
Equipment Costs ^B	3,470,800	Vendor estimate
Control/Instrumentation ^c	347,100	10% of equipment cost
Sales Tax	208,200	6% of equipment costs

Table 4.5 – WESP Capital Cost Summary

Description of Cost	Cost (\$) ^A	Remarks	
Freight ^C	173,500	5% of equipment costs	
Total Equipment Costs (TEC)	4,199,600		
Total Installation Costs (TIC)/Balance of Plant Costs	2,897,700	Based on percentage of TEC: 4% Foundation and Supports, 50% Erection, 8% Electrical, 1% Piping, 4% Painting, 2% Insulation	
Site Preparation ^D	600,000	Estimated based on similar project conditions	
Total Direct Investment (TDI)	7,697,300	TEC + TIC + Site Preparation = TDI	
Contingency	126,000	3% of TEC	
Engineering	839,900	20% of TEC	
Construction and Field Expense	839,900	20% of TEC	
Contractor Fees	420,000	10% of TEC	
Start-Up Assistance	42,000	1% of TEC	
Performance Test	42,000	1% of TEC	
Model Study	84,000	2% of TEC	
Total Indirect Investment (TII) ^c	2,393,800		
Total Capital Investment (TCI)	10,091,100	TDI + TII = TCI	

^A Values rounded to nearest \$100.

^B Capital costs scaled from 2015 vendor estimate for similar equipment.

^c Direct and indirect cost percentages estimated from EPA's Air Pollution Control Cost Manual, Sixth Edition, January 2002 for ESPs (Section 6, Chapter 3).

 $^{\scriptscriptstyle \mathsf{D}}$ Estimated by HDR.

Table 4.6 presents the annual operating costs associated with the WESP. Annual operating costs include operation labor, maintenance and electricity costs.

Table 4.6 – WESP Annual Cost Summary

Description of Cost	Cost (\$) ^A	Remarks	
ESP Operator	49,300	1 hour per shift at \$60	
ESP Supervisor	7,400	15% of operator costs	
ESP Coordinator	16,300	33% of operator costs	
ESP Maintenance Labor	12,300	¼ hour per shift at \$60	
ESP Maintenance Material	42,000	1% of TEC	
Solids Disposal	2,700	\$20/ton @ 2 miles and 0.50/ton-mile	
Electricity Costs ^C	92,200	\$0.06 x 234 kW-hr x 8760 hr x 75% capacity	
Direct Annual Costs (DAC) ^B	222,200		
Overhead	76,400	60% of O&M Labor and Materials	
Administrative Charges	201,800	2% of TCI	

Description of Cost	Cost (\$) ^A	Remarks
Property Tax	100,900	1% of TCI
Insurance	100,900	1% of TCI
WESP Capital Recovery ^D	1,107,900	(TCI) x (CRF of 0.10979)
Indirect Annual Costs (IAC)	1,587,900	
Total Annualized Costs (TAC)	1,810,100	DAC + IAC = TAC

^A Values rounded to nearest \$100. All direct and annual costs adjusted to 75% capacity factor.

^B Direct and indirect cost percentages estimated from EPA's Air Pollution Control Cost Manual, Sixth Edition, January 2002, for ESPs (Section 6, Chapter 3).

^c Based on actual average energy cost of \$0.06/kW.

 ^D Capital Recovery Factor (CRF) based on 15-year life and an interest rate of 7%, EPA Air Pollution Control Cost Manual, January 2002, Table A2 in Section 1, Chapter 2).

Total annualized costs for the WESP system are calculated as the sum of the operating costs, plus a capital recovery factor multiplied by the total installed costs. A historical 75 percent capacity factor is also included. The total annualized costs to maintain a 1.60 lb/hr PM emission level for the pulp dryer is estimated to be \$1,810,100. Based on the emissions information presented in Table 4.4, the annual reduction in PM emissions would be 99.6 tons per year. The resulting cost effectiveness for installing and operating the WESP is estimated at \$18,200/ton of PM removed.

4.2.1.5 Proposed PM BACT Selection

Table 4.7 summarizes the results of the Top-Down BACT analysis for PM emissions. The emission rate baseline for calculating control effectiveness costs assumes the use a cyclone and wet scrubber to remove very large particles and lower the exhaust gas temperature of the pulp dryer, which allows the WESP to be technically feasible. Furthermore, as discussed previously, a historical annual capacity factor of 75 percent has been included in the emission calculations to accurately reflect actual project utilization of the proposed new pulp dryer and associated control equipment.

Control Alternative	Emission Level (lb/hr, tpy)	Emission Reduction (tpy)	Annualized Costs (\$/yr)	Cost Effectiveness (\$/ton)	Adverse Impact (Yes/No)
WESP	1.60, 5.24	99.6	1,810,100	18,200	No
Multiclone/Scrubber	31.9, 104.8	-	-	-	-

Table 4.7 – Summary of Top-Down BACT for PM Emissions from the Pulp Dryer

The fundamental obstacle to adding a WESP to the pulp dryer to control PM emissions is the overall economics in comparison to the amount of emission reduction. PM reduction costs for the pulp dryer are estimated to be \$18,200 per ton of PM removed. This overall annual cost to meet a PM emission limit of 1.60 lb/hr (0.045 lb/ton wet pulp) is judged to be excessive.
Additionally, the EPA Air Pollution Control Technology Fact Sheet for WESPs, EPA-452/F-03-029, indicates that annualized costs for controlling PM emissions should be in the range of \$12 to \$46/scfm. Calculated annualized costs for the pulp dryer are estimated to be approximately \$18/scfm. The fact sheet indicates O&M costs in the range of \$6 to \$10/scfm. Calculated O&M costs for pulp dryer are estimated to be approximately \$1.3/scfm. Both values are below or equivalent to the lowest range specified in the EPA fact sheet for WESP costs, therefore the cost estimates are deemed conservatively low.

Considering the prohibitive cost of adding a WESP to the pulp dryer, the proposed BACT for PM is the use of the baseline cyclone and wet scrubber controls. Table 4.8 lists the PM emission limitation proposed as BACT under typical operating ranges for the pulp dryer.

Emission Unit	BACT Limit	Control Type
Pulp Dryer	 PM: 31.9 lb/hr (0.49 lb/ton of pressed pulp) 3-hour average filterable only. PM₁₀: 59.0 lb/hr (0.91 lb/ton of pressed pulp) 2 hour average filterable and condensable 	Cyclone and Wet Scrubber
	PM _{2.5} : 36.7 lb/hr (0.56 lb/ton of pressed pulp) 3-hour average filterable and condensable.	

Table 4.8 – Proposed PM BACT Emission Limit

The BACT analysis for PM focused only on controlling filterable particulate matter based on the discussion presented in Section 4.1.3.7 concerning the feasibility of controlling condensable particulate emissions from combustion sources. However, as indicated in Table 4.8 the proposed final particulate matter limit incorporates both condensable and filterable fractions. The combined condensable/ filterable limit will provide the most flexibility with regard to compliance demonstrations, in which various test method interferences have indicated the potential for a high degree of variability in results.

4.2.1.6 RBLC Database Review

Information concerning recently permitted industrial process dryers was obtained from the EPA's RBLC. Due to the lack of available data presented in the RBLC for process dryers similar to the proposed pulp dryer, only one representative emission source was found. This source is the pulp dryer installed at the ACS Hillsboro facility in 1997.

The Drayton pulp dryer is anticipated to be approximately 60 percent of the capacity of the Hillsboro facility pulp dryer. Operational practices are anticipated to be nearly identical. The Hillsboro pulp dryer was permitted with a PM BACT emission limit of 52.0 lb/hr utilizing a cyclone followed by a wet srubber. The proposed BACT limit for the Drayton pulp dryer is 31.9 lb/hr, also utilizing a cyclone followed by a wet scrubber, which corresponds to approximately 60 percent of the Hillsboro dryer emissions.

4.2.2 BACT for SO₂

Control of SO₂ emissions from fuel-combustion sources (such as the proposed direct-fired dryer) can be accomplished through two approaches: removal of elemental sulfur from the fuel prior to combustion, and flue gas desulfurization (FGD), which consists of removal of SO₂ from flue gas after combustion (post-combustion control).

Many oil refineries operate catalyst-based desulfurization units to remove organic sulfur from liquid crude oil. However, in solid fuels, such as coal, a significant fraction of the sulfur is in the form of pyrite (FeS₂) or other mineral sulfates. It is possible to remove some mineral sulfates through physical processes such as washing and/or chemical processing. However, desulfurization of solid fuels is generally viewed as inefficient and expensive. Furthermore, it is unlikely that sufficient desulfurization of solid fuels can be accomplished to meet anticipated emission requirements. Therefore, removal of sulfur from the coal prior to combustion will not be considered a viable option for this BACT analysis.

4.2.2.1 Identification of SO₂ Control Technologies

The following sections identify potentially available control technologies for coal-fired combustion processes. Additionally, the feasibility of the control technologies as applied to the operation of the proposed new coal-fired direct contact pulp dryer is addressed.

FGD technologies can be divided into two main categories, regenerative and throwaway processes. Regenerative processes recover sulfur in a usable form that can be sold as a reusable sulfur product. Throwaway processes remove sulfur from flue gas and scrubber byproducts are subsequently discarded.

Regenerative process, by nature, contain a regeneration step in the FGD process that results in higher costs than throwaway processes due to equipment and operation expenses. However, in instances where disposal options are limited and markets for recovered sulfur products are readily available, regenerative processes may be used

Throwaway processes such as limestone scrubbing have become widely accepted by the coal-fired power industry. Because the throwaway process can achieve the same removal efficiencies as regenerative processes and cost less, this BACT analysis for SO₂ will focus on throwaway processes and further discussion of regenerative processes will not be considered.

Throwaway processes can be divided into two categories, wet and dry. Wet or dry refers to the state of the waste by-products. Both wet and dry technologies have advantages and disadvantages with respect to initial capital and operational expenses.

Wet FGD

Wet scrubbing (wet FGD) systems used for SO₂ reduction typically consist of the following operations: scrubbing or absorption, lime handling and slurry preparation, sludge processing, and flue gas handling.

Wet FGD technology is a well-established process for removing SO₂ from flue gas. In wet scrubbers, the flue gas enters a spray tower or absorber where it is sprayed with a water slurry, which is approximately 10 percent lime or limestone. Sodium alkali solutions can also be used in FGD systems, however these processes are considerably more expensive than lime. The preferred sorbents are limestone (CaCO₃) and lime (CaO), respectively, due to the availability and relatively low cost of limestone. Calcium in the slurry reacts with the SO₂ in the flue gas to form calcium sulfite (CaSO₃ \bullet /₂H₂O) or calcium sulfate (CaSO₄ \bullet 2H₂O, or gypsum). Additional oxygen may be added to increase the amount of calcium sulfate created, as this byproduct is easier to dewater than calcium sulfite (CaSO₃ \bullet /₂H₂O). The overall chemical reactions assuming a limestone reagent can be simply expressed as:

 $SO_2 + CaCO_3 (s) + \frac{1}{2}H_2O \rightarrow CaSO_3 \bullet \frac{1}{2}H_2O (s) + CO_2$ $SO_2 + CaCO_3 (s) + \frac{2}{2}H_2O + \frac{1}{2}O_2 \rightarrow CaSO_4 \bullet \frac{2}{2}H_2O (s) + CO_2$

Spent slurry from the reaction tank is pumped to a thickener where solids settle before being sent for final dewatering to approximately 50 to 85 percent solids. Water removed during this process is sent to a process water holding tank, which can be reused in the process or sent to a wastewater treatment system. The waste sludge must also be disposed of properly. Finally, scrubbed flue gases are exhausted through a stack. Reheating of the flue gas prior to the stack is sometimes needed for proper drafting and rise of exhaust gases out the stack, as well as minimizing condensation of SO_2 to SO_3 and subsequently sulfuric acid (H₂SO₄). As an alternative, the stack can be constructed of acid resistant material.

Most wet FGD systems have two stages, one for fly ash removal and one for SO₂ removal. The flue gas normally passes first through a fly ash removal device, either an electrostatic precipitator (ESP) or a bag filter, and then into the SO₂ absorber. There are many different types of absorbers that can be used in wet FGD systems, including: spray towers, venturis, plate towers, and mobile packed beds. However, many of these systems can result in scale buildup, plugging or erosion, which can affect the dependability and efficiency of the absorber. Therefore, simple scrubbers such as spray towers are commonly used. The chief drawback of the spray tower design is that it requires a higher liquid-to-gas ratio for equivalent removal of SO₂ to other absorber designs.

Wet FGD systems have been in operation in the United States for several decades and are used widely throughout the coal-fired electric utility industry. Additionally, simple spray towers and venturi scrubbers have been used on direct contact process dryer applications. Therefore, wet FGD systems are considered technically feasible for implementation on the proposed pulp dryer.

Dry FGD

In contrast to wet scrubbing systems, dry FGD (spray dryer) systems use much smaller amounts of liquid. With a spray dryer system, the flue gases enter an absorbing tower (dryer) where the hot gases are contacted with a finely atomized slurry, which is usually a calcium-based sorbent such as calcium hydroxide (Ca(OH)₂) or calcium oxide (CaO, lime). Acid gases and SO₂ are absorbed by the slurry mixture and react to form solid salts. The heat of the flue gas evaporates the water droplets in the sprayed slurry, and a non-saturated flue gas exits the absorber tower. The absorption process is also somewhat temperature dependent. Cooler flue gases allow the acid gases to more effectively react with the sorbents. The overall chemical reactions can be simply expressed as:

$$CaO + H_2O \rightarrow Ca(OH)_2$$

$$Ca(OH)_2 + SO_2 \rightarrow CaSO_3 \bullet \frac{1}{2}H_2O (s) + \frac{1}{2}H_2O$$

$$Ca(OH)_2 + 2HCI \rightarrow CaCl_2 (s) + 2H_2O$$

As can be seen above, one mole of calcium hydroxide will neutralize one mole of SO₂, whereas one mole of calcium hydroxide will neutralize two moles of hydrochloric acid (HCl). A similar reaction occurs with the neutralization of hydrofluoric acid (HF). These reactions demonstrate that when using a spray dryer the HCl and HF are removed more readily than SO₂. Reagent requirements should consider that the HCl and HF are removed first, followed by the reagent quantity required to remove the SO₂¹.

The exhaust stream exiting the absorber contains fly ash, calcium salts, and un-reacted lime, which must be sent to a particulate control device such as a fabric filter (baghouse). The particulate control device not only is necessary to control particulate matter, but also aids in acid-gas removal. Acid gases are removed when the flue gas comes in contact with the lime-containing particles on the surface of the baghouse. Modern dry FGD systems include a loop to recycle a portion of the baghouse-collected material for re-use in the FGD module because this material contains a relatively high amount of unreacted lime.

Dry FGD systems are currently used for many coal-fired utility boilers and some industrial boilers. However, a primary difference in coal-fired boiler application vs. coal-fired pulp dryer application is the temperature and moisture content of the exhaust gas. Pulp dryer exhaust gas temperatures are typically less than 250°F, which is lower than the exhaust gas temperature of a typical coal-fired boiler. Pulp dryer exhaust gases are also in the range of 35 to 40 percent moisture as compared to 10 percent or less in a typical coal-fired boiler. The low exhaust gas temperature and high moisture presents a problem with respect to dry FGD operation as there is not enough heat to effectively evaporate the injected slurry mixture. Furthermore, limiting the slurry injection rate to accommodate the reduced evaporation potential would result in reduced effectiveness of the SO₂ control. Additionally, as the exhaust gas passes through the dry FGD system, the temperature is further reduced, which promotes the condensation of acid gases. The acid gases are corrosive to the components of the exhaust gas system, which reduces the life of the system and increases maintenance costs. Finally, the application of a baghouse as part of the dry FGD system is not technically feasible as the high moisture content of the exhaust gases from the dryer process can lead to blinding (plugging) of the fabric filter.

Because of the technical issues affecting the proper operation of a dry FGD system and the fact that there are no known installations of dry FGD systems on coal-fired pulp dryers in the United States, dry

¹ Karl B. Schnelle, Jr. and Charles A. Brown, Air Pollution Control Technology Handbook, CRC Press, 2002.

FGD is not considered technically feasible for implementation on the proposed new pulp dryer at the Drayton facility and will not be addressed further in this BACT.

Dry Sorbent Injection (DSI)/Fabric Filter

Dry Sorbent Injection (DSI) SO₂ scrubber systems consist of a dry powder SO₂ control reagent that is injected into a flue gas steam ahead of a particulate collection device, which is most often a fabric filter. The dry powdered injection does not require a slurry mix system or additional cooling of the flue gas for drying of the slurry; however, the SO₂ reaction and resulting control efficiency is not as great as with the slurry systems (wet or dry FGD).

Several dry DSI systems have been installed on municipal solid waste and hospital medical waste-fired incinerator systems in the United States in the past several years. There are currently no known operating coal-fired pulp dryer facilities in the United States that employ DSI systems.

With respect to technical feasibility, the DSI and fabric filter system has some of the same issues as discussed with the dry FGD system. Because of the high moisture content of the exhaust gases, the fabric filter associated with the system would be subject to blinding and therefore not feasible for use. Injection of reagent prior to the current multiclone control device would also not be feasible as the reagent would combine with the pulp that is being dried, thus reducing the effectiveness of control as well as contaminating the dried pulp which is sold as a livestock food supplement. Therefore, dry injection fabric filter systems are not considered technically feasible for implementation on the proposed new pulp dryer at the Drayton facility and will not be addressed further in this BACT analysis.

Inherent Process Controls

Any proposed add on flue gas control for the proposed pulp dryer must be evaluated with respect to the inherent SO₂ control experienced by normal dryer operations. The maximum SO₂ emission rate from the pulp dryer based on typical coal sulfur content (0.5 percent) and heat content (9,400 Btu/lb) would be expected to be approximately 150.8 lbs/hr, or 17.5 lbs/ton of coal combusted. Historic stack test data for similar pulp dryer operation performed for engineering test purposes shows average SO₂ emission rates ranging from 4.0 to 6.2 lb/ton of coal combusted. This indicates that through both retention of the sulfur in the coal ash and SO₂ adsorbed by the pulp during the drying process, approximately 65 percent of the SO₂, on average, is removed by the inherent scrubbing properties of the dryer process. Because the inherent SO₂ removal rate may vary somewhat depending on coal sulfur content and pulp quality, it is conservatively assumed that a consistent 60 percent removal rate can be maintained. Inherent process controls are considered a feasible alternative for BACT analysis purposes. Additionally, the resulting effectiveness of any additional add-on SO₂ control will be greatly reduced as a result of the low concentration of SO₂ in the exhaust gas stream.

4.2.2.2 SO₂ Control Technology Summary

Table 4.9 summarizes the different SO₂ control technologies and indicates which technologies have been chosen as technically feasible options for the proposed new pulp dryer.

Table 4.9 – SO₂ Control Technology Summary

Identified Control Technology	Available and Demonstrated Effective	In Service On Similar Units	Technically Feasible for Pulp Dryer
Wet FGD	Yes	No	Yes
Dry FGD	Yes	No	No
DSI	Yes	No	No
Inherent Controls	Yes	Yes	Yes

4.2.2.3 Top-Down Ranking

The SO₂ control technologies that are considered technically feasible for implementation on the proposed pulp dryer have been ranked from most to least effective in terms of emission reduction potential. Table 4.10 summarizes the control technology ranking. The percent SO₂ reduction for wet FGD is listed as a range because it is dependent on the SO₂ concentration of the inlet exhaust gas stream. Higher concentration exhaust gas streams would experience higher levels of control.

Table 4.10 – Top-Down Ranking of SO₂ Control Technologies

Identified Control Technology	Percent SO ₂ Reduction
Wet FGD	50-98
Inherent Controls	60

4.2.2.4 Control Technology Evaluation

The following sections present detailed evaluations of the feasible SO₂ control technologies. Energy, environmental and economic impacts are considered.

Wet FGD

There are numerous operating parameters that can affect the SO₂ removal rate of the wet FGD system such as: liquid-to-gas ratio, pH, gas velocity, residence time, gas distribution, scrubber design and turndown. Additionally, fuel properties such as heating value, moisture content, sulfur content, ash content, and chlorine content play a significant role. Another design consideration with wet FGD systems is that the saturated flue gas exiting the absorber still contains some SO₂. This can lead to the formation of corrosive acid gases that are damaging to downstream equipment. To minimize corrosion of the downstream equipment, the gases can be reheated to temperatures above the dew point, or construction materials and design conditions can be selected to withstand the corrosive conditions. Both of these alternatives increase the capital and operating cost of an FGD system. Reheaters can also experience operational problems ranging from acid attack on reheater components to vibration, which causes structural deterioration.

Another potential problem with wet FGD systems using limestone as a reagent is that calcium sulfite in the sludge produced by the system settles and filters poorly. This problem can be remedied using a forced oxidation system in a designated section of the absorber or in a separate oxidation tank. This process creates calcium sulfate (gypsum), which is easily filtered and sometimes marketed as a material for production of drywall. The forced oxidation process also helps to prevent scale buildup by removing calcium sulfites through conversion to calcium sulfate, thus preventing calcium sulfites from oxidizing and precipitating out in the scrubber internal areas. Scaling and oxidation can also be reduced with chemical inhibitors such as magnesium and dibasic acid. The necessary reduction of scaling in wet FGD equipment increases the operational cost for these systems.

Wet FGD processes also produce a sludge waste, which must be disposed of properly. In these processes, the scrubbing liquid can be recycled or regenerated, but no useful product is obtained from the sludge. Additionally, wastewater treatment is required for the process wastewater produced by wet FGD systems.

For the purposes of this BACT analysis, a conservative 75 percent capacity factor was incorporated into emission estimates to provide a more accurate analysis with respect to annual control effectiveness costs. As indicated previously, typical processing campaigns do not last for an entire year. Furthermore, pulp processing operations do not last the entire length of the processing campaign. Operating and control costs were performed assuming base (maximum) load operations and the 75 percent annual capacity factor. A summary of the estimated baseline and controlled SO₂ emissions is provided in Table 4.11.

	Emission	Baseline E	missions	Controlled	Emissions
Unit Description	Baseline Emission Rate (lb/hr)⁴	Annual Emissions (tpy) ^B	BACT Emission Rate (lb/hr) ^c	Annual Emissions (tpy) ^{B,C}	
	Pulp Dryer	60.3	198.1	24.1	79.3

|--|

^A Based on a current inherently controlled emission rate of 0.93 lb/ton pressed pulp (8.6 tph firing rate, 5 percent S).

^B Assumed annual capacity factor of 75 percent.

^c Based on an assumed control efficiency of 60 percent of baseline emissions.

As indicated in Table 4.11, the target controlled SO_2 emission rate is 24.1 lb/hr. This corresponds to approximately 60 percent control of baseline uncontrolled SO_2 emissions. Incorporating the 75 percent historical annual capacity factor, the overall reduction in SO_2 emissions would be 118.9 tons per year. The reasons for the anticipated low control efficiency of 60 percent for the wet FGD system include the low inlet concentration of SO_2 into the wet FGD as a result of inherent process control, as well as the fact that the low temperature and high moisture of the dryer exhaust gas stream will reduce the evaporation and chemical reaction within the wet FGD system.

Energy: Use of wet FGD to control SO_2 emissions from the pulp dryer will result in significant energy penalties to facility operations in the form of the electricity demand required for operation of the ancillary equipment, as well as additional backpressure on the exhaust system that results in a slight reduction in output.

Environmental: The primary detrimental environmental effect of the Wet FGD system is the creation of waste byproducts from the spent slurry. Dewatering of the spent slurry results in the production of a wastewater stream as well as a waste sludge that must be disposed in a landfill.

Economic: Because of the anticipated low SO_2 removal amount of 118.9 tons per year, a complete detailed cost analysis for a wet scrubber was not performed. Instead, information from the EPA Air Pollution Control Technology Fact Sheet for spray-chamber/spray-tower wet scrubbers was used to determine an order of magnitude cost. Based on information presented in the fact sheet the high exhaust gas flowrate of the pulp dryer combined with the low pollutant concentration would likely result in higher-than-typical operating costs. Using the average costs presented in the fact sheet, anticipated annualized costs would be on the order of \$25 per scfm. This value is assumed to be conservatively low considering it is expressed in 2002 dollars. Combined with the flow rate of the pulp dryer (100,000 scfm), the calculated annualized costs would be \$2,500,000 per year, which would result in cost effectiveness of \$21,000 per ton of SO_2 removed.

4.2.2.5 Proposed SO₂ BACT Selection

Table 4.12 summarizes the results of the Top-Down BACT analysis for SO₂ emissions. Note that the emission rate baseline for calculating costs is the use of inherent process controls and the combustion of low sulfur western coals. Furthermore, as discussed previously, a historical annual capacity factor of 75 percent has been included in the emission calculations to accurately reflect actual project utilization of the proposed new pulp dryer and associated control equipment.

Control Alternative	Emission Level (lb/hr, tpy)	Emission Reduction (tpy)	Annualized Costs (\$/yr)	Cost Effectiveness (\$/ton)	Adverse Impact (Yes/No)
Wet-FGD	24.1, 79.3	118.9	2,500,000	21,000	No
Inherent Controls	60.3, 198.1	-	-	-	-

Table 4.12 – Summary of Top-Down BACT for SO₂ Emissions from the Pulp Dryer

The fundamental obstacle to the use of a wet-FGD system to control SO_2 emissions from the pulp dryer is the overall economics in comparison to the amount of emission reduction. The overall annualized cost to meet a SO_2 emission limit of 24.1 lb/hr (0.37 lb/ton wet pulp) is judged to be excessive. In light of the prohibitive cost of add-on SO₂ controls, BACT for the pulp dryer is proposed as the use of low sulfur western coals in conjunction with the emission limit presented in Table 4.13 below.

Table 4.13 – Proposed SO₂ BACT Emission Limit

Emission Unit	BACT Limit	Control Type
Pulp Dryer	60.3 lb/hr (0.93 lb/ton of pressed pulp) 3-hour average	Low Sulfur Coal, Good Combustion Practice

4.2.2.6 RBLC Database Review

Information concerning recently permitted industrial process dryers was obtained from the EPA's RBLC. Due to the lack of available data presented in the RBLC for process dryers similar to the proposed pulp dryer, only one representative emission source was found. This source is the pulp dryer installed at the ACS Hillsboro facility in 1997.

The Drayton pulp dryer is anticipated to have a heat input capacity of about 90 percent of the capacity of the Hillsboro facility pulp dryer. Operational practices are anticipated to be nearly identical. The Hillsboro pulp dryer was permitted with a SO₂ BACT emission limit of 63.3 lb/hr utilizing good combustion practices. The proposed BACT limit for the Drayton pulp dryer is 60.3 lb/hr, also utilizing inherent process controls and low sulfur coal.

4.2.3 BACT for NO_x

The primary form of NO_x emissions control for the pulp dryer would be through the application of combustion controls or flue gas treatment (post-combustion) technologies. Combustion-based NO_x formation control processes reduce the quantity of NO_x formed during the combustion process. Post-combustion technologies reduce the NO_x emissions in the flue gas stream after the NO_x has been formed in the combustion process. These methods may be used alone or in combination to achieve the various degrees of NO_x emissions required.

4.2.3.1 Identification of NO_x Control Technologies

The following sections identify potentially available NO_x control technologies for coal-fired direct contact process dryers. Additionally, the feasibility of the control technologies as applied to the operation of the proposed new coal-fired direct contact pulp dryer is addressed.

Selective Catalytic Reduction

Selective Catalytic Reduction (SCR) systems are an add-on flue gas treatment (post-combustion control technology) to control NO_x emissions. The SCR process involves the injection of a nitrogen-based reducing agent (reagent) such as ammonia (NH₃) or urea to reduce the NO_x in the flue gas to N₂ and H₂O. The reagent is injected into the flue gas prior to passage through a catalyst bed, which accelerates the

 NO_x reduction reaction rate. SCR systems generate a small level of NH_3 emissions, known as NH_3 slip. As the catalyst degrades, NH_3 slip will increase, ultimately driving catalyst replacement.

Many types of catalysts, ranging from active metals to highly porous ceramics, are available for different applications. The type of catalyst chosen depends on several operational parameters, such as reaction temperature range, flue gas flow rate, fuel source, catalyst activity and selectivity, operating life, and cost. Catalyst materials include platinum (Pt), vanadium (V), titanium (Ti), tungsten (W), titanium oxide (TiO₂), zirconium oxide (ZrO₂), vanadium pentoxide (V₂O₅), silicon oxide (SiO₂), and zeolites (crystalline alumina silicates). The optimum exhaust gas temperature for conventional metal oxide catalysts ranges from about 480°F to 750°F.

SCR systems can utilize aqueous NH₃, anhydrous NH₃, or a urea solution to produce NH₃ on demand. Aqueous NH₃ is generally transported and stored in concentrations ranging from 19 to 30 percent and therefore requires more storage capacity than anhydrous NH₃. Anhydrous NH₃ is nearly 100 percent pure in concentration and is a gas at normal atmospheric temperature and pressure. Anhydrous NH₃ must be stored and transported under pressure and, when stored in quantities greater than 10,000 pounds, is subject to the Risk Management Planning (RMP) requirements of 40 CFR Part 68. Urea solutions (urea and water at approximately 32 percent concentration) are used to form NH₃ on demand for injection into the flue gas. Generally, a specifically designed duct and decomposition chamber with a small supplemental burner is used to provide an appropriate temperature window and residence time to decompose urea to NH₃ and isocyanic acid (HNCO).

Because of the relatively low exhaust gas temperature of the pulp dryer, which is typically less than 200°F, proper operation of a SCR system could not be maintained without substantial energy input to reheat the exhaust stream. Furthermore, because of the high degree of particulate matter, moisture, and inorganic trace constituents in the exhaust gas (as a result of the direct contact nature of the dryer), fouling and short catalyst life would be experienced. Finally, because there are no known applications of SCR systems on coal-fired, direct-contact process dryers in the United States, SCR technologies are not considered technically feasible for implementation on the pulp dryer and will not be discussed further in this BACT analysis

Selective Non-Catalytic Reduction

Selective non-catalytic reduction (SNCR) is another method of post-combustion control. Similar to SCR, the SNCR process involves the injection of a nitrogen-based reducing agent (reagent) such as NH_3 or urea to reduce the NO_x in the flue gas to N_2 and H_2O . However, the SNCR process works without the use of a catalyst. Instead, the SNCR process occurs within a combustion unit, which acts as the reaction chamber. The heat from the combustion process provides the energy for the NO_x reduction reaction. Flue gas temperatures in the range of 1,500 to 1,900°F, along with adequate reaction time within this temperature range, are required for this technology. SNCR is currently being used for NO_x emission control on coal fired industrial boilers and can achieve NO_x reduction efficiencies of up to 75 percent. However, in typical applications, SNCR provides 30 to 50 percent NO_x reduction.

Because of the direct contact nature of the pulp dryer, the burner configuration is such that it is attached directly to the dryer drum and combustion gases pass through the pulp to be dried. There is not sufficient room to install reagent injection nozzles in an optimum temperature zone to ensure adequate operation of a SNCR system. Furthermore, inconsistent firing of the pulp dryer due to changing pulp quality, moisture content and availability would further reduce the ability to balance a SNCR injection system properly. Finally, the injection of ammonia directly into the combustion chamber prior to the pulp would result in saturating the pulp with excess unreacted ammonia. This would potentially contaminate the pulp, which is currently sold as a livestock feed supplement. There are no known applications of SNCR systems on coal-fired direct contact process dryers in the United States, therefore, SNCR technologies are not considered technically feasible for implementation on the pulp dryer and will not be discussed further in this BACT analysis.

Combustion Controls

Combustion controls such as flue gas recirculation (FGR), reducing air preheat temperature (RAP), oxygen trim (OT), low excess air (LEA), staged combustion air (SCA), and low NO_x burners (LNB) can be used to reduce NO_x emissions depending on the type of burner, characteristics of fuel and method of firing. In practice, combustion controls have not provided the same degree of NO_x control as provided by add-on post combustion control technologies. The current operation practice of similar coal-fired direct contact pulp dryers is to route a small percentage of exhaust gas from multiclone PM control devices back into the dryer furnace. This practice essentially constitutes exhaust gas recirculation and helps to reduce NO_x emissions.

Implementation of further combustion controls is not feasible for the pulp dryer because the balancing of air flow and dryer throat temperature to maintain adequate pulp drying may interfere with additional combustion air flow changes.

4.2.3.2 NOx Control Technology Summary

Table 4.14 summarizes the different NO_x control technologies and indicates which technologies have been chosen as technically feasible options for the proposed new pulp dryer.

Table 4.14 – NO_x Control Technology Summary

Identified Control Technology	Available and Demonstrated Effective	In Service On Similar Units	Technically Feasible for Pulp Dryer
SCR	Yes	No	No
SNCR	Yes	No	No
Combustion Controls	Yes	Yes	Yes

4.2.2.3 Control Technology Evaluation

As a result of the type of combustion process and associated source-specific exhaust parameters, the only NO_x control technology feasible for implementation on the pulp dryer is the continued use of good combustion practice and limited exhaust gas recirculation.

Energy: There are no significant energy penalties associated with the use combustion controls. Furthermore, there are no additional energy impacts associated with exhaust system modifications or ancillary equipment installations for the control technology.

Environmental: There are no detrimental environmental effects resulting from the use of combustion controls. The technology functions through strict control of air/fuel mixtures and combustion parameters and does not utilize chemical additives or contribute to the generation of potentially hazardous compounds not associated with the combustion process.

Economic: A detailed economic analysis addressing the use of combustion controls was not performed for this BACT analysis. Combustion controls are considered the baseline cost and emission scenario.

4.2.3.4 Proposed NO_x BACT Selection

Use of combustion controls is supported as a viable BACT alternative in light of the above analysis. Furthermore, use of combustion controls will prevent any potential collateral impacts as associated with other NO_x control technologies. Table 4.15 lists the NO_x emission limitation proposed as BACT under typical operating ranges for the pulp dryer.

Table 4.15 – Proposed NO_x BACT Emission Limit

Emission Unit	BACT Limit	Control Type
Pulp Dryer	46.8 lb/hr (0.66 lb/ton of pressed pulp) 3-hour average	Good Combustion Practice

4.2.3.5 RBLC Database Review

Information concerning recently permitted industrial process dryers was obtained from the EPA's RBLC. Due to the lack of available data presented in the RBLC for process dryers similar to the proposed pulp dryer, only one representative emission source was found. This source is the pulp dryer installed at the ACS Hillsboro facility in 1997.

The Drayton pulp dryer is anticipated to have a heat input capacity of about 90 percent of the capacity of the Hillsboro facility pulp dryer. Operational practices are anticipated to be nearly identical. The Hillsboro pulp dryer was permitted with a NO_x BACT emission limit of 100.0 lb/hr utilizing good combustion practices. The proposed BACT limit for the Drayton pulp dryer is lower (46.8 lb/hr), also utilizing good combustion practice.

4.2.4 BACT for CO

The objective of this analysis is to determine BACT for CO emissions from the proposed pulp dryer. The rate of CO emissions from combustion sources is dependent upon the combustion efficiency of the source. High combustion temperatures, adequate excess air, and good air/fuel mixing during combustion can minimize CO emissions. Control of CO emissions can be achieved by application of combustion controls or by treatment of the flue gas after combustion. Often, measures used to minimize or control emissions of NO_x can result in incomplete combustion and increased CO emissions. Therefore, an acceptable compromise is necessary to achieve the lowest NO_x emission rate possible while keeping CO emissions as low as practical.

4.2.4.1 Identification of CO Control Technologies

The following technologies have been identified for potential control of CO emissions: catalytic oxidation, thermal oxidation, and combustion controls. Catalytic oxidation and thermal oxidation are post-combustion controls designed for the exhaust gas stream.

Catalytic Oxidation

There are a variety of manufacturers who offer oxidation catalysts to control CO emissions. The catalysts are a flue gas treatment technology, typically with a honeycomb type of arrangement to allow the maximum surface area exposure to a given gas flow. CO catalysts are generally precious metal based. The use of an oxidation catalyst with sulfur-containing fuels can promote oxidation of SO₂ to SO₃, which can readily form H_2SO_4 in the presence of moisture, causing severe corrosion in the ductwork and downstream control equipment. Oxidation catalysts also require a minimum temperature (>500 °F) for proper operation.

Because of the relatively low exhaust gas temperature of the pulp dryer, which is typically less than 200°F, proper operation of an oxidation catalyst system could not be maintained. Furthermore, because of the high degree of particulate matter, moisture, and inorganic trace constituents in the exhaust gas (as a result of the direct contact nature of the dryer), fouling and short catalyst life would be experienced. Finally, because there are no known applications of oxidation catalyst systems on coal-fired direct contact process dryers in the United States, oxidation catalyst technologies are not considered technically feasible for implementation on the pulp dryer and will not be discussed further in this BACT analysis.

Thermal Oxidation

High temperature oxidation is another method for controlling emissions of CO in the flue gas. This type of system would be added at the exit of a particulate control device and has been reported to achieve up to 95% reduction of CO in the exhaust gas on other types of industrial facilities with much higher CO emissions and lower flow rates than the pulp dryer. Because a coal-fired dryer is essentially a thermal oxidation device, adding this type of control would be redundant. The application of thermal oxidation would require additional fuel usage and would result in secondary emissions from that combustion

process. Given the low exhaust gas temperatures following the particulate control device, as well as the high flowrate and high moisture content of the exhaust gas, the size and fuel consumption rate of a thermal oxidizer necessary to achieve complete oxidation of CO emissions would not be practical. Therefore, use of a thermal oxidation system for the pulp dryer is not considered technically feasible.

Combustion Controls

CO emissions primarily result from incomplete combustion. The oxidation of CO to CO₂ is dependent upon temperature and residence time of the combustion process. The use of good combustion practice such as high combustion temperatures, adequate combustion air, and proper air/fuel mixing can minimize CO emissions. Proper design and operation of a coal-fired dryer effectively acts like a thermal oxidizer for control of CO emissions. Therefore, good combustion practice is considered a feasible control technology for CO emissions.

4.2.4.2 CO Control Technology Summary

Table 4.16 summarizes the different CO control technologies and indicates which technologies have been chosen as technically feasible options for the proposed new pulp dryer.

Identified Control Technology	Available and Demonstrated Effective	In Service On Similar Units	Techni Feasib Pulp D
Catalytic Oxidation	Yes	No	No
Thermal Oxidation	Yes	No	No

Yes

Table 4.16 – CO Control Technology Summary

4.2.4.3 Control Technology Evaluation

Combustion Controls

As a result of the type of combustion process and associated source-specific exhaust gas parameters including low temperature, high moisture and high flowrate, the only CO control technology feasible for implementation on the pulp dryer is the continued use of good combustion practice.

Yes

Energy: There are no significant energy penalties associated with the use combustion controls. Furthermore, there are no additional energy impacts associated with exhaust system modifications or ancillary equipment installations for the control technology.

Environmental: There are no detrimental environmental effects resulting from the use of combustion controls. The technology functions through strict control of air/fuel mixtures and combustion parameters and does not utilize chemical additives or contribute to the generation of potentially hazardous compounds not associated with the combustion process.

cally le for ryer

Yes

Economic: A detailed economic analysis addressing the use of combustion controls was not performed for this BACT analysis. Combustion controls are considered the baseline cost and emission scenario.

4.2.4.4 Proposed CO BACT Selection

Use of combustion controls is supported as a viable BACT alternative in light of the above analysis. Furthermore, use of combustion controls will prevent any potential collateral impacts as associated with other CO control technologies. Table 4.17 lists the CO emission limitation proposed as BACT under typical operating ranges for the pulp dryer.

Table 4.17 – Proposed CO BACT Emission Limit

Emission Unit	BACT Limit	Control Type
Pulp Dryer	458 lb/hr (7.0 lb/ton of pressed pulp) 3-hour average	Good combustion practice

4.2.4.5 RBLC Database Review

Information concerning recently permitted industrial process dryers was obtained from the EPA's RBLC. Due to the lack of available data presented in the RBLC for process dryers similar to the method of operation of the pulp dryer, only one representative emission source was found. This source is the pulp dryer installed at the ACS Hillsboro facility in 1997.

The Drayton pulp dryer is anticipated to have a heat input capacity of about 90 percent of the capacity of the Hillsboro facility pulp dryer. Operational practices are anticipated to be nearly identical. The Hillsboro pulp dryer was permitted with a CO BACT emission limit of 700.0 lb/hr utilizing good combustion practices. The proposed BACT limit for the Drayton pulp dryer is 458.0 lb/hr, also utilizing good combustion practice. The slightly lower BACT limit for the Drayton pulp dryer reflects recent performance testing at similar units and differences in anticipated pulp throughput.

4.2.5 BACT for VOC

The objective of this analysis is to determine BACT for VOC emissions from the proposed pulp dryer. VOC formation generally follows the same principles of CO formation in combustion related emission sources. High combustion temperatures, adequate excess air, and good air/fuel mixing during combustion can minimize VOC emissions. Control of VOC emissions can be achieved by application of combustion controls or by treatment of the flue gas after combustion.

4.2.5.1 Identification of VOC Control Technologies

As with CO emissions, the same following technologies have been identified for potential control of VOC emissions: catalytic oxidation, thermal oxidation, and combustion controls. Catalytic oxidation and thermal oxidation are post-combustion controls designed for the exhaust gas stream.

4.2.5.2 VOC Control Technology Summary

Table 4.18 summarizes the different VOC control technologies and indicates which technologies have been chosen as technically feasible options for the proposed new pulp dryer. The same discussion as presented in the previous section for CO emissions control and feasibility applies to VOC emissions.

Identified Control Technology	Available and Demonstrated Effective	In Service On Similar Units	Technically Feasible for Pulp Dryer
Catalytic Oxidation	Yes	No	No
Thermal Oxidation	Yes	No	No
Combustion Controls	Yes	Yes	Yes

Table 4.18 – VOC Control Technology Summary

4.2.5.3 Control Technology Evaluation

As a result of the type of combustion process and associated source-specific exhaust gas parameters including low temperature, high moisture and high flowrate, the only VOC control technology feasible for implementation on the pulp dryer is the use of good combustion practice.

Energy: There are no significant energy penalties associated with the use combustion controls. Furthermore, there are no additional energy impacts associated with exhaust system modifications or ancillary equipment installations for the control technology.

Environmental: There are no detrimental environmental effects resulting from the use of combustion controls. The technology functions through strict control of air/fuel mixtures and combustion parameters and does not utilize chemical additives or contribute to the generation of potentially hazardous compounds not associated with the combustion process.

Economic: A detailed economic analysis addressing the use of combustion controls was not performed for this BACT analysis. Combustion controls are considered the baseline cost and emission scenario.

4.2.5.4 Proposed VOC BACT Selection

Use of combustion controls is supported as a viable BACT alternative in light of the above analysis. Furthermore, use of combustion controls will prevent any potential collateral impacts as associated with other VOC control technologies. Table 4.19 lists the VOC emission limitation proposed as BACT under typical operating ranges for the pulp dryer.

Table 4.19 – Proposed VOC BACT Emission Limit

Emission Unit	BACT Limit	Control Type
Pulp Dryer	78.2 lb/hr (1.20 lb/ton of pressed pulp) 3-hour average	Good combustion practice

4.2.2.6 RBLC Database Review

Information concerning recently permitted industrial process dryers was obtained from the EPA's RBLC. Due to the lack of available data presented in the RBLC for process dryers similar to the proposed pulp dryer, only one representative emission source was found. This source is the pulp dryer installed at the ACS Hillsboro facility in 1997.

The Drayton pulp dryer is anticipated to have a heat input capacity of about 90 percent of the capacity of the Hillsboro facility pulp dryer. Operational practices are anticipated to be nearly identical. The Hillsboro pulp dryer was permitted with a VOC BACT emission limit of 92.1 lb/hr utilizing good combustion practices. The proposed BACT limit for the Drayton pulp dryer is 78.2 lb/hr, also utilizing good combustion practices. The lower BACT limit for the Drayton pulp dryer reflects minor differences in anticipated pulp throughput.

4.3 Natural Gas-Fired Package Boiler BACT

The following subsections address each applicable pollutant emitted from the proposed new natural gas-fired package boiler at the Drayton facility. As previously mentioned, ACS proposes to add a new package boiler to deliver up to 300,000 lbs/hr of steam. The natural gas firing capacity of the proposed boiler will be 359 MMBtu/hr.

4.3.1 BACT for PM

PM emissions from the combustion of natural gas result from the combination of the burner firing configuration, operation, and fuel properties. As discussed in Section 4.1.3.7, condensable particulate matter (CPM) will not be considered further in this BACT analysis.

The final proposed BACT emission limit contains a CPM component for compliance purposes, but the control technology evaluation is based on filterable emissions only. Additionally, all cost evaluations assume that TSP and PM₁₀ size fractions are equivalent as this presents the most conservative (worst-case) analysis.

Because natural gas is a gaseous fuel, filterable PM emissions are typically low. Particulate matter from natural gas combustion has been estimated to be less than 1 micrometer in size and has filterable and condensable fractions. Particulate matter in natural gas combustion are usually larger molecular weight hydrocarbons that are not fully combusted. Increased PM emissions may result from poor air/fuel mixing or maintenance problems.

4.3.1.1 Identification of PM Control Technologies

Each of the add-on control technologies for PM discussed in Section 4.2.1.1 (fabric filter baghouses, ESPs, WESPs, wet scrubbers and mechanical separators) were evaluated for use on the proposed package boiler. An additional technology considered for natural gas-fired boilers is the use of pipeline quality natural gas and good combustion practices as a means for minimizing PM emissions. This is the technology chosen to meet BACT for PM for the majority of the RBLC entries for natural gas boilers.

4.3.1.2 PM Control Technology Summary

Table 4.20 summarizes the different PM control technologies and indicates which technologies have been chosen as technically feasible options for the proposed new packaged boiler. Both fabric filters and cyclones are not effective for collecting and removing small particles such as those expected from the natural gas-fired package boiler. An ESP would not effectively remove PM from a natural-gas boiler due to the low inlet PM loading.

y

Identified Control Technology	Available and Demonstrated Effective	In Service On Similar Units	Technically Feasible for Package Boiler
Fabric Filter	Yes	No	No
ESP	Yes	No	No
WESP	Yes	No	Yes
Wet Scrubber	Yes	No	Yes
Cyclone	Yes	No	No
Pipeline quality natural gas & good combustion practices	Yes	Yes	Yes

4.3.1.3 Top-Down Ranking

The PM control technologies that are considered technically feasible for implementation on the proposed pulp dryer have been ranked from most to least effective in terms of emission reduction potential. Table 4.21 summarizes the control technology ranking. The relatively low control efficiencies for the WESP and wet scrubber are assumed based on the unknown resistivity and small size of the particulate, and low particulate inlet loading.

Table 4.21 – Top-Down Ranking of PM Control Technologies

Identified Control Technology	Percent PM Reduction
WESP	90
Wet Scrubber	70
Pipeline quality natural gas & good combustion practices	Baseline

4.3.1.4 Control Technology Evaluation

Generally, PM emissions from the combustion of natural gas are relatively low. A summary of the estimated baseline and controlled PM emissions is provided in Table 4.22.

Table 4.22 – Natural Gas Package Boiler	Baseline PM Emission Rate
---	----------------------------------

Emission	Baseline Emissions		Controlled Emissions		
Unit Description	Baseline Emission Rate (lb/hr) ^A	Annual Emissions (tpy) ^B	BACT Emission Rate (lb/hr) ^c	Annual Emissions (tpy) ^{B,C}	
Natural Gas Boiler / WESP	2.68	8.80	0.27	0.89	
Natural Gas Boiler / Wet Scrubber	2.68	8.80	0.80	2.63	
Natural Gas Boiler / Pipeline quality natural gas & good combustion practices	2.68	8.80	-	-	

^A Based on the emission factor from the USEPA's *Compilation of Air Pollutant Emissions Factors* (AP-42), Chapter 1 – External Combustion Sources, Section 1.4 – Natural Gas Combustion, Table 1.4-2 (July 1998).

^B Assumed annual capacity factor of 75 percent.

^c Based on an assumed control efficiency of 90 percent of baseline emissions for the WESP and 70 percent for the wet scrubber.

The overall reduction in PM emissions would be 7.9 tons per year (90 percent) for the WESP and 6.2 tons per year (70 percent) for the wet scrubber. It is assumed that the very small amount of PM control that could be collected from the packaged boiler would preclude the application of any control technology on an economic feasibility basis.

4.3.1.5 Proposed PM BACT Selection

In light of the previous discussion, the use of pipeline quality natural gas and good combustion practices is proposed as BACT for the natural gas-fired package boiler. Table 4.23 lists the PM emission limitation proposed as BACT under typical operating ranges.

Table 4.23 – Proposed PM BACT Emission Limit

Emission Unit	BACT Limit	Control Type
Natural Gas Boiler	PM: 0.0075 lb/MMBtu 3-hour average filterable only. PM ₁₀ : 0.0075 lb/MMBtu 3-hour average filterable only. PM _{2.5} : 0.0075 lb/MMBtu 3-hour average filterable only.	Pipeline quality natural gas & good combustion practices

4.3.1.6 RBLC Database Review

Information concerning recently permitted natural gas-fired boilers was obtained from the EPA's RBLC. The majority of the RBLC entries for natural gas boilers determined that BACT for PM from these boilers range from 0.005 to 0.008 lb/MMBtu. A few entries have lower limits (ranging from 0.002 to 0.003). To maintain some compliance margin, ACS proposes that BACT for PM emissions from the new package boiler is the use of natural gas and good combustion practices to achieve an emission rate of 0.0075 lb/MMBtu.

4.3.2 BACT for SO₂

SO₂ emissions from the combustion of natural gas result from the combination of the burner firing configuration, operation, and fuel properties. Because the boiler will fire only pipeline quality natural gas, which is very low in sulfur content (no more than 0.002 grains of sulfur per standard cubic feet), SO₂ emissions are anticipated to be very low.

<u>4.3.2.1 Identification of SO₂ Control Technologies</u>

The add-on control technologies for SO₂ discussed in Section 4.2.2.1 (Wet FGD, dry FGD and dry sorbent injection) were evaluated for use on the proposed package boiler. An additional technology considered for natural gas-fired boilers is the use of pipeline quality natural gas and good combustion practices as a means for minimizing SO₂ emissions. This is the technology chosen to meet BACT for SO₂ for the majority of the RBLC entries for natural gas boilers.

4.3.2.2 SO₂ Control Technology Summary

Table 4.24 summarizes the different SO₂ control technologies and indicates which technologies have been chosen as technically feasible options for the proposed new packaged boiler. Both wet and dry FGD systems are add-on control systems that could be used downstream of the package boiler, however, due to the low SO₂ inlet loading, these technologies are not expected to be economically feasible. The use of DSI technology would involve injecting a solid reagent into the exhaust gas from the boiler. Because of the low inlet SO₂ concentration, this technology would not result in significant SO₂ removal without a disproportionately high sorbent injection rate, which would increase PM emissions from the boiler.

Identified Control Technology	Available and Demonstrated Effective	In Service On Similar Units	Technically Feasible for Package Boiler
Wet FGD	Yes	No	Yes
Dry FGD	Yes	No	Yes
DSI	Yes	No	No
Natural Gas Boiler / Pipeline quality natural gas & good combustion practices	Yes	Yes	Yes

Table 4.24 – SO₂ Control Technology Summary

4.3.2.3 Top-Down Ranking

The SO₂ control technologies that are considered technically feasible for implementation on the proposed new packaged boiler have been ranked from most to least effective in terms of emission reduction potential. Table 4.25 summarizes the control technology ranking. The percent SO₂ reduction for wet FGD and dry FGD is listed as a range because it is dependent on the SO₂ concentration of the inlet exhaust gas stream. The ranges presented in Table 4.25 are based on coal-fired boiler applications, which would have much higher SO₂ concentrations in the inlet gas. Lower concentration exhaust gas streams would experience lower levels of control.

Table 4.25 – Top-Down Ranking of SO2 Control Technologies

Identified Control Technology	Percent SO ₂ Reduction
Wet FGD	90-98 ^A
Dry FGD	70-98 ^A
Natural Gas Boiler / Pipeline quality natural gas & good combustion practices	Baseline

^A Percent reduction based on coal-fired boiler applications.

4.3.2.4 Control Technology Evaluation

The following sections present detailed evaluations of the feasible SO₂ control technologies. Energy, environmental and economic impacts are considered. Generally, SO₂ emissions from the combustion of natural gas are relatively low. This BACT analysis conservatively assumes that 90 percent SO₂ control can be achieved with a wet FGD system and 70 percent SO₂ control can be achieved with a dry FGD

system. This is very conservative considering the low SO₂ concentration produced by the natural gas boiler.

A summary of the estimated baseline and controlled SO₂ emissions is provided in Table 4.26.

Emission	Baseline E	Baseline Emissions		Controlled Emissions		
Unit Description	Baseline Emission Rate (lb/hr) ^A	Annual Emissions (tpy) ^B	BACT Emission Rate (lb/hr) ^c	Annual Emissions (tpy) ^B		
Natural Gas Boiler / Wet FGD	0.21	0.69	0.02	0.07		
Natural Gas Boiler / Dry FGD	0.21	0.69	0.06	0.21		
Natural Gas Boiler / Pipeline quality natural gas & good combustion practices	0.21	0.69	-	-		

Table 4.26 – Natural Gas-Fired Package Boiler Baseline SO₂ Emission Rate

^A Based on the emission factor from the USEPA's Compilation of Air Pollutant Emissions Factors (AP-42), Chapter 1

 – External Combustion Sources, Section 1.4 – Natural Gas Combustion, Table 1.4-2 (July 1998).

^B Assumed annual capacity factor of 75 percent.

^c Based on an assumed control efficiency of 90 percent of baseline emissions for a wet FGD and 70 percent of baseline emissions for a dry FGD.

The overall reduction in SO_2 emissions would be 0.62 tons per year (90 percent) for the wet FGD and 0.48 tons per year (70 percent) for the dry FGD. It is assumed that the very small amount of SO_2 control that could be collected from the packaged boiler would preclude the application of any control technology on an economic feasibility basis.

Energy: Use of wet FGD or dry FGD technology to control SO₂ emissions from the natural gas-fired package boiler will result in significant energy penalties to facility operations in the form of the electricity demand required for operation of the ancillary equipment, as well as additional backpressure on the exhaust system that results in a slight reduction in output.

Environmental: The primary detrimental environmental effect of the wet and dry FGD systems is the creation of waste byproducts. For a wet FGD system, dewatering of the spent slurry results in the production of a wastewater stream as well as a waste sludge that must be disposed in a landfill. A dry FGD system produces a dry byproduct that would need to be disposed in a landfill.

Economic: Because of the anticipated low SO₂ removal amount of 0.62 tons per year to 0.48 tons per year, a complete detailed cost analysis for a wet or dry FGD system was not performed. Instead, information from the EPA Air Pollution Control Technology Fact Sheet for FGD technologies, EPA-452/F-03-034, was used to estimate an order of magnitude cost. Using the lower end of the range of costs presented in the fact sheet, anticipated annualized costs would be on the order of \$60 per MMBtu/hr

for wet FGD and \$10,000 per MMBtu/hr for dry FGD. This value is assumed to be conservatively low considering it is expressed in 2001 dollars. Combined with the fuel burn rate of the proposed package boiler (359 MMBtu/hr), the calculated annualized cost of a wet FGD system would be \$21,500 per year, which would result in cost effectiveness of \$34,700 per ton of SO₂ removed. The calculated annualized cost of a dry FGD system would be significantly higher and thus would result in an even higher cost effectiveness per ton of SO₂ removed.

4.3.2.5 Proposed SO₂ BACT Selection

Table 4.27 summarizes the results of the Top-Down BACT analysis for SO_2 emissions. Note that the emission rate baseline for calculating costs is the of pipeline quality natural gas and good combustion practices.

Control Alternative	Emission Level (lb/hr, tpy)	Emission Reduction (tpy)	Annualized Costs (\$/yr)	Cost Effectiveness (\$/ton)	Adverse Impact (Yes/No)
Wet FGD	0.02, 0.07	0.62	21,500	34,700	Yes
Dry FGD	0.06, 0.21	0.48	3,590,000	7,479,200	Yes
Pipeline quality natural gas & good combustion practices	0.21, 0.69	-	-	-	-

Table 4.27 – Summary of Top-Down BACT for SO₂ Emissions from the Natural Gas Package Boiler

The fundamental obstacle to the use of a wet or dry FGD system to control SO_2 emissions from the natural gas-fired boiler is the overall economics in comparison to the amount of emission reduction. The overall annualized cost for these technologies is judged to be excessive.

Considering the prohibitive cost of adding a wet or dry FGD system to the new natural gas-fired package boiler, the proposed BACT for SO₂ for the natural gas-fired boiler is the use of pipeline quality natural gas and good combustion practices. Table 4.28 lists the SO₂ emission limitation proposed as BACT under typical operating ranges for the boiler. No add-on control equipment is proposed for SO₂ control.

Table 4.28 – Proposed SO₂ BACT Emission Limit

Emission Unit	BACT Limit	Control Type
Natural Gas-Fired	0.0006 lb/MMBtu	Pipeline quality natural gas & good
Package Boiler	3-hour average	combustion practices

4.3.2.6 RBLC Database Review

Information concerning recently permitted natural gas-fired boilers was obtained from the EPA's RBLC. The majority of the RBLC entries for natural gas-fired boilers determined that BACT for SO₂ from these boilers range from 0.005 to 0.008 lb/MMBtu. A few entries have lower limits (ranging from 0.002 to 0.003). To maintain some compliance margin, ACS proposes that BACT for SO₂ emissions from the new package boiler is the use of natural gas and good combustion practices to achieve an emission rate of 0.0006 lb/MMBtu.

4.3.3 BACT for NO_x

The primary form of NO_x emissions control for the natural gas-fired package boiler would be through the application of combustion controls or flue gas treatment (post-combustion) technologies. Combustionbased NO_x formation control processes reduce the quantity of NO_x formed during the combustion process. Post-combustion technologies reduce the NO_x emissions in the flue gas stream after the NO_x has been formed because of the combustion process. These methods may be used alone or in combination to achieve the various degrees of NO_x emissions required.

4.3.3.1 Identification of NO_x Control Technologies

The add-on control technologies for NO_x discussed in Section 4.2.3.1 (SCR and SNCR) are also evaluated here for use on the proposed natural gas-fired package boiler. In addition to the combustion controls previously discussed in Section 4.2.3.1 (FGR, RAP, OT, LEA, SCA and LNB), ultra-low NO_x burners (UNLB) will also be evaluated for the boiler.

Both SNCR and SCR are technically feasible post-combustion options to control NO_x emissions from the boiler. Combustion controls such as ultra-low NO_x burners (ULNB) and LNB (baseline emissions) are also technically feasible.

4.3.3.2 NO_x Control Technology Summary

Table 4.29 summarizes the different NO_x control technologies and indicates which technologies have been chosen as technically feasible options for the proposed new boiler.

Table 4.29 – NO_x Control Technology Summary

Identified Control Technology	Available and Demonstrated Effective	In Service On Similar Units	Technically Feasible for Package Boiler
SCR	Yes	Yes	Yes
SNCR	Yes	No	Yes
ULNB	Yes	Yes	Yes
LNB (Baseline)	Yes	Yes	Yes

4.3.3.3 Top-Down Ranking

The NO_x control technologies that are considered technically feasible for implementation on the proposed boiler have been ranked from most to least effective in terms of emission reduction potential. Table 4.30 summarizes the control technology ranking.

Identified Control Technology	Percent NO _x Reduction
LNB+SCR	90
LNB+SNCR	79
ULNB	79
LNB (Baseline)	-

Table 4.30 – Top-Down Ranking of NO_x Control Technologies

4.3.3.4 Control Technology Evaluation

The following sections present detailed evaluations of the feasible NO_x control technologies. Energy, environmental and economic impacts are considered.

<u>SCR</u>

Energy: Direct energy penalties associated with the operation of a SCR system are mainly associated with electricity consumption required to operate the SCR system. The amount of electricity consumed is related to the concentration of NO_x in the exhaust stream to be controlled.

Environmental: Detrimental environmental effects resulting from the use of a SCR system include the requirement to store either aqueous ammonia or urea on site and a small amount of secondary air pollutant emissions because of power generation to meet the SCR power consumption demand. SCR technology also emits a small amount of ammonia (2 to 10 ppm), known as ammonia slip, due to the reagent used. Ammonia slip can cause formation of ammonium sulfates, which can plug or corrode downstream components.

Economic: Table 4.31 presents the costs associated with the installation of a SCR to achieve a NO_x removal efficiency of 90%. Annualized costs were estimated using generic EPA costing information obtained from EPA's Air Pollution Control Technology Fact Sheet (EPA-452/F-03-032). The annualized cost of an SCR on a natural gas-fired boiler is estimated to be \$700/MMBtu/hr. This is conservatively low as it is in 1999 dollars. Both the overall cost effectiveness for an SCR, as well as the incremental cost to remove an additional 11.9 tpy of NO_x over what can be removed with an SNCR, are presented in Table 4.31.

<u>SNCR</u>

Energy: Direct energy penalties associated with the operation of a SNCR system are mainly associated with electricity consumption required to operate the SNCR system. The amount of electricity consumed is related to the concentration of NO_x in the exhaust stream to be controlled.

Environmental: Detrimental environmental effects resulting from the use of a SNCR system include the requirement to store either aqueous ammonia or urea on site and a small amount of secondary air pollutant emissions because of power generation to meet the SNCR power consumption demand.

Economic: Table 4.31 presents the costs associated with the installation of a SNCR to achieve a NO_x removal efficiency of 79%. Annualized costs were estimated using generic EPA costing information obtained from EPA's Air Pollution Control Technology Fact Sheet (EPA-452/F-03-031). The annualized cost of an SNCR on a natural gas-fired boiler is estimated to be \$300-1,000/MMBtu. The costs in Table 4.31 are based on the lower end of this range (\$300/MMBtu/hr). This is conservatively low as it is in 1999 dollars. The overall cost effectiveness for an SNCR is presented in Table 4.31, however, the same NO_x removal can be achieved with ULNB alone, so the incremental cost is not listed.

Combustion Controls

Energy: There are no significant energy penalties associated with the use combustion controls. Furthermore, there are no additional energy impacts associated with exhaust system modifications or ancillary equipment installations for the control technology.

Environmental: There are no detrimental environmental effects resulting from the use of combustion controls. The technology functions through strict control of air/fuel mixtures and combustion parameters and does not utilize chemical additives or contribute to the generation of potentially hazardous compounds not associated with the combustion process.

Economic: A detailed economic analysis addressing the use of combustion controls was not performed for this BACT analysis. Combustion controls (LNB or ULNB) are considered the baseline cost and emission scenario. Both LNB and ULNB are expected to have similar costs.

Because of the environmental, energy and economic impacts of SCR and SNCR technology, combustion controls (LNB and ULNB) are the only NO_x control technology feasible for implementation on the proposed natural gas-fired package boiler.

Control Alternative	Emission Level (tpy) ^A	Emission Reduction (tpy)	Annualized Costs (\$/yr)	Cost Effectiveness (\$/ton)
LNB+SCR	11.8	103.9	251,500	2,400 (overall) 21,100 (incremental)
LNB+SNCR	23.7	92.0	107,800	1,200 (overall) (incremental - NA)
ULNB	23.7	92.0	-	-
LNB (Baseline)	115.7	-	-	-

Table 4.31 – Summary of Top-Down BACT for NO_x Emissions from the Natural Gas Package Boiler

^A Assumed annual capacity factor of 75 percent.

4.3.3.5 Proposed NO_x BACT Selection

Use of combustion controls is supported as a viable BACT alternative considering the above analysis. Furthermore, use of combustion controls will prevent any potential collateral impacts as associated with other NO_x control technologies. ULNB is proposed as BACT for the natural gas-fired package boiler as both LNB and ULNB are expected to have similar costs, but the use of ULNB can achieve a lower NO_x emission rate. The addition of an SNCR system is not expected to reduce NOx emissions any further than what can be achieved with ULNB alone.

Table 4.32 lists the NO_x emission limitation proposed as BACT for the natural gas-fired package boiler.

Table 4.32 – Proposed NO_x BACT Emission Limit

Emission Unit	BACT Limit	Control Type
Natural Gas-Fired Package Boiler	0.020 lb/MMBtu (7.2 lb/hr) 3-hour average	Good Combustion Practice, ULNB

The fundamental obstacle to using SCR or SNCR to control NO_x emissions is the overall economics in comparison to the amount of emission reduction. Based on this, SCR and SNCR are considered not to be economically feasible control options for NO_x emissions from the boiler.

4.3.3.6 RBLC Database Review

Information concerning recently permitted natural gas-fired boilers was obtained from the EPA's RBLC. The majority of the RBLC entries for boilers determined that BACT for NO_x was LNB with an emission limit of 0.035 lb/MMBtu. The more stringent entries correspond to either SCR- or UNLB-equipped control. There are many other boilers in the RBLC around the size of the Drayton package boiler that are achieving 0.011 to 0.02 with ULNB and other combustion controls. To maintain some compliance margin, ACS proposes that BACT for NO_x emissions from the new package boiler is the use of ULNB and good combustion practices to achieve an emission rate of 0.020 lb/MMBtu.

4.3.4 BACT for CO

The rate of CO emissions from combustion sources is dependent upon the combustion efficiency of the source. High combustion temperatures, adequate excess air, and good air/fuel mixing during combustion can minimize CO emissions. Control of CO emissions can be achieved by application of combustion controls or by treatment of the flue gas after combustion. Often, measures used to minimize or control emissions of NO_x can result in incomplete combustion and increased CO emissions. Therefore, an acceptable compromise is necessary to achieve the lowest NO_x emission rate possible while keeping CO emissions as low as practical.

4.3.4.1 Identification of CO Control Technologies

The following technologies have been identified for potential control of CO emissions: catalytic oxidation, thermal oxidation, and good combustion practices. Catalytic oxidation and thermal oxidation are post-combustion controls designed for the exhaust gas stream.

Catalytic Oxidation

There are a variety of manufacturers who offer oxidation catalysts to control CO emissions. The catalysts are a flue gas treatment technology, typically with a honeycomb type of arrangement to allow the maximum surface area exposure to a given gas flow. CO catalysts are generally precious metal based. The use of an oxidation catalyst with sulfur-containing fuels can promote oxidation of SO_2 to SO_3 , which can readily form H_2SO_4 in the presence of moisture, causing severe corrosion in the ductwork and downstream control equipment. Oxidation catalysts also require a minimum temperature (>500 °F) for proper operation.

Oxidation catalyst technologies are considered technically feasible for implementation on the new natural gas-fired package boiler.

Thermal Oxidation

High temperature oxidation is another method for controlling emissions of CO in the flue gas. This type of system has been reported to achieve up to 95% reduction of CO in the exhaust gas. Because a boiler is essentially a thermal oxidation device, adding this type of control would be redundant. The application of thermal oxidation would require additional fuel usage and would result in secondary emissions from that combustion process. Therefore, use of a thermal oxidation system for the new natural gas-fired boiler is not considered technically feasible.

Good Combustion Practices

CO emissions primarily result from incomplete combustion. The oxidation of CO to CO₂ is dependent upon temperature and residence time of the combustion process. The use of good combustion practice such as high combustion temperatures, adequate combustion air, and proper air/fuel mixing can minimize CO emissions. Proper design and operation of a natural gas-fired boiler effectively acts like a thermal oxidizer to reduce CO emissions. Therefore, good combustion practice is considered a feasible control technology for CO emissions.

4.3.4.2 CO Control Technology Summary

Table 4.33 summarizes the different CO control technologies and indicates which technologies have been chosen as technically feasible options for the proposed new boiler.

Table 4.33 – CO Control Technology Summary

Identified Control Technology	Available and Demonstrated Effective	In Service On Similar Units	Technically Feasible for Package Boiler
Catalytic Oxidation	Yes	Yes	Yes
Thermal Oxidation	Yes	No	No
Good Combustion Practices	Yes	Yes	Yes

4.3.4.3 Top-Down Ranking

The CO control technologies that are considered technically feasible for implementation on the proposed boiler have been ranked from most to least effective in terms of emission reduction potential. Table 4.34 summarizes the control technology ranking.

Table 4.34 – Top-Down Ranking of CO Control Technologies

Identified Control Technology	Percent CO Reduction
Catalytic Oxidation	95
Good Combustion Practices (Baseline)	-

4.3.4.4 Control Technology Evaluation

The following sections present detailed evaluations of the feasible CO control technologies. Energy, environmental and economic impacts are considered.

Catalytic Oxidation

Energy: Direct energy penalties associated with the operation of a catalytic oxidation system are mainly associated with electricity consumption required to operate the system. The amount of electricity consumed is related to the flowrate of the exhaust stream to be controlled.

Environmental: Detrimental environmental effects resulting from the use of a catalytic oxidation system include the additional natural gas usage of the system and the secondary air pollutant emissions from that combustion process. The catalyst would also need to be replaced on a regular basis and the spent catalyst may be disposed in a landfill.

Economic: The add-on CO control option of catalytic oxidation is technically feasible and one of the RBLC entries for boilers determined that BACT for CO was catalytic oxidation. A cost analysis was performed as follows.

The Fifth Edition Chemical Engineer's Handbook (Perry and Chilton) presents a methodology, called the six-tenths factor, for scaling capital costing information from previous studies, the form of which is:

$C_n = r^{0.6} * C$, where

- C_n is the new plant cost
- r is the ratio of the new to previous capacity
- C is the previous plant cost

Agrium KNO (Agrium) recently prepared a BACT analysis to evaluate the cost effectiveness of oxidation catalyst to control CO emissions from a large natural gas fired boiler in the State of Alaska: (https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKE wif9uuazKj5AhVChIkEHdqZBE4QFnoECAsQAQ&url=https%3A%2F%2Fdec.alaska.gov%2Fmedia%2F2190 7%2Fcat-ox-cost-analyses-8-9-19.xlsx&usg=AOvVaw0PJOEE6eeg0qiH_Dcmcika.)

The catalytic oxidizer for that boiler, with a heat input of 243 MMBtu/hr, had an annualized cost (C) of \$1,747,300 in 2019 dollars. The value of r was calculated as the ratio of heat inputs of the proposed boiler (i.e., 359.28 MMBtu/hr) and the Agrium boiler (243 MMBtu/hr). Note the economic evaluation does not account for the cost of periodic replacement of the catalyst, or any additional fans needed to overcome the pressure drop added by the catalytic oxidation system. This cost analysis also underestimates the cost of a catalytic oxidizer as the costs are in 1999 dollars.

The fundamental obstacle to using catalytic oxidation to control CO emissions from the proposed natural gas-fired package boiler is the overall economics. Table 4.35 presents the costs associated with the installation of a catalytic oxidation system to achieve a CO removal efficiency of 95%.

58

Good Combustion Practices

Energy: There are no significant energy penalties associated with the use of good combustion practices. Furthermore, there are no additional energy impacts associated with exhaust system modifications or ancillary equipment installations for the control technology.

Environmental: There are no detrimental environmental effects resulting from the use of good combustion practices. The technology functions through strict control of air/fuel mixtures and combustion parameters and does not utilize chemical additives or contribute to the generation of potentially hazardous compounds not associated with the combustion process.

Economic: A detailed economic analysis addressing the use of good combustion practices was not performed for this BACT analysis. Good combustion practices are considered the baseline cost and emission scenario.

Control Alternative	Emission Level (tpy) ^A	Emission Reduction (tpy)	Annualized Costs (\$/yr)	Cost Effectiveness (\$/ton)
Catalytic Oxidation	2.2	41.4	2,209,400	53,400
Good Combustion Practices (Baseline)	43.6	-	-	-

	v of Tom Down		Emissions from	the Dellare
Table 4.35 – Summar	V 01 100-D0WI	I DALI IOP LU	Emissions from	l the bollers

^A Assumed annual capacity factor of 75 percent.

4.3.4.5 Proposed CO BACT Selection

Use of good combustion practices is supported as a viable BACT alternative in light of the above analysis. Furthermore, use of good combustion practices will prevent any potential collateral impacts as associated with other CO control technologies. Table 4.36 lists the CO emission limitation proposed as BACT under typical operating ranges for the new natural gas-fired boiler.

Table 4.36 – Proposed CO BACT Emission Limit

Emission Unit	BACT Limit	Control Type
Natural Gas-Fired Package Boiler	0.037 lb/MMBtu (13.3 lb/hr) 3-hour average	Good combustion practice

4.3.4.6 RBLC Database Review

Information concerning recently permitted natural gas-fired boilers was obtained from the EPA's RBLC. The majority of the RBLC entries for boilers determined that BACT for CO was good combustion practices with an emission limit of 0.015 to 0.465 lb/MMBtu. The add-on CO control option of catalytic oxidation discussed previously is technically feasible, and three of the RBLC entries for boilers determined that BACT for CO was catalytic oxidation. The proposed BACT emission limit for these boilers was 0.0013, 0.008 and 0.035 lb/MMBtu. The rest of the numerous RBLC entries for similar size boilers determined BACT for CO as good combustion practices.

Based on information provided by the boiler supplier, and to maintain some compliance margin, ACS proposes that BACT for CO emissions from the new package boiler is the use of good combustion practices to achieve an emission rate of 0.037 lb/MMBtu.

4.3.5 BACT for VOC

The objective of this analysis is to determine BACT for VOC emissions from the proposed pulp dryer. VOC formation generally follows the same principles of CO formation in combustion related emission sources. High combustion temperatures, adequate excess air, and good air/fuel mixing during combustion can minimize VOC emissions. Control of VOC emissions can be achieved by application of combustion controls or by treatment of the flue gas after combustion.

4.3.5.1 Identification of VOC Control Technologies

The same technologies discussed for control of CO emissions have been identified for potential control of VOC emissions: catalytic oxidation, thermal oxidation, and combustion controls. Catalytic oxidation and thermal oxidation are post-combustion controls designed for the exhaust gas stream.

4.3.5.2 VOC Control Technology Summary

Table 4.37 summarizes the different VOC control technologies and indicates which technologies have been chosen as technically feasible options for the proposed new natural gas-fired boiler. The same discussion as presented in the previous section for CO emissions control and feasibility applies to VOC emissions.

Table 4.37 summarizes the different VOC control technologies and indicates which technologies have been chosen as technically feasible options for the proposed new boiler.

Table 4.37 – VOC Control Technology Summary

Identified Control Technology	Available and Demonstrated Effective	In Service On Similar Units	Technically Feasible for Package Boiler
Catalytic Oxidation	Yes	Yes	Yes
Thermal Oxidation	Yes	No	No
Good Combustion Practices	Yes	Yes	Yes

4.3.5.3 Top-Down Ranking

The VOC control technologies that are considered technically feasible for implementation on the proposed boiler have been ranked from most to least effective in terms of emission reduction potential. Table 4.38 summarizes the control technology ranking.

Table 4.38 – Top-Down Ranking of NO_x Control Technologies

Identified Control Technology	Percent NO _x Reduction
Catalytic Oxidation	95
Good Combustion Practices (Baseline)	-

4.3.5.4 Control Technology Evaluation

The evaluations of the feasible CO control technologies in Section 4.3.4.4 also apply to the technologies as applied for VOC control. Good combustion practices and catalytic oxidation have the same energy, environmental and economic impacts discussed previously when used for VOC control. However, the economic impact of catalytic oxidation is even greater when applied for VOC control as VOC emissions are an order of magnitude lower.

Table 4.39 – Summary of Top-Down BACT for VOC Emissions from the Boilers

Control Alternative	Emission Level (tpy) ^A	Emission Reduction (tpy)	Annualized Costs (\$/yr)	Cost Effectiveness (\$/ton)
Catalytic Oxidation	0.32	6.1	2,209,400	362,200
Good Combustion Practices (Baseline)	6.4	-	-	-

^A Assumed annual capacity factor of 75 percent.

4.3.5.5 Proposed VOC BACT Selection

Use of good combustion practices is supported as a viable BACT alternative in light of the above analysis. Furthermore, use of good combustion practices will prevent any potential collateral impacts as associated with other CO control technologies. Table 4.40 lists the VOC emission limitation proposed as BACT under typical operating ranges for the new natural gas-fired boiler.

Table 4.40 – Proposed VOC BACT Emission Limit

Emission Unit	BACT Limit	Control Type
Natural Gas-Fired Package Boiler	0.0054 lb/MMBtu (1.9 lb/hr) 3-hour average	Good combustion practice

4.3.5.6 RBLC Database Review

Information concerning recently permitted natural gas-fired boilers was obtained from the EPA's RBLC. The majority of the RBLC entries for boilers determined that BACT for VOC was good combustion practices with an emission limit of 0.0013 to 0.077 lb/MMBtu. The add-on VOC control option of catalytic oxidation discussed previously is technically feasible, and two of the RBLC entries for boilers determined that BACT for CO was catalytic oxidation. The proposed BACT emission limits for the boilers using catalytic oxidation were 0.0015 and 0.0020 lb/MMBtu. The rest of the numerous RBLC entries for similar size boilers determined BACT for VOC as good combustion practices.

Based on information provided by the boiler supplier, and to maintain some compliance margin, ACS proposes that BACT for VOC emissions from the new package boiler is the use of good combustion practices to achieve an emission rate of 0.0054 lb/MMBtu.

4.7 BACT for GHG

GHG emissions are analyzed separately from the rest of the pollutants, given the special status of these emissions per EPA's Tailoring Rule for PSD purposes and subsequent court decisions, as well as the global nature of these emissions and potential impacts. The Supreme Court decision of June 23, 2014 rescinded EPA's imposition of PSD permitting requirements on the basis of GHG emissions alone. Subsequent to that decision, GHG emissions can only be reviewed under PSD rules if some other PSD-regulated pollutant first triggers PSD review for a project. As summarized in Table 3.2, the proposed project will result in a significant emissions increase for a number of pollutants, including GHG.

EPA guidance on GHG BACT analyses ("PSD and Title V Permitting Guidance for Greenhouse Gases", EPA-457/B-11-001, March 2011) states that options that improve the overall efficiency of a source must be evaluated. Considering this, the CO₂ control options that are potentially applicable for the proposed new pulp dryer and natural gas-fired package boiler:

- a. Efficient Design (will also reduce N₂O and CH₄);
- b. Carbon Capture and Storage (CCS); and
- c. Low Carbon Fuels.

The available control options that are potentially applicable for the control of N_2O and CH_4 emissions from the proposed pulp dryer and natural gas-fired package boiler include the following:

- a. Selective Catalytic Reduction for N_2O
- b. Oxidation Catalyst for CH₄
- c. Thermal Oxidation for CH₄

The feasibility of each of these GHG control options will be discussed separately in the following sections for the proposed new pulp dryer and natural gas-fired package boiler.

4.7.1 Identification of GHG Control Technologies

Based on the potential GHG control options identified above, the following sections evaluate the feasibility of the control options as applied to the operation of the proposed new coal-fired direct contact pulp dryer and natural gas-fired package boiler.

4.7.1.1 Efficient Design

Efficient dryer design reduces GHG emissions by reducing the amount of fuel burned per ton of pulp dried. This efficiency is achieved by optimizing combustion control to maximize utilization of the fuel heat content (i.e., good combustion practice), along with the use of energy efficient equipment to optimize use of the produced energy (i.e., the pulp dryer's direct-fired design). As discussed in earlier BACT sections, good combustion practice will be implemented and the pulp dryer will be direct-fired. Therefore, efficient dryer design is considered technically feasible for the pulp dryer.

The natural gas-fired package boiler will utilize ULNB and combustion controls to minimize criteria pollutant emissions. Additionally, the boiler will be required to undergo periodic tuning as a result of applicable MACT requirements. As discussed in earlier BACT sections, good combustion practice will be implemented. Therefore, efficient burner design is considered technically feasible for the natural gas-fired package boiler.

4.7.1.2 Carbon Capture and Storage

EPA has specified that CCS is a CO_2 control strategy that is "available" for facilities emitting CO_2 in large amounts. CCS consists of three basic steps:

- 1. Capture The CO_2 is separated from the other constituents in the exhaust gas.
- 2. Compression The captured CO₂ is compressed to a liquid or near-liquid state and transported via pipeline to a designated storage area.
- Storage The CO₂ is introduced deep underground into reservoirs where the pressures will keep it in a liquid form and keep it sequestered for millennia. Depleted oil and gas reservoirs are typically used for this type of storage. Other options include deep saline formations, un-mineable coal seams, and offshore storage.

CCS requires significant infrastructure and energy to capture, compress, transport, and store CO₂. Although a number of post-combustion CO₂ capture technologies are available, none are currently demonstrated in practice for pulp dryers or any similar sources.

EPA's March 2011 Guidance states the following regarding the feasibility of CCS:

"For the purposes of a BACT analysis for GHGs, EPA classifies CCS as an add-on pollution control technology that is "available" for facilities emitting CO₂ in large amounts, including fossil fuelfired power plants, and for industrial facilities with high-purity CO₂ streams (e.g., hydrogen production, ammonia production, natural gas processing, ethanol production, ethylene oxide production, cement production, and iron and steel manufacturing)."

The Drayton facility is not a fossil-fuel fired power plant and is not any of the listed industrial facilities with high purity CO₂ streams for which EPA considers CCS as "available". Therefore, CCS is considered not available for purposes of the proposed project and will not be considered further.

4.7.1.3 Low Carbon Fuels

The Drayton facility does not currently have sufficient natural gas service to accommodate all pulp drying needs. Further, an evaluation of a natural gas-fired pulp dryer would constitute a fundamental redesign of the proposed coal-fired pulp dryer, which EPA has indicated is not the intent of the BACT process. As such, the use of low carbon fuels is not considered a technically feasible option.

The proposed package boiler will utilize pipeline quality natural gas, which is a low carbon fuel.

4.7.1.4 SCR for N₂O

As summarized in Sections 4.2.3.1 and 4.3.3.1 SCR is either technically infeasible or cost prohibitive for NO_x (including N_2O).

4.7.1.5 Oxidation Catalyst and Thermal Oxidation for CH₄

As summarized in Sections 4.2.4.1 and 4.3.4.1 oxidation catalysts and thermal oxidation are either technically infeasible or cost prohibitive for hydrocarbons (including CH₄).

4.7.2 Control Technology Evaluation

As a result of the type of combustion process and associated source-specific exhaust parameters, the only GHG control technology feasible for implementation on the pulp dryer and natural gas-fired package boiler is efficient design, which consists of the continued use of good combustion practice.

Energy: There are no significant energy penalties associated with the use combustion controls. Furthermore, there are no additional energy impacts associated with exhaust system modifications or ancillary equipment installations for the control technology.

Environmental: There are no detrimental environmental effects resulting from the use of combustion controls. The technology functions through strict control of air/fuel mixtures and combustion parameters and does not utilize chemical additives or contribute to the generation of potentially hazardous compounds not associated with the combustion process.

Economic: A detailed economic analysis addressing the use of combustion controls was not performed for this BACT analysis. Combustion controls are considered the baseline cost and emission scenario.
4.7.3 Proposed GHG BACT Selection

In light of the previous discussion, good combustion practice is proposed as BACT for the pulp dryer and natural gas-fired package boiler. CO emissions are an indicator of good combustion practice and the previously determined CO BACT limit is proposed as a surrogate indicator for GHG. Table 4.41 lists the GHG emission limitations proposed as BACT under typical operating ranges.

Table 4.41 – Proposed GHG BACT Emission Limit

Emission Unit	BACT Limit	Control Type
Pulp Dryer	458.3 lb/hr CO (7.0 lb/ton of pressed pulp) 3-hour average	Good combustion practice
Package Boiler	0.037 lb/MMBtu 3-hour average	Good Combustion Practice

4.7.4 RBLC Database Review

A search of EPA's RACT/BACT/LAER clearinghouse did not reveal any pulp dryer, package boiler or similar sources that have undergone BACT for GHG.

Chapter 5.0 – Air Quality Impact Analysis

5.1 Analysis Overview

Under PSD regulations, pollutants that trigger PSD review and that have applicable ambient air quality standards must be evaluated in the air quality impact analysis. As indicated in Section 3.2, pollutants triggering PSD review for the proposed modification are PM/PM₁₀/PM_{2.5}, NO_x, SO₂, VOC, CO, and GHGs.

The pollutants of PM (TSP), VOC and GHGs were not included in the dispersion modeling analysis because there are no current applicable ambient air quality standards for these pollutants.

The impacts of concern, with respect to state and national ambient air quality standards (NAAQS) for applicable criteria pollutant emissions, include contributions from the Drayton facility, as modified, plus nearby and distant background sources. Also of interest are impacts of emissions from sources modified after the applicable baseline trigger dates with respect to PSD Class II area allowable concentration increments. The nearest Class I area, Voyageurs National Park, is greater than 250 kilometers from the Drayton facility. Because of the relatively large distance to the Class I area, impacts of pollutants to the Class I area from the Drayton facility were not included in the dispersion modeling analysis and are anticipated to be negligible. Visibility impacts to Class I areas are discussed further in Section 6.0.

The following sections detail the methodology used to perform the ambient air quality compliance demonstration for the Drayton facility. The same general modeling methodology as used for the previous modeling analysis that was completed in 2016 and approved by NDDEQ was used for the current modeling analysis. A formal modeling protocol was not submitted.

5.1.1 Model Selection and Setup

Based on the need to evaluate structurally induced plume downwash from elevated point sources, the latest version of the AMS/EPA Regulatory Model (AERMOD) dispersion model was used for this analysis. The regulatory default mode was selected and rural dispersion parameters were selected based on land use within three kilometers of the Drayton facility. No complex terrain exists in the region included in the modeling analysis.

5.1.2 Structural Downwash Input Data

Building downwash effects on the point sources at the Drayton facility were accounted for in the modeling by using building dimension and stack location information processed with BPIP-PRIME. Building dimensions were obtained from scaled drawings of facility structures and previous modeling analyses. The parameters for the major facility structures were evaluated as single complex buildings with multiple tiers. Additional BPIP-PRIME processing was completed for baseline source parameters associated with increment concentration analysis where past stack parameters were available.

5.1.3 Background Concentrations

Background concentrations account for other sources in the region that are not included in the modeling analysis and that generally do not have significant concentration gradients near the facility

under review. Table 5.1 provides a summary of final background concentrations obtained from the NDDEQ June 21, 2013 Air Quality Dispersion Modeling Analysis Guide.

Pollutant	Averaging Period	Concentration (µg/m³)
PM ₁₀	24-Hour	30
PM _{2.5}	24-Hour 13.7	
	Annual	4.75
SO ₂	1-Hour 13	
	3-Hour 11	
	24-Hour	9
	Annual	3
NO ₂	1-Hour	35
	Annual	5
СО	1-Hour	1,149
	8-Hour	1,149

Table 5.1 – Distant Background Concentrations

5.1.4 Preconstruction Monitoring Data

ACS requests that the NDDEQ grant a waiver of the preconstruction ambient monitoring requirements for the Drayton facility based on the availability of representative monitoring data for the region.

5.1.5 Elevation Data

United States Geological Survey (USGS) National Elevation Dataset (NED) data were downloaded from the USGS National Map Seamless Server for use in the AERMOD model. Utilizing the same coordinate system developed for the receptor grid, NED data with a 1-arc second resolution were downloaded and imported into the model after processing with AERMAP.

5.1.6 Receptor Grid

The receptor grid includes discrete receptors placed at 25-meter intervals along the Drayton facility fence line. In addition, the grid extends outward from the facility fence line as a Cartesian grid system at intervals of 50 meters from the fence line for a distance of 1,000 meters, at intervals of 100 meters out to a distance of 2,000 meters, and at intervals of 250 meters out to a distance of 5,000 meters and at intervals of 500 meters to a total distance of 10,000 meters in each direction from the fence line. The coordinate system is based on Universal Transverse Mercator (UTM) Zone 14 with the North American Datum of 1983 (NAD83). Figure 1 shows a graphical display of the receptor layout.

Figure 1. Proposed Receptor Grid Layout.

In order to verify the source and receptor coordinate system, the model input parameters were exported to Google Earth Pro and geo-referenced to UTM coordinates in NAD83, Zone 14. Figure 2 shows the geo-referenced aerial photo of the Drayton facility overlaid with model input data (i.e. fence line, unpaved roads, buildings, sources, etc.).

Figure 2. Geo-Referenced Fence Line Receptors and Sources.

5.1.7 Meteorological Data

The meteorological date used for this analysis consisted of five years, 2009-2013, of surface meteorological data recorded by the National Weather Service (NWS) at Grand Forks, North Dakota, and upper-air (mixing height) meteorological data recorded by the NWS at international Falls, Minnesota. The surface and upper-air met data sets were processed into a format usable by the model using the EPA computer program AERMET, after the surface data were preprocessed by AERMINUTE. An anemometer height of 10 meters was used. The surface station located in Hallock Minnesota was excluded from consideration for this analysis because it does not contain minute data to be used with AERMINUTE.

5.2 Model Input Data

5.2.1 Modeled Background Sources

Table 5.2 provides a list of nearby background sources included in the dispersion modeling analysis. Emission rate and release parameters were obtained from the NDDEQ. A detailed listing of stack parameters for each source is provided in Appendix E.

Table 5.2 – Nearby Background Sources

Model ID	Description	PM/PM ₁₀ /PM _{2.5} (g/sec)	NO _x (g/sec)	SO ₂ (g/sec)
ETH1	Ethanol Plant - DDG Dryer/Hot	0.277	1.31	2.293
ETH2	Ethanol Plant - Bio-Mass Boiler	0.025	0.983	1.046
ETH3	Ethanol Plant - Bio-Mass Boiler	0.025	0.983	1.046
ETH4	Ethanol Plant - DDG Dryer	0.14	-	-
ETH5	Ethanol Plant - Grain Handling	0.787	-	-
DEVP	Developmental Center - Boiler	4.173	4.047	12.56
SDC	SDC/LSaTC - Boiler	-	0.63	-

5.2.2 Modeled Drayton Sources

5.2.2.1 Source Identification

Table 5.3 provides list of Drayton facility emission sources, existing and new. Current operating permit (T5-X73015) and model identification numbers have been included to aid in source identification. The table also identifies the proposed post modification status of the emission sources and whether or not they were included in the modeling analysis.

Table 5.3 – Drayton Facility Sources

Model ID	Permit ID	Description	Status ^a
EP1	EU1/EP1	B&W Boiler	Existing Source
EP1a	EU1a/EP1a	Coal Handling Equipment	Existing Source
-	EU3/EP3&3a	Pulp Dryer No. 2	Removed From Service
EP4	EU4/EP4	Pulp Dryer No. 1	Existing Source
EP33	EU36/EP33	New Pulp Dryer No. 2	New Source
EP30	EU34/EP30	Pellet Mills & Cooler	Existing Source
EP9	EU9/EU11/EP9	Dry Pulp Belt Conveyor & Bucket Elevator	Existing Source
EP10	EU10/EP10	Dry Pulp Reclaim System	Existing Source
EP28	EU29/EP28	Sugar Dryer/Granulator	Existing Source
EP27a	EU28/EP27a	Lime Kiln	Existing Source
EU27b	EU28/EP27b	Carbonation Vent	Existing Source
-	EU28/EP27c	Carbonation Pressure Relief	Intermittent Source Not Modeled

December 2022

Model ID	Permit ID	Description	Status ^A
-	EU28/EP27d	Kiln Startup Bypass	Intermittent Source Not Modeled
EP14a	EU14a/EP14a	MAC2 Flow Headhouse	Existing Source
EP14b	EU14b/EP14b	Old Hummer Room Pulsaire	Existing Source
-	EU14c/EP14c	Hummer Room MAC	Internally Vented Not Modeled
EP15	EU15/EP15	Pulp Pellet Bin No. 1	Existing Source
-	EU16/EP16	Pulp Pellet Bin No. 2	Not Modeled – See Note B
-	EU17/EP17	Pulp Pellet Bin No. 3	Not Modeled – See Note B
-	EU18/EP18	Sugar Warehouse (Hi-Vac)	Internally Vented Not Modeled
EP19a	EU19a/EP19a	Bulk Loading Pulsaire	Existing Source
-	EU19b/EP19b	North Bulk Sugar Loadout	Internally Vented Not Modeled
-	EU19c/EP19c	South Bulk Sugar Loadout	Internally Vented Not Modeled
EP20	EU20/EP20	Main Sugar Warehouse Pulsaire	Existing Source
-	EU21/EP21	Diesel Fire Suppression Pump	Intermittent Source Not Modeled
EP23	EU23/EP23	Pulp Dryer Coal Hopper	Existing Source
EP24	EU25/EP24	Flume Lime Slaker	Existing Source
EP29	EU30/EP29	Lime Slaker	Existing Source
EP31	EU32/EP31	Pellet Loadout	Existing Source
EP32	EU35/EP32	Natural Gas-Fired Package Boiler	New Source
FUG2	Fug2/NA	Coal Handling Emissions	Existing Source
FUG3	Fug3/NA	Lime Rock Handling Emissions	Existing Source
FUG4	Fug4/NA	Spent Lime Wind Erosion	Existing Source

^A Status indicates changes to emission sources and if sources were excluded from modeling.

^B The three pulp pellet bins do not operate simultaneously. Therefore, all emissions are represented from Pellet Bin No. 1 operating full time.

In addition to the sources listed in the above table, the Drayton facility also has several on-site unpaved roads that are traveled by vehicles as part of normal production operations. These operations include delivery of sugar beets from remote pile locations, daily delivery of coal, periodic delivery of limerock and coke/anthracite, and daily hauling of spent lime from the factory to the spent lime disposal area. Table 5.4 identifies the unpaved road fugitive dust sources included in the modeling analysis.

Table 5.4 – Unpaved Road Fugitive Dust Sources

Model ID	Description
RD001 – RD055	Unpaved road traffic from delivery of beets from off-site storage piles.
RD056 – RD113	Unpaved road traffic from transport of limerock, coke and anthracite.
RD114 – RD183	Unpaved road traffic from spent lime hauling from factory to disposal.

5.2.2.2 Post Modification Emission Rates and Parameters

Post modification emission rates are based directly on permitted emission limits for existing sources and proposed BACT emission limits for new sources. Table 5.5 provides a listing of the emission rates for sources included in the modeling analysis, except for unpaved roads, which are discussed later. A detailed listing of stack parameters for each source is provided in Appendix E.

Table 5.5 – Drayton Facility Emission Rates

Model ID	Description	PM ₁₀ (g/sec) ^A	PM _{2.5} (g/sec) ^A	NO _x (g/sec)	SO ₂ (g/sec)	CO (g/sec)
EP1	B&W Boiler	3.75	3.18	25.01	45.98	6.56
EP1a	Coal Handling Equipment	0.04	0.01	-	-	-
EP4	Pulp Dryer No. 1	11.19	10.28	6.84	5.87	57.33
EP30	Pellet Mills & Cooler	0.19	0.04	-	-	-
EP9	Dry Pulp Belt Conveyor	0.04	0.01	-	-	-
EP10	Dry Pulp Reclaim System	0.08	0.01	-	-	-
EP28	Sugar Dryer/Granulator	0.28	0.06	-	-	-
EP27a	Lime Kiln Balance Vent	1.38	0.84	1.01	0.42	19.68
EP27b	Carbonation Stack	-	-	2.36	0.05	45.92
EP14a	MAC2 Flow Headhouse	0.43	0.10	-	-	-
EP14b	Old Hummer Room Pulsaire	0.41	0.09	-	-	-
EP15	Pulp Pellet Bin No. 1	0.05	0.01	-	-	-
EP19a	Bulk Loading Pulsaire	0.01	0.004	-	-	-
EP20	Main Sugar Warehouse Pulsaire	0.06	0.01	-	-	-
EP23	Pulp Dryer Coal Hopper	0.11	0.03	-	-	-
EP24	Flume Lime Slaker	0.01	0.001	-	-	-
EP29	Lime Slaker	0.42	0.16	-	-	-

Model ID	Description	PM ₁₀ (g/sec) ^A	PM _{2.5} (g/sec) ^A	NO _x (g/sec)	SO ₂ (g/sec)	CO (g/sec)
EP31	Pulp Pellet Loadout	0.01	0.001	-	-	-
EP32	Natural Gas-Fired Package Boiler	0.34	0.34	0.91	0.03	1.67
EP33	Pulp Dryer No. 2	7.43	4.62	5.90	7.60	57.74
FUG2	Coal Handling Emissions	0.08	0.01	-	-	-
FUG3	Lime Rock Handling Emissions	0.01	0.000004	-	-	-
FUG4	Spent Lime Wind Erosion	0.03	0.01	-	-	-

^A Modeled PM₁₀ and PM_{2.5} emissions may be higher than permitted PM emission limit due to the inclusion of condensable emissions depending on the source type. See detailed emission calculations in Appendix C.

As indicated in Table 5.4, fugitive dust emissions from Drayton facility traffic on on-site unpaved roads are also included in the dispersion modeling analysis. Volume sources were used to represent all vehicle traffic on haul roads. Production related traffic included the following:

- Southwest Unpaved Road Segment (RD001 RD055):
 - Beet Delivery Trucks: 160 trucks per day delivering beets from remote pile locations to the factory for processing.
 - Coal Trucks: 13 trucks per day delivering coal from off-site storage to the factory boiler house.
 - The southern half of this segment (RD001 RD020) will utilize the periodic application of magnesium or calcium chloride to maintain a control efficiency of 80% during unfrozen conditions.
- Northwest Unpaved Road Segment (RD056 RD113):
 - Limerock Transport Trucks: 8 trucks per day maximum operations that occur periodically throughout campaign to move limerock to the limerock stockpile.
 - Coke/Anthracite Trucks: 8 trucks per day maximum operations that occur periodically throughout campaign to move coke/anthracite to the fuel stockpile.
- Northeast Unpaved Road Segment (RD114 RD183):
 - Spent Lime Transport Trucks: 12 trucks per day transporting spent lime from the factory to the spent lime disposal area.

All vehicle traffic on unpaved road segments is included in the model for the months of August through November and March through May. During the months of December through February, the unpaved roads exhibit frozen conditions which inhibits the generation of significant fugitive emissions

Volume source parameters were determined following EPA guidance for haul roads. The guidance specifies the initial vertical dimension is calculated by multiplying the average vehicle height by 1.7 to account for vehicle induced turbulence. Using an average heavy-duty vehicle height of 4 meters, the initial vertical dimension would be 6.8 meters. To specify the initial vertical dispersion coefficient (δ_{zo}) in the model, the initial vertical dimension is divided by 2.15 for surface based sources (δ_{zo} = 3.16 meters).

The source release height for heavy-duty vehicles is 3.4 meters. This is the height representing the midpoint of the initial vertical dimension.

During the processing of the meteorological data used for the Drayton facility modeling, it was discovered that the downloaded land use surface characteristics for the site are predominately represented by row crops and grassland (surface roughness of 0.005 to 0.02). There was no representation of commercial/industrial structures (surface roughness of 0.7) within one kilometer of the area of evaluation.

A majority of the unpaved road sources at the Drayton facility are located in close proximity to the facility structures and will be affected by turbulence from building wake effects and increased plume mixing. Therefore, because the land use surface characteristics incorrectly represents land use within one kilometer of the site, surface based volume sources located within ½ kilometer of the primary Drayton facility structure (main factory building) utilize a initial vertical dimension(δ_{zo}) based on the building height divided by 2.15 to represent a source adjacent to a building (δ_{zo} = 11.77 meters). This allows some consideration of increased mixing at low levels that is not accounted for in the overly generalized land use characteristic data.

Detailed calculations of fugitive emissions related to vehicle traffic on unpaved roads have been included in Appendix C.

5.2.3 PSD Increment Consumption

In order to evaluate PSD Class II allowable increment impacts, the difference between the estimated impacts of the post-modified Drayton facility and the actual emissions at the time of the minor source baseline trigger dates for PM_{10} , $PM_{2.5}$, NO_2 and SO_2 was modeled. Baseline trigger dates for Pembina County are as follows: PM_{10} – January 13, 1978, $PM_{2.5}$ – August 23, 2012, NO_2 – October 1, 1989, and SO_2 – December, 19, 1977. No PSD increment consumption was evaluated in the modeling analysis for CO because there are no federal PSD Class II allowable increments for CO.

The modeling analysis evaluates both annual increment impacts and short-term 24-hour impacts associated with the proposed project. The majority of the facility will not experience an increase in maximum short-term (hourly) production capacity because the primary impact from the project will be greater annual utilization and more consistent daily utilization.

To evaluate PSD annual increment impacts as a result of the proposed project, the maximum allowable emission rates of facility sources were modeled with a positive emission rate and two-year average baseline emission rates for the period immediately preceding the baseline trigger date for each applicable pollutant were modeled with a negative emission rate. In this way the estimated actual impacts of the facility prior to the trigger date were evaluated in comparison to future potential operations.

To evaluate PSD 24-hour increment impacts as a result of the proposed project, the maximum allowable emission rates of facility sources were modeled with a positive emission rate and the maximum actual

emission rate of each emission unit (based on an average of production data or available source test data) for the period immediately preceding the baseline trigger date for each applicable pollutant were modeled with a negative emission rate. Additionally, stack parameters as they existed prior to the trigger date were incorporated into the model for baseline emission to account for changes in dispersion characteristics that may impact increment consumption. In this way the actual impact of the facility prior to the trigger date were evaluated in comparison to future potential operations.

Fugitive emissions related to vehicle traffic are not included in the increment analysis. It is assumed that haul road emissions remained relatively unchanged since baseline trigger dates were set. Through ongoing efforts to pave roads and reduce fugitive emissions, post-modification fugitive dust emission levels are expected to be significantly lower than pre-baseline levels. Therefore, the exclusion of haul roads and potential credits due to the paving of roads presents a conservative analysis of increment. All of nearby background sources included in the analysis were conservatively assumed to consume increment.

A detailed listing of baseline emission rates and source parameters used in the increment analysis are included in Appendix E.

5.2.4 Model Adjustments

<u>5.2.4.1 Tier II NO_x Analysis</u>

The EPA-approved Tier 2 modeling methodology, ARM2, was used to determine the short-term (1-Hour) NO_2 impacts. Default in-stack NO_2/NO_x ratios of 0.5 minimum and 0.9 maximum were used. Annual NO_2 impacts were determined using Tier 1 methodology, which included no modeling adjustments.

5.2.4.2 PM_{2.5} Secondary Formation

In order to account for secondary formation of $PM_{2.5}$ from precursor pollutant emissions of NO_x and SO_2 , EPA guidance (EPA April 30, 2019) was followed to determine Modeled Emission Rates for Precursors (MERPs). The calculated MERPs values were added to the 24-Hour and Annual distant background values for $PM_{2.5}$ to account for total pollutant impacts.

The MERPs analysis consists of the following steps:

- A review of the project locale indicates that there are no unusual circumstances regarding complex terrain, proximity to very large sources of pollutants that impact atmospheric chemistry or meteorology.
- Utilizing the EPA's database of modeled sources (<u>https://www.epa.gov/scram/merps-view-qlik</u>), a hypothetical representative source in the upper Midwest was identified for Stutsman County, North Dakota.
- Project impacts for nitrates and sulfates were calculated by multiplying the project emission rate (tpy) by the ratio of the hypothetical source modeled impact to the hypothetical source emission rate (tpy).
- The worst-case (highest) project impact was chosen regardless of hypothetical stack height.

• Final project impacts were determined by adding the calculated project impact to the distant background value, which then were added to the site-specific project modeled impacts.

Table 5.6 provides a summary of the MERPs calculation results. Detailed MERPs calculations are included in Appendix E.

Averaging Period	Precursor	Calculated Impact (µg/m³)	Cumulative Impact (µg/m³)
24.11	NO _x	0.12	2.10
24-Hour	SO ₂	2.04	2.16
A	NO _x	0.008	0.05
Annual	SO ₂	0.052	0.06

Table 5.6 – PM_{2.5} MERPs Calculation Summary

5.2.4.3 Secondary O₃ Formation

In order to account for secondary formation of O_3 from precursor pollutant emissions of NO_x and VOC, EPA guidance (EPA April 30, 2019) was followed to determine MERPs for O_3 . The calculated MERPs value was added to the 3-year average monitored design concentration of O_3 in the project area to determine the potential for an exceedance.

The MERPs analysis consists of the following steps:

- A review of the project locale indicates that there are no unusual circumstances regarding complex terrain, proximity to very large sources of pollutants that impact atmospheric chemistry or meteorology.
- Utilizing the EPA's database of modeled sources (<u>https://www.epa.gov/scram/merps-view-qlik</u>), a hypothetical representative source in the upper Midwest was identified for Stutsman County, North Dakota.
- Project impacts for NO_x and VOC were calculated by multiplying the project emission rate (tpy) by the ratio of the hypothetical source modeled impact to the hypothetical source emission rate (tpy).
- The worst-case (highest) project impact was chosen regardless of hypothetical stack height.
- Final project impacts were determined by comparing the calculated MERPs to design concentration monitoring data.

Table 5.7 provides a summary of the MERPs calculation results. Detailed MERPs calculations are included in Appendix E.

Averaging Period	Precursor	Calculated Impact (ppb)	Cumulative Impact (ppb)	
8 Hour	NOx	1.52	1 75	
8-Hour	VOC	0.23	1.75	

Table 5.8 provides a summary of the 4^{th} -High 8-Hour O₃ monitoring data for all sites in North Dakota. The data were obtained from Monitor Value Reports at <u>https://www.epa.gov/outdoor-air-quality-data/monitor-values-report</u>.

County	2019 (ppm)	2020 (ppm)	2021 (ppm)	3-Year Average (ppm)
Billings	0.058	0.053	0.069	0.060
Burke	0.056	0.053	0.061	0.057
Cass	0.062	0.056	0.063	0.060
Dunn	0.063	0.054	0.068	0.062
McKenzie	0.060	0.051	0.064	0.058
Mercer	0.059	0.052	0.065	0.059
Oliver	0.061	0.055	0.065	0.060
Ward	0.063	0.051	0.057	0.057

Table 5.8 – O₃ Monitoring Data Summary

As indicated in Table 5.8, the highest 3-year average O_3 concentration for any county in North Dakota is 0.062 ppm. Adding the calculated O_3 MERPs of 0.0018 ppm (1.75 ppb) to the monitor data results in a total O_3 concentration of 0.064 ppm. The total is less than the design concentration of 0.07 ppm for O_3 , therefore the project impact is in compliance with the NAAQS.

5.3 Model Results

The maximum estimated impacts at or beyond the Drayton facility fence line, for each time averaging period for the five pollutants included in this analysis are summarized in the tables in the following section. Drayton facility sources were modeled with the nearby background sources for comparison to the state and federal AAQS and PSD Class II allowable concentration increments. Distant background concentration values were added to the maximum modeled concentrations for AAQS compliance determinations. State and federal AAQS for each pollutant and averaging period are also included in the results tables to provide a comparison for compliance demonstration purposes.

5.3.1 Post-Modification Emission Impacts

The maximum total impacts from PM₁₀, PM_{2.5}, SO₂, NO₂ and CO based on maximum potential emission rates are summarized in Table 5.9 for comparison to state and federal AAQS. The pollutant concentrations include impacts from nearby background and distant background sources.

Dollutont		Met Vear	Modeled Emissions	Distant Background	Total Impact	AAQS	(µg/m³)
Pu	mutant	icai	(μg/m ³)	(μg/m ³) ^G	g/m ³) ^G (µg/m ³)		Federal
PM ₁₀	24-Hour ^A	NA	111.5	30	141.5	150	150
PM _{2.5}	Annual ^B	2013	4.15	4.81	8.96	-	12
	24-Hour ^c	NA	18.6	15.9	34.5	-	35
SO ₂	Annual ^B	2013	5.31	3	8.31	60	80
	24-Hour ^D	2010	71.5	9	80.5	260	365
	3-Hour ^D	2010	205.5	11	216.5	1,300	1,300
	1-Hour ^E	NA	151.3	13	164.3	715	196
NO ₂	Annual ^B	2013	6.52	5	11.5	100	100
	1-Hour [⊧]	NA	123.5	35	158.5	-	188
СО	8-Hour ^D	2009	1,894	1,149	3,043	-	10,000
	1-Hour ^D	2010	4,734	1,149	5,883	-	40,000

Table 5.9 – Maximum Predicted Post-Modification Concentrations vs. AAQS

^A Modeled concentration is the highest-sixth-highest 24-hour average across five years of meteorological data.

^B Modeled concentration is the highest annual average concentration of five modeled years of meteorological data.

^c Modeled concentration is the 98th percentile (eighth-high) of the annual distribution of maximum 24-hour concentrations averaged across five years of meteorological data.

^D Modeled concentration is the highest-second-high concentration of five modeled years of meteorological data.

^E Modeled concentration is the 99th percentile (fourth-high) of the annual distribution of daily maximum 1-hour concentrations averaged across five years of meteorological data.

- ^F Modeled concentration is the 98th percentile (eighth-high) of the annual distribution of daily maximum 1-hour concentrations averaged across five years of meteorological data.
- ^G The distant background for PM_{2.5} 24-Hour includes a MERP adjustment of 2.16 μg/m³ to account for secondary formation. The distant background for PM_{2.5} Annual includes a MERP adjustment of 0.06 μg/m³ to account for secondary formation.

5.3.2 Maximum Predicted PSD Class II Increment Consumption

The maximum total impacts from $PM_{2.5}$, PM_{10} , SO_2 and NO_2 determined from the difference in concentrations due to future potential emissions (based on post-modification emission rates) versus past actual emission (based on pre-minor source baseline trigger date actual emissions) are summarized in Table 5.10 for comparison to federal PSD Class II annual allowable increment standards.

Modeled Class II Northing Met Easting Impact Standard Pollutant Year (m) (m) $(\mu g/m^3)$ $(\mu g/m^3)$ PM_{10} Annual^A 2010 625500.0 5373000.0 0.08 17 24-Hour^B 2010 634318.2 5383819.7 24.9 30 PM_{2.5} Annual^A 2013 634800.0 5383000.0 0.58 4 24-Hour^B 2010 633750.0 5384350.0 4.03 9 SO₂ Annual^A 2011 624000.0 5373000.0 0.08 20 24-Hour^B 2012 624000.0 5377000.0 1.86 91 3-Hour^B 2012 624000.0 5376000.0 11.8 512 NO_2 Annual^A 2010 5384059.6 634313.3 3.23 25

Table 5.10 – Maximum Predicted PSD Class II Increment Consumption

^A Modeled concentration is the highest annual average concentration of five modeled years of meteorological data.

^B Modeled concentration is the highest-second-high concentration of five modeled years of meteorological data.

5.4 Conclusions

The results presented in Section 5.3 and Appendix F indicate that the estimated impacts from the Drayton facility, plus nearby and distant background sources as applicable, comply with all state and federal AAQS and PSD Class II allowable increment standards.

A summary of model input and output data is provided in Appendix E.

Chapter 6.0 – Additional Impacts Analysis

The additional impacts analysis address air quality and related impacts due to associated growth and construction, as well as potential impacts of atmospheric emissions on soils, vegetation, and visibility impairment, in accordance with 40 CFR 52.21(o).

6.1 Growth Analysis

Elements of the growth analysis include 1) a projection of the associated industrial, commercial, and residential source growth that occur due to the source, and 2) an estimate of the air emissions generated by the associated growth.

The modification of the Drayton facility to increase the production capacity is expected to be accomplished using primarily the existing work force in the northeastern North Dakota and northwestern Minnesota area. There is currently no additional industry or commercial ventures expected as a result of the proposed project, such that "secondary emissions" sources would be created in the vicinity.

6.2 Growth and Construction Air Quality Impacts

Because no significant associated growth can be projected at this time, there is no basis for projecting any growth related ambient air quality impacts. Construction-related emissions will be limited to minor temporary fugitive dust and mobile-source combustion emissions. Given the temporary nature of these emissions and the ability to mitigate them as needed, these activities are not expected to significantly impact the air quality.

The results of a modeling analysis of the proposed facility, together with the current low background concentrations in the region, show total ground-level ambient concentrations below the applicable air quality standards.

6.3 Soils and Vegetation Impacts

The impacts of emissions from the proposed facility on soils and vegetation are expected to be negligible. The area surrounding the Drayton facility is primarily agricultural.

Ozone can be harmful to plants, but concentrations below the NAAQS of 0.07 ppm are considered protective of vegetation. Monitored ozone concentrations in the North Dakota are safely below the NAAQS for ozone. The VOC emissions associated with the project are very minimal. Therefore, the proposed project is not expected to significantly affect ozone concentrations in the immediate project area or in the region. While NO_x emissions are also an ozone precursor, the effect on increase of ozone levels occurs far downwind. Given the relatively small actual increase in NO_x emissions expected with this project and the dispersion over long distances, the project would have negligible impacts on ozone levels regionally.

6.4 Odor Impacts

Odors can be associated with a number of activities at a sugar beet processing plant. Most of the odors generated by the plant are quickly dispersed before traveling far off-site. Odors generated by wastewater treatment lagoons can be a more significant concern, depending on weather conditions and the proximity of residential areas. The quality of the beets being processed in any given year has a significant impact on odor generation from the wastewater ponds. An increase of mud on the beets or a decrease in beet integrity will tend to increase the quantity of organics in the wastewater and tend to produce more odors. The proposed project is anticipated to have little to no impact on odors generated compared to current Drayton operations.

6.5 Visibility Impacts

Visible emissions due to operation of the proposed modified facility are expected to be limited primarily to water vapor emissions, as with the existing facility. The coal-fired pulp dryers are the major source of these water vapor emissions. The tall stacks on the pulp dryers minimize the visibility impacts of the water vapor emissions, so that they will not become a concern for ground level fogging in cooler weather.

The nearest Class I areas to the Drayton facility are the Voyageurs National Park and the Boundary Waters Canoe Area National Wilderness, both of which are located in Minnesota and are greater than 250 kilometers away. All other Class I areas in North Dakota and South Dakota are greater than 500 kilometers from the Drayton facility. Because of the relatively large distances to the Class I areas, impacts to the Class I areas from the proposed Drayton facility modification are anticipated to be negligible.

Visibility impacts to Class II areas are anticipated to remain unchanged as a result of the proposed project. The proposed project will not significantly affect short-term maximum (24-hour) emissions for the majority of facility emission units, but will only increase emissions from the installation of a new natural gas-fired package boiler and a new pulp dryer (which will be offset by the removal of an existing pulp dryer). Visibility impacts to Class II areas are evaluated based on 24-hour emission levels. Because 24-hour emission levels will only increase slightly, no additional evaluation is necessary to conclude that the project will not result in a measurable change in local visibility, which is currently not adversely impacted by the facility.

6.6 Additional Impacts Summary

As described above, the proposed Drayton facility modification is not anticipated to cause significant impacts due to growth or construction. Impacts of the proposed project on soils, vegetation, and visibility from atmospheric emissions are expected to be insignificant.

Chapter 7.0 – Proposed Permit Limitations

Table 7.1 provides a summary of the proposed permit limitations for emission units affected by the proposed modification at the Drayton facility. The limitations listed in this table include limitations proposed to comply with BACT, ambient air quality standards and PSD concentration increments.

Emission Unit/Source	Proposed Limit	Comments
New Pulp Dryer	PM: 31.9 lb/hr (0.49 lb/ton of pressed pulp) 3-hour average condensable only	BACT – Cyclone & Wet Scrubber
	PM ₁₀ : 59.0 lb/hr (0.91 lb/ton of pressed pulp) 3-hour average filterable and condensable	BACT – Cyclone & Wet Scrubber
	PM _{2.5} : 36.7 lb/hr (0.56 lb/ton of pressed pulp) 3-hour average filterable and condensable	BACT – Cyclone & Wet Scrubber
	SO ₂ : 60.3 lb/hr (0.93 lb/ton of pressed pulp) 3-hour average	BACT – Low Sulfur Coal
	NO _x : 46.8 lb/hr (0.72 lb/ton of pressed pulp) 3-hour average	BACT – Good Combustion Practice
	CO: 458.3 lb/hr (7.0 lb/ton of pressed pulp) 3-hour average	BACT – Good Combustion Practice
	VOC: 78.2 lb/hr (1.20 lb/ton of pressed pulp) 3-hour average	BACT – Good Combustion Practice
Package Boiler	PM/PM ₁₀ /PM _{2.5} : 0.0075 lb/MMBtu 3-hour average	BACT – Good Combustion Practice
	SO ₂ : 0.0006 lb/MMBtu 3-hour average	BACT – Low Sulfur Fuels
	NO _x : 0.02 lb/MMBtu 3-hour average	BACT – ULNB
	CO: 0.037 lb/MMBtu 3-hour average	BACT – Good Combustion Practice
	VOC: 0.005 lb/MMBtu 3-hour average	BACT – Good Combustion Practice

Table 7.1 – Proposed P	ermit Limitations
------------------------	-------------------

Appendix A

NPPD Construction Permit Application Forms

PERMIT APPLICATION FOR AIR CONTAMINANT SOURCES

NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF AIR QUALITY SFN 8516 (9-2021)

SECTION A - FACILITY INFORMATION

Name of Firm or Organization American Crystal Sugar Company								
Applicant's Name Mr. Dave Braseth								
Title Vice President of Operations				Telephone Number E-mail Add (218) 236-4322 dbraseth@			ress crystalsugar.com	
Contact Person for A Dan Weber	Air Pollution Ma	atters						
Title Enironmental Special	list			Telephone Nu (218) 236-4304	mber	E-mail Add dweber@cr	ress ystalsugar.com	
Mailing Address (Street & No.) 101 North 3rd Street								
City Moorhead				State MN			ZIP Code 56560	
Facility Name American Crystal Sug	Facility Name American Crystal Sugar Company - Drayton							
Facility Address (Str County Highway 44,	Facility Address (Street & No.) County Highway 44, P.O. Box 190							
City Drayton				State ND			ZIP Code 58225	
County		Coord	linates	NAD 83 in Dec	imal De	egrees (to for	th decimal degree)	
Pembina Latitude 48.592800			000 Longitude 97.17610		Longitude 97.176100	000		
Legal Description of Facility Site								
Quarter NE	Quarter SE	Section 14		tion Towns 159N		ship	Range 51W	
Land Area at Facility SiteMSL Elevation at Facility1280Acres (or)Sg. Ft.800								

SECTION B – GENERAL NATURE OF BUSINESS

	North American Industry	Standard Industrial	
Describe Nature of Business	Classification System Number	Classification Number (SIC)	
Beet Sugar Processing	311313	2063	

SECTION C – GENERAL PERMIT INFORMATION

Type of Permit? Permit to Construct (PTC)	Permit to Operate (PTO)
If application is for a Permit to Construct, please prov	ide the following data:
Planned Start Construction Date	Planned End Construction Date
08/2023	08/2028

SECTION D – SOURCE IDENTIFICATION AND CATEGORY OF EACH SOURCE INCLUDED ON THIS PERMIT APPLICATION

		Pe	ermit to	Constr	uct		Minor	Source	e Permi	t to Op	erate	
Your Source ID Number	Source or Unit (Equipment, Machines, Devices, Boilers, Processes, Incinerators, Etc.)	New Source	Existing Source Modification	Existing Source Expansion	Existing Source Change of Location	New Source	Existing Source Initial Application	Existing Source After Modification	Existing Source After Expansion	Existing Source After Change of Location	Existing Source After Change of Ownership	Other
32	Boiler					\checkmark						
33	Pulp Dryer					\checkmark						

Add additional pages if necessary

SECTION D2 – APPLICABLE REGULATIONS

Source ID No.	Applicable Regulations (NSPS/MACT/NESHAP/etc.)
Facility-wide	40 CFR 63, Subpart DDDDD, NDAC 33.1-15
32	40 CFR 60, Subpart Db, NDAC 33.1-15
33	NDAC 33.1-15

SECTION E – TOTAL POTENTIAL EMISSIONS

	Amount
Pollutant	(Tons Per Year)
NO _x	1462
CO	6582
PM	829

SFN 8516 (9-2021) Page 3

Pollutant	Amount (Tons Per Year)
PM ₁₀ (filterable and condensable)	994
PM _{2.5} (filterable and condensable)	699
SO ₂	2085
VOC	709
GHG (as CO ₂ e)	929356
Largest Single HAP	3.80
Total HAPS	10.8

*If performance test results are available for the unit, submit a copy of test with this application. If manufacturer guarantee is used provide spec sheet.

SECTION F1 – ADDITIONAL FORMS

India	Indicate which of the following forms are attached and made part of the application				
	Air Pollution Control Equipment		Fuel Burning Equipment Used for Indirect		
	(SFN 8532)		Heating (SFN 8518)		
	Construct/Operate Incinerators		Hazardous Air Pollutant (HAP) Sources		
	(SFN 8522)		(SFN 8329)		
	Natural Gas Processing Plants		Manufacturing or Processing Equipment		
	(SFN 11408)		(SFN 8520)		
	Glycol Dehydration Units		Volatile Organic Compounds Storage Tank		
	(SFN 58923)		(SFN 8535)		
	Flares		Internal Combustion Engines and Turbines		
	(SFN 59652)		(SFN 8891)		
	Grain, Feed, and Fertilizer Operations		Oil/Gas Production Facility Registration		
	(SFN 8524)		(SFN 14334)		

SECTION F2 – OTHER ATTACHMENTS INCLUDED AS PART OF THIS APPLICATION

1.	Description of Modification	4.	Additional Impacts Analysis
2.	BACT Analysis	5.	Emission Calculations
3.	Ambient Air Quality Analysis	6.	

I, the undersigned applicant, am fully aware that statements made in this application and the attached exhibits and statements constitute the application for Permit(s) to Construct and/or Operate Air Contaminant sources from the North Dakota Department of Environmental Quality and certify that the information in this application is true, correct and complete to the best of my knowledge and belief. Further, I agree to comply with the provisions of Chapter 23.1-06 of the North Dakota Century Code and all rules and regulations of the Department, or revisions thereof. I also understand the permit is nontransferable and, if granted a permit, I will promptly notify the Department upon sale or legal transfer of this permitted establishment.

Signature Date 12/23/2022 and Prasette V.P. Operations

PERMIT APPLICATION FOR MANUFACTURING OR PROCESSING EQUIPMENT

NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF AIR QUALITY SFN 8520 (9-2021)

NOTE: READ INSTRUCTIONS BEFORE COMPLETING THIS FORM. - Must include SFN 8516 or SFN 52858

SECTION A – GENERAL INFORMATION

Equipment items operating as a functional unit may be grouped as one application				
Name of Firm or Organization	Facility Name			
American Crystal Sugar Company	American Crystal Sugar Company - Drayton			

SECTION B – EQUIPMENT INFORMATION

Source ID Number (From SFN 8516) 33		
Type of Unit or Process (rotary dryer, cupola furnace Rotary Pulp Dryer	e, crusher, pelletizer, etc.)	
Make Promill	Model TBD	Date Installed 08/20/2003
Capacity (manufacturer's or designer's guaranteed	Operating Capacity (spec	cific units)
maximum) 65	ton per hour	pressed pulp
Brief description of operation of unit or process: Coal-fired rotary pulp dryer.		

SECTION C – NORMAL OPERATING SCHEDULE

Hours Per Day	Days Per Week	Weeks Per Year	Peak Production	Dates of Annual
24	7	40	Season (if any)	Shutdown
			Fall/Winter	May-July

SECTION D - RAW MATERIALS INTRODUCED INTO UNIT OR PROCESS

Include solid fuels such as coke or coal. Exclude indirect heat exchangers from this section							
For indirect heat exc	For indirect heat exchangers, complete form SFN 8518						
	Ηοι	urly Process We	ight		Intermittent		
	(F	Pounds Per Hou	r)		Operation Only		
				Average Annual	(Average Hours		
Material	Average	Maximum	Minimum	(Specify Units)	Per Week)		
Pressed Pulp	90000	130000	60000	569400 ton/yr			
Coal	12000	17200	75485 ton/yr				

SECTION E – PRODUCTS OF UNIT OR PROCESS

Include all, even those not usable because they do not meet specifications						
	Hourly Process Weight				Intermittent	
	(F			Average Annual	(Average Hours	
Material	Average	Maximum	Minimum	(Specify Units)	Per Week)	
Dried Pulp	27000 39000 18000		170820 ton/yr			

SECTION F – FUELS USED

Coal (Tons/Yr)	% Sulfur	% Ash	Oil (Gal/Yr)	% Sulfur	Grade No.
75485	0.5	NA	0	NA	NA
Natural Gas (Thousand CF/Yr)		LP Gas (Gal/Yr)		Other (Specify)	
344,000	·	0	· · ·	NA	,

SECTION G – EMISSION POINTS

List each point separately, number each and locate on attached flow chart						
	Stack Height	Stack Diameter	Gas Volume		Gas Velocity	
Number	(ft)	(ft at top)	(ACFM)	Exit Temp (°F)	(fps)	
33	180	5.5	100000	258	70	

SECTION H – AIR CONTAMINANTS EMITTED

Known or Suspect	Known or Suspected - Use same identification number as above						
		Amo	ount				
Number	Pollutant	Pounds/Hr	Tons/Yr	Basis of Estimate			
33	-	-	-	See Attached Calcs			

SECTION I – VOLATILE ORGANIC COMPOUNDS

Are any volatile organic compounds (VOCs) stored on premises?						
See 40 CFR 51.100(s) for classes of compounds covered						
Material Stored	Size Tank (Gallons)	Vapor Control Device				

SECTION J – ORGANIC SOLVENTS

Are any organic solvents used or produced? IN No (None or less than 50 gal/yr) Yes – List Below					
Туре	Principal Use	Gallons/Yr Consumed	Gallons/Yr Produced		

SECTION K - AIR POLLUTION CONTROL EQUIPMENT

Is any air pollution control equipment installed on this unit or process?	🗌 No	Yes	
If 'Yes' attach form SFN 8532			

SECTION L – MATERIAL STORAGE

Does the input material	or product from this process contain finely divided material which could become
airborne? 🗌 No	Yes

Describe storage methods used: Dried product is milled/pelletized and stored in existing on-site bins (EU 15, 16 & 17).

Storage Piles	Type of Material	Diameter (Avg. or Screen Size)	Pile Size Average Tons	Pile Wetted	Pile Covered
Describe any fugitive dust problems: Dired pulp handling and transport is controlled by existing bagfilters.					

Attach additional sheets if needed to explain any answers. Use separate form for each contaminant emitting process

SEND COMPLETED APPLICATION AND ALL ATTACHMENTS TO:

North Dakota Department of Environmental Quality Division of Air Quality 4201 Normandy Street, 2nd Floor Bismarck, ND 58503-1324 (701)328-5188

PERMIT APPLICATION FOR AIR POLLUTION CONTROL EQUIPMENT

NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF AIR QUALITY SFN 8532 (9-2021)

NOTE: READ INSTRUCTIONS BEFORE COMPLETING THIS FORM. - Must also include forms SFN 8516 or SFN 52858

SECTION A – GENERAL INFORMATION

Name of Firm or Organization	Facility Name
American Crystal Sugar Company	American Crystal Sugar Company - Drayton
Source ID No. of Equipment being Controlled 33	

SECTION B – EQUIPMENT

Туре:	Cyclone	Multiclon		ne	Baghous	se	Electros	tatic Precipitator
	Wet Scrubber		Spray Dryer Flare/Co		ombu	stor		
	Other – Spo	ecify:						
Name of M TBD	lanufacturer		Model Nur TBD	nber			Date to Be Ins 8/2023	stalled
Application	1:		•				_	
Boiler		Kiln		Engine		Othe	er – Specify: F	Rotary Dryer
Pollutants	Removed	PM		PM10)	PM	12.5	
Design Eff	iciency (%)	90		90		80		
Operating	Efficiency (%)							
Describe r Engineer	nethod used to o ing Estimate	letermin	e operating	efficien	cy:			

SECTION CD – GAS CONDITIONS

Gas Conditions		Inlet	Outlet	
Gas Volume (SCFN	/l; 68°F; 14.7 psia)	100000	100000	
Gas Temperature (°F)	300	258	
Gas Pressure (in. H	H ₂ O)			
Gas Velocity (ft/sec	:)	70	70	
Pollutant Concentration	Pollutant	Unit of Concentration		
(Specify Pollutant and Unit of				
Concentration)				
Pressure Drop Thro TBD	ough Gas Cleaning	Device (in. H ₂ O)		

PERMIT APPLICATION FOR FUEL BURNING EQUIPMENT FOR INDIRECT HEATING

NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF AIR QUALITY SFN 8518 (9-2021)

NOTE: READ INSTRUCTIONS BEFORE COMPLETING THIS FORM. - Must include SFN 8516 or SFN 52858

SECTION A - GENERAL INFORMATION

Name of Firm or Organization	Facility Name
American Crystal Sugar Company	American Crystal Sugar Company - Drayton

SECTION B – EQUIPMENT

Source ID N 32	lo. (From form SFN	8516)		Name of Manufacturer TBD	
Rated Capa 300 kpph	acity/Maximum Inpu	t		Model Number TBD	
Purpose	Space Heat Process Heat	100	% %	Power Generation Other (Specify % if Multi-Purpose)	% %

SECTION C – TYPE OF COMBUSTION UNIT AND FUEL FEEDING METHOD

 Coal (If other solid fuel, specify here) Pulverized General Dry Bottom Wet Bottom with Fly Ash Reinjection Wet Bottom without Fly Ash Reinjection Other – Specify: 	 Spreader Stoker with Fly Ash Reinjection Spreader Stoker without Fly Ash Reinjection Fluidized Bed Cyclone Hand-Fired
Fuel Oil Horizontally Fired Tangentially Fired Other – Specify:	Gas Horizontally Fired Tangentially Fired Other – Specify: Ultra Low NOx Burner with FGR

SECTION D - NORMAL SCHEDULE OF OPERATION

Hours Per Day	Days Per Week	Weeks Per Year	Hours Per Year Total	Peak Season (Specify Months)
24	7	40	6500	Fall/Winter

SECTION E – FUEL USE EXPECTED IN A CALENDAR YEAR

Year 2026						
	Prima	ary Fuels	3	Standby Fuels		
Type Natural Gas				Type None		
Quantity Per YearUnits of Measure2290MMSCF			Quantity Per Year Units of Measure			
			Percent As	h (Solid Fuels O	nly)	
Minimum 0	Maximum 0		Average 0	Minimum	Maximum	Average
			Pe	rcent Sulfur		
Minimum 0.2 gr/100 SCF	Maximum F 0.5 gr/100 SCF		Average 0.35 gr/100 SCF	Minimum	Maximum	Average
Btu Per Unit of Measure (e.g. lb, gal, etc Specify)						
Minimum 950 Btu/SCF	Maxi 1050 Btu	mum I/SCF	Average 1020 Btu/SCF	Minimum	Maximum	Average

Describe Fuel Transport and Storage Methods:
Direct pipeline.
SECTION F – COMBUSTION AIR
Natural Draft Induced Forced Other – Specify:

SECTION G – STACK DATA

Inside Diameter (ft) 4.5	Height Above Grade (ft) 120			
Gas Temperature at Exit (Avg. °F) 350	Gas Velocity at Exit (Avg. ft/sec) 110			
Are Emission Control Devices in Place? If YES – Comple	ete SFN 8532 🗌 Yes 🔳 No			
Stack Ex	rit Gas Flow Rate			
Average (ACFM) 105000	Average (DSCFM) 67400			
Maximum (ACFM) 105000	Maximum (DSCFM) 67400			
Are sampling ports available? 🗌 No 🔳 Yes – [Describe:			
Sample ports will be provide per EPA recommendation.				

SECTION H – NEARBY BUILDINGS

Attach drawings which show the plan and elevation views of any nearby buildings including the building that houses the fuel-fired equipment.

SECTION I – AIR CONTAMINANTS EMITTED

	Maximum	Amount (Tons Per	
Pollutant	Pounds Per Hour	Year)	Basis of Estimate*
NOx			See Attached Calcs
со			
РМ			
PM ₁₀ (filterable and condensable)			
PM _{2.5} (filterable and condensable)			
SO ₂			

Pollutant	Maximum Pounds Per Hour	Amount (Tons Per Year)	Basis of Estimate*
VOC			
GHG (as CO₂e)			
Largest Single HAP			
Total HAPS			

*If performance test results are available for the unit, submit a copy of test with this application. If manufacturer guarantees are used provide spec sheet.

Appendix B

Site Location Map and Facility Layout Diagram

American Crystal Sugar- Drayton Facility Location

	\
PROJECT MANAGER	
PROJECT NUMBER	000000000241591

D

С

А

•	-	-
	ISSUE	DATE

DESCRIPTION

		7	8
	POINT NO.	NO.	Description
	1	EP1 / UE1	Main Boiler
	2	EP1a / EU1a	Coal Handling Equipment for boiler house
	3	EP33 / EU36	Pulp Dryer No. 2
	4	EP4 / EU4	Pulp Dryer No. 1
	5	EP9 / EU9, EU11	Dry Pulp Belt Conveyors / Bucket Elevator
	6	EP10 / EU10	Dry Pulp Reclaim System
	7	EP14a / EU14a	MAC 2 Flow Headhouse
	8	EP14b / EU14b	Old Hummer Room Pulsaire
	9	EP15-17 / EU15-17	Pellet Storage Bin
	10	EP19a / EU19a	Bulk Loading Pulsaire
	_ 11	EP20 / EU20	Main Sugar Warehouse Pulsaire
111	12	EP21 / EU21	Diesel Fire Suppression Pump Engine
	13	EP23 / EU23	Pulp Dryer Coal Hopper
	14	EP24 / EU25	Flume Lime Slaker
	15	EP27 / EU28	Lime Kiln
	16	EP28 / EU29	Sugar Dryer/Granulator
	17	EP29 / EU30	Lime Slaker
	18	EP30 / EU31	Pellet Mill / Cooler
	19	EP31 / EU32	Pulp Pellet Loadout
	20	EP32 / EU35	Package Boiler

С

D

В

А

SHEET CS102

Appendix C

Emission Calculations

FSS	Computation	Job No.	10352890
Project	American Crystal Sugar Company	Computed	GJR
Subject	Drayton Expansion 2022 - Potential Emissions	Checked	KB
Task	Emission Summary	Sheets	NA

Nitrogen Oxides (NO _x)		Potential	Actual	Net Increase
Emission Unit		(tpy)	(tpy)	(tpy)
EU1/EP1 B&W Boiler		869.44	514.64	354.80
EU3/EP3 Pulp Dryer No. 2	TO BE REMOVED	0.00	35.85	-35.85
EU4/EP4 Pulp Dryer No. 1		237.97	43.09	194.88
EU28/EP27a-d Natural Gas-Fired Lime Kiln		118.19	0.00	118.19
EU13/EP13a-f Belgian Lime Kiln	REMOVED	0.00	68.78	-68.78
NEW Natural Gas-Fired Package Boiler (EU35)		31.47	0.00	31.47
NEW Pulp Dryer No. 2 (EU36)		205.08	0.00	205.08
Total		1462	662	800
PSD Significant Emission Rate (tpy)				40
Major Modification				Yes

Carbon Monoxide (CO)		Potential	Actual	Net Increase
Emission Unit		(tpy)	(tpy)	(tpy)
EU1/EP1 B&W Boiler		228.32	271.57	-43.25
EU3/EP3 Pulp Dryer No. 2	TO BE REMOVED	0.00	540.30	-540.30
EU4/EP4 Pulp Dryer No. 1		1992.90	504.28	1488.62
EU28/EP27a-d Natural Gas-Fired Lime Kiln		2295.88	0.00	2295.88
EU13/EP13a-f Belgian Lime Kiln	REMOVED	0.00	1272.40	-1272.40
NEW Natural Gas-Fired Package Boiler (EU35)		58.07	0.00	58.07
NEW Pulp Dryer No. 2 (EU36)		2007.33	0.00	2007.33
Total		6582	2589	3994
PSD Significant Emission Rate (tpy)				100
Major Modification				Yes

Volatile Organic Compounds (VOC)		Potential	Actual	Net Increase
Emission Unit		(tpy)	(tpy)	(tpy)
EU1/EP1 B&W Boiler		4.57	2.72	1.85
EU3/EP3 Pulp Dryer No. 2	TO BE REMOVED	0.00	24.67	-24.67
EU4/EP4 Pulp Dryer No. 1		341.66	34.54	307.12
EU28/EP27a-d Natural Gas-Fired Lime Kiln		12.03	0.00	12.03
EU13/EP13a-f Belgian Lime Kiln	REMOVED	0.00	1.18	-1.18
NEW Natural Gas-Fired Package Boiler (EU35)		8.48	0.00	8.48
NEW Pulp Dryer No. 2 (EU36)		342.58	0.00	342.58
Total		709	63	646
PSD Significant Emission Rate (tpy)				40
Major Modification				Yes

Sulfur Dioxide (SO 2)	Potential	Actual	Net Increase
Emission Unit	(tpy)	(tpy)	(tpy)
EU1/EP1 B&W Boiler	1598.23	322.15	1276.08

EU3/EP3 Pulp Dryer No. 2	TO BE REMOVED	0.00	19.56	-19.56
EU4/EP4 Pulp Dryer No. 1		203.89	27.82	176.07
EU28/EP27a-d Natural Gas-Fired Lime Kiln		17.68	0.00	17.68
EU13/EP13a-f Belgian Lime Kiln	REMOVED	0.00	50.61	-50.61
NEW Natural Gas-Fired Package Boiler (EU35)		0.93	0.00	0.93
NEW Pulp Dryer No. 2 (EU36)		264.20	0.00	264.20
Total		2085	420	1665
PSD Significant Emission Rate (tpy)				40
Major Modification				Yes

Lead (Pb)		Potential	Actual	Net Increase
Emission Unit		(tpy)	(tpy)	(tpy)
EU1/EP1 B&W Boiler		0.04	0.02	0.01
EU3/EP3 Pulp Dryer No. 2	TO BE REMOVED	0.00	0.00	0.00
EU4/EP4 Pulp Dryer No. 1		0.01	0.00	0.01
EU28/EP27a-d Natural Gas-Fired Lime Kiln		0.00	0.00	0.00
EU13/EP13a-f Belgian Lime Kiln	REMOVED	0.00	0.01	-0.01
NEW Natural Gas-Fired Package Boiler (EU35)		0.00	0.00	0.00
NEW Pulp Dryer No. 2 (EU36)		0.02	0.00	0.02
Total		0.06	0.04	0.02
PSD Significant Emission Rate (tpy)				0.6
Major Modification				No

Sulfuric Acid Mist (H 2SO4)		Potential	Actual	Net Increase
Emission Unit		(tpy)	(tpy)	(tpy)
EU1/EP1 B&W Boiler		4.63	0.93	3.70
EU3/EP3 Pulp Dryer No. 2	TO BE REMOVED	0.00	0.06	-0.06
EU4/EP4 Pulp Dryer No. 1		0.59	0.08	0.51
EU28/EP27a-d Natural Gas-Fired Lime Kiln		0.00	0.00	0.00
EU13/EP13a-f Belgian Lime Kiln	REMOVED	0.00	0.00	0.00
NEW Natural Gas-Fired Package Boiler (EU35)		0.00	0.00	0.00
NEW Pulp Dryer No. 2 (EU36)		0.77	0.00	0.77
Total		5.99	1.07	5
PSD Significant Emission Rate (tpy)				7
Major Modification				No

Fluorides (measured as HF)		Potential	Actual	Net Increase
Emission Unit		(tpy)	(tpy)	(tpy)
EU1/EP1 B&W Boiler		0.07	0.04	0.03
EU3/EP3 Pulp Dryer No. 2	TO BE REMOVED	0.00	0.24	-0.24
EU4/EP4 Pulp Dryer No. 1		0.77	0.24	0.53
EU28/EP27a-d Natural Gas-Fired Lime Kiln		0.00	0.00	0.00
EU13/EP13a-f Belgian Lime Kiln	REMOVED	0.00	0.00	0.00
NEW Natural Gas-Fired Package Boiler (EU35)		0.00	0.00	0.00
NEW Pulp Dryer No. 2 (EU36)		1.00	0.00	1.00
Total		1.84	0.52	1
PSD Significant Emission Rate (tpy)			-	3
Major Modification				No

Carbon Dioxide Equivalent (CO ₂ e)	Potential	Actual	Net Increase	
Emission Unit	(tpy)	(tpy)	(tpy)	
PSD Significant Emission Rate (tpy)				75000
---	---------------	-----------	-----------	-----------
Total		929356	341880	587476
NEW Pulp Dryer No. 2 (EU36)		126579.76	0.00	126579.76
NEW Natural Gas-Fired Package Boiler (EU35)		186174.81	0.00	186174.81
EU13/EP13a-f Belgian Lime Kiln	REMOVED	0.00	37394.70	-37394.70
EU28/EP27a-d Natural Gas-Fired Lime Kiln		70360.77	0.00	70360.77
EU4/EP4 Pulp Dryer No. 1		105728.68	21049.50	84679.18
EU3/EP3 Pulp Dryer No. 2	TO BE REMOVED	0.00	21456.31	-21456.31
EU1/EP1 B&W Boiler		440511.66	261979.23	178532.43

Particulate Matter (PM)		Potential	Actual	Net Increase
Emission Unit		(tpy)	(tpy)	(tpy)
EU1/EP1 B&W Boiler		68.50	6.79	61.71
EU1a/EP1a Coal Handling Dust Collector		1.28	0.99	0.29
EU3/EP3 Pulp Dryer No. 2	TO BE REMOVED	0.00	108.25	-108.25
EU4/EP4 Pulp Dryer No. 1		210.24	126.60	83.64
EU5 & EU24/EP5 Lime Mixing Tank and Lime Kiln Cooler	REMOVED	0.00	28.29	-28.29
EU6/EP6 Pellet Mill No. 1	REMOVED	0.00	12.17	-12.17
EU7/EP7 Pellet Mill No. 2	REMOVED	0.00	12.17	-12.17
EU8/EP8 Pellet Mill No. 3	REMOVED	0.00	12.17	-12.17
EU9 & EU11/EP9 Dry Pulp Belt Conveyors & Elevator		1.13	3.95	-2.82
EU10/EP10 Dry Pulp Reclaim System		2.65	1.97	0.68
EU12/EP12 Sugar Dryer	REMOVED	0.00	10.16	-10.16
EU13/EP13a-f Belgian Lime Kiln	REMOVED	0.00	10.50	-10.50
EU14a/EP14a MAC 2 Flow Headhouse		15.02	15.02	0.00
EU14b & EU 14c/EP14b Hummer Pulsaire and MAC		14.27	14.27	0.00
EU15/EP15 Pulp Pellet Bin No. 1		1.61	1.61	0.00
EU16/EP16 Pulp Pellet Bin No. 2		1.61	1.61	0.00
EU17/EP17 Pulp Pellet Bin No. 3		1.61	1.61	0.00
EU19a/EP19a Bulk Loading Pulsaire		0.48	0.48	0.00
EU19b/EP19b North Bulk Sugar Loadout		2.25	2.25	0.00
EU19c/EP19c South Bulk Sugar Loadout		1.88	1.88	0.00
EU20/EP20 Main Sugar Warehouse Pulsaire		1.97	1.97	0.00
EU22/EP22 Pulp Pellet Mill & Cooler	REMOVED	0.00	0.80	-0.80
EU23/EP23 Pulp Dryer Coal Hopper		3.90	2.93	0.97
EU25/EP24 Flume Lime Slaker		0.18	0.00	0.18
EU26/EP25 Lime Slaker	REMOVED	0.00	3.14	-3.14
EU28/EP27a-d Natural Gas-Fired Lime Kiln		52.42	0.00	52.42
EU29/EP28 Sugar Dryer Granulator		9.73	0.00	9.73
EU30/EP29 Lime Slaker		14.58	0.00	14.58
EU31, EU33, EU34/EP30 Pulp Pellet Mills & Cooler		6.57	0.00	6.57
EU32/EP31 Pellet Loadout		0.19	0.00	0.19
NEW Natural Gas-Fired Package Boiler (EU35)		11.72	0.00	11.72
NEW Pulp Dryer No. 2 (EU36)		139.72	0.00	139.72
Fug 1 Pellet Loadout Area	REMOVED	0.00	1.49	-1.49
Fug 2a Coal Handling Emissions		0.15	0.09	0.06
Fug 2b Coal Handling Wind Erosion		2.67	2.67	0.00
Fug 3 Limerock Handling Emissions		0.44	0.15	0.28
Fug 4 Spent Lime Wind Erosion		1.08	1.08	0.00
Fugitive Emissions from Unpaved Roads		261.03	202.75	58.28

Total	829	590	239
PSD Significant Emission Rate (tpy)			25
Major Modification			Yes

Particulate Matter < 10 Microns (PM ₁₀)		Potential	Actual	Net Increase
Emission Unit		(tpy)	(tpy)	(tpy)
EU1/EP1 B&W Boiler		130.32	48.42	81.90
EU1a/EP1a Coal Handling Dust Collector		1.28	0.99	0.29
EU3/EP3 Pulp Dryer No. 2	TO BE REMOVED	0.00	200.26	-200.26
EU4/EP4 Pulp Dryer No. 1		388.94	234.22	154.73
EU5 & EU24/EP5 Lime Mixing Tank and Lime Kiln Cooler	REMOVED	0.00	18.73	-18.73
EU6/EP6 Pellet Mill No. 1	REMOVED	0.00	12.17	-12.17
EU7/EP7 Pellet Mill No. 2	REMOVED	0.00	12.17	-12.17
EU8/EP8 Pellet Mill No. 3	REMOVED	0.00	12.17	-12.17
EU9 & EU11/EP9 Dry Pulp Belt Conveyors & Elevator		1.13	3.95	-2.82
EU10/EP10 Dry Pulp Reclaim System		2.65	1.97	0.68
EU12/EP12 Sugar Dryer	REMOVED	0.00	10.16	-10.16
EU13/EP13a-f Belgian Lime Kiln	REMOVED	0.00	10.50	-10.50
EU14a/EP14a MAC 2 Flow Headhouse		15.02	15.02	0.00
EU14b & EU 14c/EP14b Hummer Pulsaire and MAC		14.27	14.27	0.00
EU15/EP15 Pulp Pellet Bin No. 1		1.61	1.61	0.00
EU16/EP16 Pulp Pellet Bin No. 2		1.61	1.61	0.00
EU17/EP17 Pulp Pellet Bin No. 3		1.61	1.61	0.00
EU19a/EP19a Bulk Loading Pulsaire		0.48	0.48	0.00
EU19b/EP19b North Bulk Sugar Loadout		2.25	2.25	0.00
EU19c/EP19c South Bulk Sugar Loadout		1.88	1.88	0.00
EU20/EP20 Main Sugar Warehouse Pulsaire		1.97	1.97	0.00
EU22/EP22 Pulp Pellet Mill & Cooler	REMOVED	0.00	0.80	-0.80
EU23/EP23 Pulp Dryer Coal Hopper		3.90	2.93	0.97
EU25/EP24 Flume Lime Slaker		0.18	0.00	0.18
EU26/EP25 Lime Slaker	REMOVED	0.00	3.14	-3.14
EU28/EP27a-d Natural Gas-Fired Lime Kiln		52.42	0.00	52.42
EU29/EP28 Sugar Dryer Granulator		9.73	0.00	9.73
EU30/EP29 Lime Slaker		14.58	0.00	14.58
EU31, EU33, EU34/EP30 Pulp Pellet Mills & Cooler		6.57	0.00	6.57
EU32/EP31 Pellet Loadout		0.19	0.00	0.19
NEW Natural Gas-Fired Package Boiler (EU35)		11.72	0.00	11.72
NEW Pulp Dryer No. 2 (EU36)		258.49	0.00	258.49
Fug 1 Pellet Loadout Area	REMOVED	0.00	1.49	-1.49
Fug 2a Coal Handling Emissions		0.15	0.09	0.06
Fug 2b Coal Handling Wind Erosion		2.67	2.67	0.00
Fug 3 Limerock Handling Emissions		0.44	0.15	0.28
Fug 4 Spent Lime Wind Erosion		1.08	1.08	0.00
Fugitive Emissions from Unpaved Roads		66.53	51.67	14.85
Total		994	670	323
PSD Significant Emission Rate (tpy)				15
Major Modification				Yes

Particulate Matter < 2.5 Microns (PM _{2.5})	Potential	Actual	Net Increase
Emission Unit	(tpy)	(tpy)	(tpy)
EU1/EP1 B&W Boiler	110.46	45.90	64.56

EU1a/EP1a Coal Handling Dust Collector		0.30	0.23	0.07
EU3/EP3 Pulp Dryer No. 2	TO BE REMOVED	0.00	124.49	-124.49
EU4/EP4 Pulp Dryer No. 1		357.41	215.23	142.18
EU5 & EU24/EP5 Lime Mixing Tank and Lime Kiln Cooler	REMOVED	0.00	10.50	-10.50
EU6/EP6 Pellet Mill No. 1	REMOVED	0.00	1.86	-1.86
EU7/EP7 Pellet Mill No. 2	REMOVED	0.00	1.86	-1.86
EU8/EP8 Pellet Mill No. 3	REMOVED	0.00	1.86	-1.86
EU9 & EU11/EP9 Dry Pulp Belt Conveyors & Elevator		0.26	0.91	-0.65
EU10/EP10 Dry Pulp Reclaim System		0.61	0.46	0.16
EU12/EP12 Sugar Dryer	REMOVED	0.00	1.55	-1.55
EU13/EP13a-f Belgian Lime Kiln	REMOVED	0.00	1.26	-1.26
EU14a/EP14a MAC 2 Flow Headhouse		3.48	3.48	0.00
EU14b & EU 14c/EP14b Hummer Pulsaire and MAC		3.30	3.30	0.00
EU15/EP15 Pulp Pellet Bin No. 1		0.24	0.24	0.00
EU16/EP16 Pulp Pellet Bin No. 2		0.24	0.24	0.00
EU17/EP17 Pulp Pellet Bin No. 3		0.24	0.24	0.00
EU19a/EP19a Bulk Loading Pulsaire		0.11	0.11	0.00
EU19b/EP19b North Bulk Sugar Loadout		0.52	0.52	0.00
EU19c/EP19c South Bulk Sugar Loadout		0.43	0.43	0.00
EU20/EP20 Main Sugar Warehouse Pulsaire		0.46	0.46	0.00
EU22/EP22 Pulp Pellet Mill & Cooler	REMOVED	0.00	0.12	-0.12
EU23/EP23 Pulp Dryer Coal Hopper		0.90	0.68	0.23
EU25/EP24 Flume Lime Slaker		0.07	0.00	0.07
EU26/EP25 Lime Slaker	REMOVED	0.00	1.17	-1.17
EU28/EP27a-d Natural Gas-Fired Lime Kiln		31.70	0.00	31.70
EU29/EP28 Sugar Dryer Granulator		1.99	0.00	1.99
EU30/EP29 Lime Slaker		5.41	0.00	5.41
EU31, EU33, EU34/EP30 Pulp Pellet Mills & Cooler		1.52	0.00	1.52
EU32/EP31 Pellet Loadout		0.04	0.00	0.04
NEW Natural Gas-Fired Package Boiler (EU35)		11.72	0.00	11.72
NEW Pulp Dryer No. 2 (EU36)		160.68	0.00	160.68
Fug 1 Pellet Loadout Area	REMOVED	0.00	0.02	-0.02
Fug 2a Coal Handling Emissions		0.00	0.00	0.00
Fug 2b Coal Handling Wind Erosion		0.40	0.40	0.00
Fug 3 Limerock Handling Emissions		0.00	0.00	0.00
Fug 4 Spent Lime Wind Erosion		0.16	0.16	0.00
Fugitive Emissions from Unpaved Roads		6.65	5.17	1.49
Total		699	423	276
PSD Significant Emission Rate (tpy)				10
Major Modification				Yes

FS	Computation	Job N	lo. 10352890)
Project	American Crystal Sugar Company	Com	puted GJR	
Subject	Drayton Expansion 2022 - Potential Emissions	Chec	ked KB	
Task	EU1/EP1 B&W Boiler	Shee	ts NA	

Hours	Steam Output	Heat Content	Heat Input	Firing Rate	Fuel Use
	(pph)	(Btu/lb)	(MMBtu/hr)	(ton/hr)	(ton/yr)
8760	300,000	9,400	392	20.9	182,655

PSD Regulated Air Pollutants	CAS#	Emission Factor	Emission Factor Potential Emissio	
		(lb/ton)	(lb/hr)	(tpy)
Nitrogen Oxides (NO _x) ^a	10102-43-9	9.52	198.5	869.4
Carbon Monoxide (CO) ^b	630-08-0	2.50	52.1	228.3
Particulate Matter (PM) ^c	-	0.75	15.6	68.5
Particulate Matter < 10 Microns (PM ₁₀) ^d	-	1.43	29.8	130.3
Particulate Matter < 2.5 Microns (PM _{2.5}) ^e	-	1.21	25.2	110.5
Volatile Organic Compounds (VOC) [†]	-	0.05	1.0	4.6
Sulfur Dioxide (SO ₂) ⁹	7446-09-5	17.50	364.9	1,598
Sulfuric Acid Mist (H ₂ SO ₄) ^h	-	0.05	1.1	4.6
Fluorides (measured as HF) ^l	-	0.0007	0.0	0.1
Lead (Pb) ^j	7439-92-1	0.0004	0.0	0.0
Carbon Dioxide (CO ₂) ^k	124-38-9	4,810	100,294	439,286
Methane (CH ₄) ^f	74-82-8	0.06	1.3	5.5
Nitrous Oxide (N ₂ O) ^f	10024-97-2	0.04	0.8	3.7
Carbon Dioxide Equivalent (CO ₂ e) ^I	-	NA	100,573	440,512

Hazardous Air Pollutants	CAS#	Emission Factor Potential Emis		Emissions
		(lb/ton)	(lb/hr)	(tpy)
Organic Compounds:				
Acetaldehyde ^m	75-07-0	5.70E-04	1.19E-02	5.21E-02
Acetophenone ^m	98-86-2	1.50E-05	3.13E-04	1.37E-03
Acrolein ^m	107-02-8	2.90E-04	6.05E-03	2.65E-02
Benzene ^m	71-43-2	1.30E-03	2.71E-02	1.19E-01
Benzyl chloride ^m	100-44-7	7.00E-04	1.46E-02	6.39E-02
Bis(2-ethylhexyl)phthalate (DEHP) ^m	117-81-7	7.30E-05	1.52E-03	6.67E-03
Bromoform ^m	75-25-2	3.90E-05	8.13E-04	3.56E-03
Carbon disulfide ^m	75-15-0	1.30E-04	2.71E-03	1.19E-02
2-Chloroacetophenone ^m	532-27-4	7.00E-06	1.46E-04	6.39E-04
Chlorobenzene ^m	108-90-7	2.20E-05	4.59E-04	2.01E-03
Chloroform ^m	67-66-3	5.90E-05	1.23E-03	5.39E-03
Cumene ^m	98-82-8	5.30E-06	1.11E-04	4.84E-04
Cyanide ^m	57-12-5	2.50E-03	5.21E-02	2.28E-01
2,4-Dinitrotoluene ^m	121-14-2	2.80E-07	5.84E-06	2.56E-05
Dimethyl sulfate ^m	77-78-1	4.80E-05	1.00E-03	4.38E-03
Ethylbenzene ^m	100-41-4	9.40E-05	1.96E-03	8.58E-03
Ethyl chloride ^m	75-00-3	4.20E-05	8.76E-04	3.84E-03
Ethylene dichloride ^m	107-06-2	4.00E-05	8.34E-04	3.65E-03
Ethylene dibromide ^m	106-93-4	1.20E-06	2.50E-05	1.10E-04
Formaldehyde ^m	50-00-0	2.40E-04	5.00E-03	2.19E-02

Hexane ^m	110-54-3	6.70E-05	1.40E-03	6.12E-03
Isophorone ^m	78-59-1	5.80E-04	1.21E-02	5.30E-02
Methyl bromide ^m	74-83-9	1.60E-04	3.34E-03	1.46E-02
Methyl chloride ^m	74-87-3	5.30E-04	1.11E-02	4.84E-02
Methyl hydrazine ^m	60-34-4	1.70E-04	3.54E-03	1.55E-02
Methyl methacrylate ^m	80-62-6	2.00E-05	4.17E-04	1.83E-03
Methyl tert butyl ether ^m	1634-04-4	3.50E-05	7.30E-04	3.20E-03
Methylene chloride ^m	75-09-2	2.90E-04	6.05E-03	2.65E-02
Phenol ^m	108-95-2	1.60E-05	3.34E-04	1.46E-03
Propionaldehyde ^m	123-38-6	3.80E-04	7.92E-03	3.47E-02
Tetrachlorethylene (Perc) ^m	127-18-4	4.30E-05	8.97E-04	3.93E-03
Toluene ^m	108-88-3	2.40E-04	5.00E-03	2.19E-02
1,1,1-Trichloroethane (methyl chloroform) ^m	71-55-6	2.00E-05	4.17E-04	1.83E-03
Styrene ^m	100-42-5	2.50E-05	5.21E-04	2.28E-03
Vinyl acetate ^m	108-05-4	7.60E-06	1.58E-04	6.94E-04
Xylenes ^m	1330-20-7	3.70E-05	7.71E-04	3.38E-03
Dioxins/Furans (PCDD/PCDF) ⁿ	-	1.76E-09	3.67E-08	1.61E-07
Polynuclear Aromatic Hydrocarbons (PAH) ^o	-	2.08E-05	4.34E-04	1.90E-03
HCI (Hydrochloric acid) ^p	7647-01-0	2.40E-02	5.00E-01	2.19E+00
HF (Hydrofluoric acid) ¹	7664-39-3	7.36E-04	1.53E-02	6.72E-02
Antimony	7440-36-0	1.80E-05	3.75E-04	1.64E-03
Arsenic	7440-38-2	4.10E-04	8.55E-03	3.74E-02
Beryllium ^J	7440-41-7	2.10E-05	4.38E-04	1.92E-03
Cadmium ^J	7440-43-9	5.10E-05	1.06E-03	4.66E-03
Chromium	7440-47-3	2.60E-04	5.42E-03	2.37E-02
Cobalt ⁱ	7440-48-4	1.00E-04	2.09E-03	9.13E-03
Lead	7439-92-1	4.20E-04	8.76E-03	3.84E-02
Manganese	7439-96-5	4.90E-04	1.02E-02	4.48E-02
Mercury ^q	7439-97-6	1.07E-04	2.23E-03	9.77E-03
Nickel ^j	7440-02-0	2.80E-04	5.84E-03	2.56E-02
Selenium ^j	7782-49-2	1.30E-03	2.71E-02	1.19E-01
		7	Fotal HAPs =	3.4

Notes:

^a NO_x emissions based on 01/2006 source test (0.508 lb/MMBtu)

^b 40 CFR 63, Subpart DDDDD, 160 ppm @ 3%O2 (0.133 lb/MMBtu)

^c 40 CFR 63, Subpart DDDDD, 0.04 lb/MMBtu filterable only

 $^{\rm d}$ AP42 (9/98) Tables 1.1-5 and 1.1-9, condensable PM is 0.04 lb/MMBtu, PM_{\rm 10} is 90% of PM

^e AP42 (9/98) Tables 1.1-5 and 1.1-9, condensable PM is 0.04 lb/MMBtu, PM_{2.5} is 61% of PM

^f AP42 (9/98) Table 1.1-19

^g AP42 (9/98) Table 1.1-3, maximum sulfur content of 0.5 percent

^h EPRI (3/12) Estimating Total Sulfuric Acid Emissions from Stationary Power Plants, 0.29% of SO₂

ⁱ EPA MACT Floor Analysis - data request for ESP controlled, subbituminous-fired boilers.

^j AP42 (9/98) Table 1.1-18

^k AP-42 (9/98) Table 1.1-20

¹ 40 CFR 98, Subpart A, GWP CH₄ 25, N₂O 298

^m AP-42 (9/98) Table 1.1-14

ⁿ AP-42 (9/98) Table 1.1-12

° AP-42 (9/98) Table 1.1-13

^p Spring Creek Mine Coal Specification, 16.65 ppm Cl

^q 40 CFR 63, Subpart DDDDD, 5.7E-06 lb/MMBtu

Project	American Crystal Sugar Company
Subject	Drayton Expansion 2022 - Potential Emissions
Task	EU1a/EP1a Coal Handling Dust Collector

Hours	Throughput (tph)	Flowrate (acfm)
8760	20.9	1,700

Job No.	10352890
Computed	GJR

• - · · · [·	
Checked	KB
Sheets	NA

_ _ _ _

PSD Regulated Air Pollutants	CAS#	Emission Factor	Potential	Emissions
		(gr/cf)	(lb/hr)	(tpy)
Particulate Matter (PM) ^a	-	0.020	0.29	1.3
Particulate Matter < 10 Microns (PM ₁₀) ^b	-	0.020	0.29	1.3
Particulate Matter < 2.5 Microns (PM _{2.5}) ^c	-	0.005	0.07	0.3

Notes:

^a Air Emission Permit No. T5-X73015 ^b PM₁₀ filterable is equal to PM filterable

 $^{\circ}$ PM_{2.5} emissions are 23.2% of PM filterable based on following average parameters:

		PM _{2.5}
Section	Source Type	(%less than)
8.XX	Boric Acid Dryer	3.3
8.XX	Potash (Postassium Sulfate) Dryer	18.0
10.50	Woodworking Waste Collection Operations	14.3
11.10	Coal Cleaning: Dry Process	16.0
11.20	Lightweight Aggregate (Clay): Reciprocating Grate Clinker Cooler	39.0
11.21	Phosphate Rock Processing: Roller Mill and Bowl Mill Grinding	25.0
11.XX	Nonmetalic Minerals: Fluorspar Ore Rotary Drum Dryer	10.0
12.10	Primary Aluminum Production: Bauxite Ore Storage Storage	50.0
12.15	Storage Battery Production: Lead Oxide Mill	32.8
Average F	Particle Size Distribution	23.2

Computation FS Job No. 10352890 American Crystal Sugar Company Project Drayton Expansion 2022 - Potential Emissions Subject

EU4/EP4 Pulp Dryer No. 1 Task

Computed	GJR
Checked	KB
Sheets	NA

Hours	Pressed Pulp	Heat Content	Heat Input	Firing Rate	Fuel Use
	(tph)	(Btu/lb)	(MMBtu/hr)	(ton/hr)	(ton/yr)
8760	65.0	9,400	125	6.65	58,254

PSD Regulated Air Pollutants	CAS#	Emission Factor	Potential Emissions	
		(lb/ton)	(lb/hr)	(tpy)
Nitrogen Oxides (NO _x) ^b	10102-43-9	8.17	54.3	238.0
Carbon Monoxide (CO) ^b	630-08-0	7.00	455.0	1992.9
Particulate Matter (PM) ^c	-	7.22	48.0	210.2
Particulate Matter < 10 Microns (PM ₁₀) ^d	-	13.35	88.8	388.9
Particulate Matter < 2.5 Microns (PM _{2.5}) ^e	-	12.27	81.6	357.4
Volatile Organic Compounds (VOC) ^a	-	11.73	78.0	341.7
Sulfur Dioxide (SO ₂) ^f	7446-09-5	7.00	46.6	204
Sulfuric Acid Mist (H ₂ SO ₄) ^g	-	0.02	0.1	0.6
Fluorides (measured as HF) ^h	-	0.03	0.2	0.8
Lead (Pb) ⁱ	7439-92-1	0.0004	0.0	0.0
Carbon Dioxide (CO ₂) ^a	124-38-9	3,617	24,050	105,338
Methane (CH ₄) ^j	74-82-8	0.06	0.4	1.7
Nitrous Oxide (N ₂ O) ^j	10024-97-2	0.04	0.3	1.2
Carbon Dioxide Equivalent (CO ₂ e) ^ĸ	-	NA	24,139	105,729

Hazardous Air Pollutants	CAS#	Emission Factor	Potential	Emissions
		(lb/ton)	(lb/hr)	(tpy)
Organic Compounds:				
Acetaldehyde ^m	75-07-0	5.70E-04	3.79E-03	1.66E-02
Acetophenone ^m	98-86-2	1.50E-05	9.98E-05	4.37E-04
Acrolein ^m	107-02-8	2.90E-04	1.93E-03	8.45E-03
Benzene ^m	71-43-2	1.30E-03	8.65E-03	3.79E-02
Benzyl chloride ^m	100-44-7	7.00E-04	4.66E-03	2.04E-02
Bis(2-ethylhexyl)phthalate (DEHP) ^m	117-81-7	7.30E-05	4.85E-04	2.13E-03
Bromoform ^m	75-25-2	3.90E-05	2.59E-04	1.14E-03
Carbon disulfide ^m	75-15-0	1.30E-04	8.65E-04	3.79E-03
2-Chloroacetophenone ^m	532-27-4	7.00E-06	4.66E-05	2.04E-04
Chlorobenzene ^m	108-90-7	2.20E-05	1.46E-04	6.41E-04
Chloroform ^m	67-66-3	5.90E-05	3.92E-04	1.72E-03
Cumene ^m	98-82-8	5.30E-06	3.52E-05	1.54E-04
Cyanide ^m	57-12-5	2.50E-03	1.66E-02	7.28E-02
2,4-Dinitrotoluene ^m	121-14-2	2.80E-07	1.86E-06	8.16E-06
Dimethyl sulfate ^m	77-78-1	4.80E-05	3.19E-04	1.40E-03
Ethylbenzene ^m	100-41-4	9.40E-05	6.25E-04	2.74E-03
Ethyl chloride ^m	75-00-3	4.20E-05	2.79E-04	1.22E-03
Ethylene dichloride ^m	107-06-2	4.00E-05	2.66E-04	1.17E-03
Ethylene dibromide ^m	106-93-4	1.20E-06	7.98E-06	3.50E-05

Formaldehyde ^m	50-00-0	2.40E-04	1.60E-03	6.99E-03
Hexane ^m	110-54-3	6.70E-05	4.46E-04	1.95E-03
Isophorone ^m	78-59-1	5.80E-04	3.86E-03	1.69E-02
Methyl bromide ^m	74-83-9	1.60E-04	1.06E-03	4.66E-03
Methyl chloride ^m	74-87-3	5.30E-04	3.52E-03	1.54E-02
Methyl hydrazine ^m	60-34-4	1.70E-04	1.13E-03	4.95E-03
Methyl methacrylate ^m	80-62-6	2.00E-05	1.33E-04	5.83E-04
Methyl tert butyl ether ^m	1634-04-4	3.50E-05	2.33E-04	1.02E-03
Methylene chloride ^m	75-09-2	2.90E-04	1.93E-03	8.45E-03
Phenol ^m	108-95-2	1.60E-05	1.06E-04	4.66E-04
Propionaldehyde ^m	123-38-6	3.80E-04	2.53E-03	1.11E-02
Tetrachlorethylene (Perc) ^m	127-18-4	4.30E-05	2.86E-04	1.25E-03
Toluene ^m	108-88-3	2.40E-04	1.60E-03	6.99E-03
1,1,1-Trichloroethane (methyl chloroform) ^m	71-55-6	2.00E-05	1.33E-04	5.83E-04
Styrene ^m	100-42-5	2.50E-05	1.66E-04	7.28E-04
Vinyl acetate ^m	108-05-4	7.60E-06	5.05E-05	2.21E-04
Xylenes ^m	1330-20-7	3.70E-05	2.46E-04	1.08E-03
Dioxins/Furans (PCDD/PCDF) ⁿ	-	1.76E-09	1.17E-08	5.13E-08
Polynuclear Aromatic Hydrocarbons (PAH) [°]	-	2.08E-05	1.38E-04	6.06E-04
HCl (Hydrochloric acid) ^p	7647-01-0	2.40E-02	1.60E-01	6.99E-01
HF (Hydrofluoric acid) ^h	7664-39-3	2.65E-02	1.76E-01	7.72E-01
Antimony ⁱ	7440-36-0	1.80E-05	1.20E-04	5.24E-04
Arsenic ⁱ	7440-38-2	4.10E-04	2.73E-03	1.19E-02
Beryllium ⁱ	7440-41-7	2.10E-05	1.40E-04	6.12E-04
Cadmium ⁱ	7440-43-9	5.10E-05	3.39E-04	1.49E-03
Chromium ¹	7440-47-3	2.60E-04	1.73E-03	7.57E-03
Cobalt [′]	7440-48-4	1.00E-04	6.65E-04	2.91E-03
Lead ⁱ	7439-92-1	4.20E-04	2.79E-03	1.22E-02
Manganese	7439-96-5	4.90E-04	3.26E-03	1.43E-02
Mercury ⁱ	7439-97-6	8.30E-05	5.52E-04	2.42E-03
Nickel	7440-02-0	2.80E-04	1.86E-03	8.16E-03
Selenium	7782-49-2	1.30E-03	8.65E-03	3.79E-02
			Total HAPs =	1.8

Notes:

^a AP42 (3/97) Table 9.10.1.2-2, VOC 1.2 lb/ton pulp, CO₂ 370 lb/ton pulp

^b ACS HLB stack test 7.0 lb CO/ton pressed pulp, HLB BACT limit 100 lb/hr NO_x.

^c NDAC 33-15-05-01.2, E (lb/hr) = 55.0p^{0.11} - 40, p = ton pressed pulp + fuel

 $^{\rm d}$ $\rm PM_{10}$ assumed to be 100% of PM plus condensable fraction equal to 85% of $\rm PM_{10}$

 $^{\rm e}$ Based on test data $\rm PM_{2.5}$ equal to be 85% of $\rm PM_{10}$ plus condensable fraction equal to 85% of $\rm PM_{10}$

^f AP42 (9/98) Table 1.1-3, maximum sulfur content of 0.5 percent and 60% inherent control

^g EPRI (3/12) Estimating Total Sulfuric Acid Emissions from Stationary Power Plants, 0.29% of SO₂

^h Spring Creek Mine Coal Specification, 41.9 ppm F as HF. Also incorporates 60% inherent control.

ⁱ AP42 (9/98) Table 1.1-18

^j AP42 (9/98) Table 1.1-19

^k 40 CFR 98, Subpart A, GWP CH₄ 25, N₂O 298

^m AP-42 (9/98) Table 1.1-14

ⁿ AP-42 (9/98) Table 1.1-12

^o AP-42 (9/98) Table 1.1-13

^p Spring Creek Mine Coal Specification, 16.65 ppm Cl

Project	American Crystal Sugar Company
Subject	Drayton Expansion 2022 - Potential Emissions
Task	EU9 & EU11/EP9 Dry Pulp Belt Conveyors & Elevator

Hours	Throughput (tph)	Flowrate (acfm)
8760	16.8	6,000

Job No.	10352890

Computed	GJR
Checked	KB
Sheets	NA

_ _ _ _

PSD Regulated Air Pollutants	CAS#	Emission Factor	Potential	Emissions
		(lb/ton)	(lb/hr)	(tpy)
Particulate Matter (PM) ^a	-	0.005	0.3	1.1
Particulate Matter < 10 Microns (PM ₁₀) ^b	-	0.005	0.3	1.1
Particulate Matter < 2.5 Microns (PM _{2.5}) ^c	-	0.001	0.060	0.3

Notes:

 $^{\rm a}$ Air Emission Permit No. T5-X73015 $^{\rm b}$ PM_{10} filterable is equal to PM filterable

^c PM_{2.5} emissions are 23.2% of PM filterable based on following average parameters:

		PM _{2.5}
Section	Source Type	(%less than)
8.XX	Boric Acid Dryer	3.3
8.XX	Potash (Postassium Sulfate) Dryer	18.0
10.50	Woodworking Waste Collection Operations	14.3
11.10	Coal Cleaning: Dry Process	16.0
11.20	Lightweight Aggregate (Clay): Reciprocating Grate Clinker Cooler	39.0
11.21	Phosphate Rock Processing: Roller Mill and Bowl Mill Grinding	25.0
11.XX	Nonmetalic Minerals: Fluorspar Ore Rotary Drum Dryer	10.0
12.10	Primary Aluminum Production: Bauxite Ore Storage Storage	50.0
12.15	Storage Battery Production: Lead Oxide Mill	32.8
Average F	Particle Size Distribution	23.2

Project	Project American Crystal Sugar Company	
Subject	Drayton Expansion 2022 - Potential Emissions	
Task	EU10/EP10 Dry Pulp Reclaim System	

Hours	Throughput (tph)	Flowrate (acfm)
8760	16.8	3,500

Job No.	10352890
Computed	GJR
Checked	KB
Sheets	NA

PSD Regulated Air Pollutants	CAS#	Emission Factor	Potential	Emissions
		(lb/ton)	(lb/hr)	(tpy)
Particulate Matter (PM) ^a	-	0.036	0.6	2.6
Particulate Matter < 10 Microns (PM ₁₀) ^b	-	0.036	0.6	2.6
Particulate Matter < 2.5 Microns (PM _{2.5}) ^c	-	0.008	0.1	0.6

Notes:

^a Air Emission Permit No. T5-X73015

 $^{\rm b}$ $\rm PM_{10}$ filterable is equal to PM filterable

 $^{\rm c}$ PM $_{2.5}$ emissions are 23.2% of PM filterable based on following average parameters:

AP-42, Appendix B, Particle Size Distribution For Fabric Filter Controlled Sources:

		PM _{2.5}
Section	Source Type	(%less than)
8.XX	Boric Acid Dryer	3.3
8.XX	Potash (Postassium Sulfate) Dryer	18.0
10.50	Woodworking Waste Collection Operations	14.3
11.10	Coal Cleaning: Dry Process	16.0
11.20	Lightweight Aggregate (Clay): Reciprocating Grate Clinker Cooler	39.0
11.21	Phosphate Rock Processing: Roller Mill and Bowl Mill Grinding	25.0
11.XX	Nonmetalic Minerals: Fluorspar Ore Rotary Drum Dryer	10.0
12.10	Primary Aluminum Production: Bauxite Ore Storage Storage	50.0
12.15	Storage Battery Production: Lead Oxide Mill	32.8
Average F	Particle Size Distribution	23.2

|--|

Project	American Crystal Sugar Company	
Subject	Drayton Expansion 2022 - Potential Emissions	
Task	EU14a/EP14a MAC 2 Flow Headhouse	

Hours	Throughput (tph)	Flowrate (acfm)
8760	NA	20,000

Computed	GJR
Checked	KB
Sheets	NA

PSD Regulated Air Pollutants	CAS#	Emission Factor	Potential	Emissions
		(gr/cf)	(lb/hr)	(tpy)
Particulate Matter (PM) ^a	-	0.020	3.43	15.0
Particulate Matter < 10 Microns (PM ₁₀) ^b	-	0.020	3.43	15.0
Particulate Matter < 2.5 Microns (PM _{2.5}) ^c	-	0.005	0.79	3.5

Notes:

^a Air Emission Permit No. T5-X73015

 $^{\rm b}$ PM_{\rm 10} filterable is equal to PM filterable

 $^{\rm c}$ ${\rm PM}_{2.5}$ emissions are 23.2% of PM filterable based on following average parameters:

		PM _{2.5}
Section	Source Type	(%less than)
8.XX	Boric Acid Dryer	3.3
8.XX	Potash (Postassium Sulfate) Dryer	18.0
10.50	Woodworking Waste Collection Operations	14.3
11.10	Coal Cleaning: Dry Process	16.0
11.20	Lightweight Aggregate (Clay): Reciprocating Grate Clinker Cooler	39.0
11.21	Phosphate Rock Processing: Roller Mill and Bowl Mill Grinding	25.0
11.XX	Nonmetalic Minerals: Fluorspar Ore Rotary Drum Dryer	10.0
12.10	Primary Aluminum Production: Bauxite Ore Storage Storage	50.0
12.15	Storage Battery Production: Lead Oxide Mill	32.8
Average Particle Size Distribution		23.2

Job No. 10352890

.

Project	American Crystal Sugar Company
Subject	Drayton Expansion 2022 - Potential Emissions
Task	EU14b & EU 14c/EP14b Hummer Pulsaire and MAC

Hours	Throughput (tph)	Flowrate (acfm)
8760	NA	19,000

Computed	GJR
Checked	KB
Sheets	NA

PSD Regulated Air Pollutants	CAS#	Emission Factor	Potential	Emissions
		(gr/cf)	(lb/hr)	(tpy)
Particulate Matter (PM) ^a	-	0.020	3.26	14.3
Particulate Matter < 10 Microns (PM ₁₀) ^b	-	0.020	3.26	14.3
Particulate Matter < 2.5 Microns (PM _{2.5}) ^c	-	0.005	0.75	3.3

Notes:

^a Air Emission Permit No. T5-X73015

 $^{\rm b}$ PM_{\rm 10} filterable is equal to PM filterable

 $^{\rm c}$ PM_{2.5} emissions are 23.2% of PM filterable based on following average parameters:

		PM _{2.5}
Section	Source Type	(%less than)
8.XX	Boric Acid Dryer	3.3
8.XX	Potash (Postassium Sulfate) Dryer	18.0
10.50	Woodworking Waste Collection Operations	14.3
11.10	Coal Cleaning: Dry Process	16.0
11.20	Lightweight Aggregate (Clay): Reciprocating Grate Clinker Cooler	39.0
11.21	Phosphate Rock Processing: Roller Mill and Bowl Mill Grinding	25.0
11.XX	Nonmetalic Minerals: Fluorspar Ore Rotary Drum Dryer	10.0
12.10	Primary Aluminum Production: Bauxite Ore Storage Storage	50.0
12.15	Storage Battery Production: Lead Oxide Mill	32.8
Average F	Particle Size Distribution	23.2

Project	ct American Crystal Sugar Company	
Subject Drayton Expansion 2022 - Potential Emissions		
Task	EU15/EP15 Pulp Pellet Bin No. 1	

Hours	Throughput (tph)	Flowrate (acfm)
8760	NA	2,140

Job No.	10352890
Computed	GJR
Checked	KB
Sheets	NA

PSD Regulated Air Pollutants	CAS#	Emission Factor	Potential	Emissions
		(gr/cf)	(lb/hr)	(tpy)
Particulate Matter (PM) ^a	-	0.020	0.37	1.6
Particulate Matter < 10 Microns (PM ₁₀) ^b	-	0.020	0.37	1.6
Particulate Matter < 2.5 Microns (PM _{2.5}) ^c	-	0.003	0.06	0.2

Notes:

^a Air Emission Permit No. T5-X73015

 $^{\rm b}$ $\rm PM_{10}$ filterable is equal to PM filterable

 $^{\rm c}$ $\rm PM_{2.5}$ emissions are 15% of $\rm PM_{10}$ filterable based on AP42 Chapter 13.2.4

^d Source is uncontrolled, flowrate based on material displacement

Project	American Crystal Sugar Company	
Subject	Drayton Expansion 2022 - Potential Emissions	
Task	EU16/EP16 Pulp Pellet Bin No. 2	

Hours	Throughput (tph)	Flowrate (acfm)
8760	NA	2,140

Job No.	10352890
Computed	GJR
Checked	KB
Sheets	NA

PSD Regulated Air Pollutants	CAS#	Emission Factor	Potential	Emissions
		(gr/cf)	(lb/hr)	(tpy)
Particulate Matter (PM) ^a	-	0.020	0.37	1.6
Particulate Matter < 10 Microns (PM ₁₀) ^b	-	0.020	0.37	1.6
Particulate Matter < 2.5 Microns (PM _{2.5}) ^c	-	0.003	0.06	0.2

Notes:

^a Air Emission Permit No. T5-X73015

 $^{\rm b}$ $\rm PM_{10}$ filterable is equal to PM filterable

 $^{\rm c}$ $\rm PM_{2.5}$ emissions are 15% of $\rm PM_{10}$ filterable based on AP42 Chapter 13.2.4

^d Source is uncontrolled, flowrate based on material displacement

Project	American Crystal Sugar Company	
Subject	Drayton Expansion 2022 - Potential Emissions	
Task	EU17/EP17 Pulp Pellet Bin No. 3	

Hours	Throughput (tph)	Flowrate (acfm)
8760	NA	2,140

Job No.	10352890
Computed	GJR
Checked	KB
Sheets	NA

PSD Regulated Air Pollutants	CAS#	Emission Factor	Potential	Emissions
		(gr/cf)	(lb/hr)	(tpy)
Particulate Matter (PM) ^a	-	0.020	0.37	1.6
Particulate Matter < 10 Microns (PM ₁₀) ^b	-	0.020	0.37	1.6
Particulate Matter < 2.5 Microns (PM _{2.5}) ^c	-	0.003	0.06	0.2

Notes:

^a Air Emission Permit No. T5-X73015

 $^{\rm b}$ $\rm PM_{10}$ filterable is equal to PM filterable

 $^{\rm c}$ $\rm PM_{2.5}$ emissions are 15% of $\rm PM_{10}$ filterable based on AP42 Chapter 13.2.4

^d Source is uncontrolled, flowrate based on material displacement

Project	American Crystal Sugar Company	
Subject	Drayton Expansion 2022 - Potential Emissions	
Task	EU19a/EP19a Bulk Loading Pulsaire	

Hours	Throughput (tph)	Flowrate (acfm)
8760	NA	2,560

Job No.	10352890		
Computed	GJR		
Checked	KB		
Sheets	NA		

PSD Regulated Air Pollutants	CAS#	Emission Factor	Potential Emissions	
		(gr/cf)	(lb/hr)	(tpy)
Particulate Matter (PM) ^a	-	0.005	0.11	0.5
Particulate Matter < 10 Microns (PM ₁₀) ^b	-	0.005	0.11	0.5
Particulate Matter < 2.5 Microns (PM _{2.5}) ^c	-	0.001	0.03	0.1

Notes:

^a Air Emission Permit No. T5-X73015

 $^{\rm b}~{\rm PM}_{\rm 10}$ filterable is equal to PM filterable

 $^{\circ}$ PM_{2.5} emissions are 23.2% of PM filterable based on following average parameters:

	PM _{2.5}
Source Type	(%less than)
Boric Acid Dryer	3.3
Potash (Postassium Sulfate) Dryer	18.0
Woodworking Waste Collection Operations	14.3
Coal Cleaning: Dry Process	16.0
Lightweight Aggregate (Clay): Reciprocating Grate Clinker Cooler	39.0
Phosphate Rock Processing: Roller Mill and Bowl Mill Grinding	25.0
Nonmetalic Minerals: Fluorspar Ore Rotary Drum Dryer	10.0
Primary Aluminum Production: Bauxite Ore Storage Storage	50.0
Storage Battery Production: Lead Oxide Mill	32.8
article Size Distribution	23.2
	Source Type Boric Acid Dryer Potash (Postassium Sulfate) Dryer Woodworking Waste Collection Operations Coal Cleaning: Dry Process Lightweight Aggregate (Clay): Reciprocating Grate Clinker Cooler Phosphate Rock Processing: Roller Mill and Bowl Mill Grinding Nonmetalic Minerals: Fluorspar Ore Rotary Drum Dryer Primary Aluminum Production: Bauxite Ore Storage Storage Storage Battery Production: Lead Oxide Mill Inticle Size Distribution

Project	American Crystal Sugar Company
Subject	Drayton Expansion 2022 - Potential Emissions
Task	EU19b/EP19b North Bulk Sugar Loadout

Hours	Throughput (tph)	Flowrate (acfm)
8760	NA	12,000

Job No.	10352890		
Computed	CIR		
Computed	KB		
Sheets	NA		

PSD Regulated Air Pollutants	CAS#	Emission Factor	Potential Emissions	
		(gr/cf)	(lb/hr)	(tpy)
Particulate Matter (PM) ^a	-	0.005	0.51	2.3
Particulate Matter < 10 Microns (PM ₁₀) ^b	-	0.005	0.51	2.3
Particulate Matter < 2.5 Microns (PM _{2.5}) ^c	-	0.001	0.12	0.5

Notes:

^a Air Emission Permit No. T5-X73015

 $^{\rm b}~{\rm PM}_{\rm 10}$ filterable is equal to PM filterable

 $^{\rm c}$ ${\rm PM}_{2.5}$ emissions are 23.2% of PM filterable based on following average parameters:

		PM _{2.5}
Section	Source Type	(%less than)
8.XX	Boric Acid Dryer	3.3
8.XX	Potash (Postassium Sulfate) Dryer	18.0
10.50	Woodworking Waste Collection Operations	14.3
11.10	Coal Cleaning: Dry Process	16.0
11.20	Lightweight Aggregate (Clay): Reciprocating Grate Clinker Cooler	39.0
11.21	Phosphate Rock Processing: Roller Mill and Bowl Mill Grinding	25.0
11.XX	Nonmetalic Minerals: Fluorspar Ore Rotary Drum Dryer	10.0
12.10	Primary Aluminum Production: Bauxite Ore Storage Storage	50.0
12.15	Storage Battery Production: Lead Oxide Mill	32.8
Average F	Particle Size Distribution	23.2

Computation

Project	American Crystal Sugar Company
Subject	Drayton Expansion 2022 - Potential Emissions
Task	EU19c/EP19c South Bulk Sugar Loadout

Hours	Throughput (tph)	Flowrate (acfm)
8760	NA	10,000

Job No.	10352890		
Computed	GJR		
Checked	KB		
Sheets	NA		

PSD Regulated Air Pollutants	CAS#	Emission Factor	Potential Emissions	
		(gr/cf)	(lb/hr)	(tpy)
Particulate Matter (PM) ^a	-	0.005	0.43	1.9
Particulate Matter < 10 Microns (PM ₁₀) ^b	-	0.005	0.43	1.9
Particulate Matter < 2.5 Microns (PM _{2.5}) ^c	-	0.001	0.10	0.4

Notes:

^a Air Emission Permit No. T5-X73015

 $^{\rm b}~{\rm PM}_{\rm 10}$ filterable is equal to PM filterable

 $^{\rm c}$ ${\rm PM}_{2.5}$ emissions are 23.2% of PM filterable based on following average parameters:

		PM _{2.5}
Section	Source Type	(%less than)
8.XX	Boric Acid Dryer	3.3
8.XX	Potash (Postassium Sulfate) Dryer	18.0
10.50	Woodworking Waste Collection Operations	14.3
11.10	Coal Cleaning: Dry Process	16.0
11.20	Lightweight Aggregate (Clay): Reciprocating Grate Clinker Cooler	39.0
11.21	Phosphate Rock Processing: Roller Mill and Bowl Mill Grinding	25.0
11.XX	Nonmetalic Minerals: Fluorspar Ore Rotary Drum Dryer	10.0
12.10	Primary Aluminum Production: Bauxite Ore Storage Storage	50.0
12.15	Storage Battery Production: Lead Oxide Mill	32.8
Average F	Particle Size Distribution	23.2

Project	American Crystal Sugar Company
Subject	Drayton Expansion 2022 - Potential Emissions
Task	EU20/EP20 Main Sugar Warehouse Pulsaire

Hours	Throughput (tph)	Flowrate (acfm)
8760	NA	10,500

10352890
GJR
KB
NA

PSD Regulated Air Pollutants	CAS#	Emission Factor	Potential E	Emissions
		(gr/cf)	(lb/hr)	(tpy)
Particulate Matter (PM) ^a	-	0.005	0.45	2.0
Particulate Matter < 10 Microns (PM ₁₀) ^b	-	0.005	0.45	2.0
Particulate Matter < 2.5 Microns (PM _{2.5}) ^c	-	0.001	0.10	0.5

Notes:

^a Air Emission Permit No. T5-X73015

 $^{\rm b}~{\rm PM}_{\rm 10}$ filterable is equal to PM filterable

 $^{\circ}$ PM_{2.5} emissions are 23.2% of PM filterable based on following average parameters:

	PM _{2.5}
Source Type	(%less than)
Boric Acid Dryer	3.3
Potash (Postassium Sulfate) Dryer	18.0
Woodworking Waste Collection Operations	14.3
Coal Cleaning: Dry Process	16.0
Lightweight Aggregate (Clay): Reciprocating Grate Clinker Cooler	39.0
Phosphate Rock Processing: Roller Mill and Bowl Mill Grinding	25.0
Nonmetalic Minerals: Fluorspar Ore Rotary Drum Dryer	10.0
Primary Aluminum Production: Bauxite Ore Storage Storage	50.0
Storage Battery Production: Lead Oxide Mill	32.8
article Size Distribution	23.2
	Source Type Boric Acid Dryer Potash (Postassium Sulfate) Dryer Woodworking Waste Collection Operations Coal Cleaning: Dry Process Lightweight Aggregate (Clay): Reciprocating Grate Clinker Cooler Phosphate Rock Processing: Roller Mill and Bowl Mill Grinding Nonmetalic Minerals: Fluorspar Ore Rotary Drum Dryer Primary Aluminum Production: Bauxite Ore Storage Storage Storage Battery Production: Lead Oxide Mill Inticle Size Distribution

Job No. 10352890

Project	American Crystal Sugar Company
Subject	Drayton Expansion 2022 - Potential Emissions
Task	EU23/EP23 Pulp Dryer Coal Hopper

Hours	Throughput (tph)	Flowrate (acfm)
8760	NA	5,200

Computed	GJR
Checked	KB
Sheets	NA

PSD Regulated Air Pollutants	CAS#	Emission Factor	Potential	Emissions
		(gr/cf)	(lb/hr)	(tpy)
Particulate Matter (PM) ^a	-	0.020	0.89	3.9
Particulate Matter < 10 Microns (PM ₁₀) ^b	-	0.020	0.89	3.9
Particulate Matter < 2.5 Microns (PM _{2.5}) ^c	-	0.005	0.21	0.9

Notes:

^a Air Emission Permit No. T5-X73015

 $^{\rm b}$ PM_{\rm 10} filterable is equal to PM filterable

 $^{\rm c}$ ${\rm PM}_{2.5}$ emissions are 23.2% of PM filterable based on following average parameters:

		PM _{2.5}
Section	Source Type	(%less than)
8.XX	Boric Acid Dryer	3.3
8.XX	Potash (Postassium Sulfate) Dryer	18.0
10.50	Woodworking Waste Collection Operations	14.3
11.10	Coal Cleaning: Dry Process	16.0
11.20	Lightweight Aggregate (Clay): Reciprocating Grate Clinker Cooler	39.0
11.21	Phosphate Rock Processing: Roller Mill and Bowl Mill Grinding	25.0
11.XX	Nonmetalic Minerals: Fluorspar Ore Rotary Drum Dryer	10.0
12.10	Primary Aluminum Production: Bauxite Ore Storage Storage	50.0
12.15	Storage Battery Production: Lead Oxide Mill	32.8
Average P	article Size Distribution	23.2

Job No. 10352890

Project	American Crystal Sugar Company		
Subject	Drayton Expansion 2022 - Potential Emissions		
Task	EU25/EP24 Flume Lime Slaker		

Hours	Throughput (tph)	Flowrate (acfm)
8760	0.5	NA

Computed	GJR
Checked	KB
Sheets	NA

PSD Regulated Air Pollutants	CAS#	Emission Factor	Potential E	Emissions
		(lb/ton)	(lb/hr)	(tpy)
Particulate Matter (PM) ^a	-	0.08	0.04	0.18
Particulate Matter < 10 Microns (PM ₁₀) ^b	-	0.08	0.04	0.18
Particulate Matter < 2.5 Microns (PM _{2.5}) ^c	-	0.03	0.01	0.07

Notes:

^a AP42 Table 11.17-2

 $^{\rm b}$ PM $_{\rm 10}$ filterable is equal to PM filterable

 $^{\rm c}$ ${\rm PM}_{2.5}$ filterable is 37.1% of PM based on the average parameters listed below

^d Air Emission Permit No. T5-X73015 - insignificant activity

^e Flowrate is passive as a result of exothermic process

AP-42, Appendix B, Particle Size Distribution For Multiclone And Scrubber Controlled Sources:

		PM _{2.5}
Section	Source Type	(% less than)
9.70	Cotton Ginning: Battery Condensor	11.0
9.70	Cotton Ginning: Lint Cleaner Air Exhaust	11.0
10.50	Woodworking Waste Collection Operations	29.5
11.10	Coal Cleaning: Thermal Dryer	53.0
11.10	Coal Processing: Thermal Incinerator	21.3
11.20	Lightweight Aggregate (Clay): Rotary Kiln	55.0
11.20	Lightweight Aggregate (Clay): Reciprocating Grate Clinker Cooler	19.3
11.20	Lightweight Aggregate (Slate): Rotary Kiln	33.0
11.21	Phosphate Rock Processing: Calciner	94.0
11.21	Phosphate Rock Processing: Oil-Fired Rotary Drier	89.0
11.21	Phosphate Rock Processing: Oil-Fired Rotary Drier	15.7
11.21	Phosphate Rock Processing: Ball Mill	6.5
11.21	Phosphate Rock Processing: Roller Mill and Bowl Mill Grinding	21.0
12.10	Primary Aluminum Production: Bauxite Processing	60.5
Average F	Particle Size Distribution	37.1

Project	American Crystal Sugar Company
Subject	Drayton Expansion 2022 - Potential Emission

Task EU28/EP27a-d Natural Gas-Fired Lime Kiln

New Kiln - Ofenmantel GDS-4.3 (Natural gas-fired) Production Parameters

Hours	Limerock Throughput ^a (tpd)	Fuel Per Limerock ^b (MMBtu/ton)	Fuel Throughput (MMBtu/day)	Fuel Heat Content ^c (Btu/scf)	Max Heat Input (MMBtu/hr)	Lime Production ^d (tpd)
8,760	892	2.28	2,034	1,020	84.7	500

าร

^a Maximum limerock througput capacity based on kiln design.

^b Fuel per limerock percentage is based on observed performance test parameters.

^c Maximum heat content applies to coke, anthracite would result in lower maximum heat input.

^d Theoretcial lime production is based on 100% pure limerock and full calcination.

Potential Start-Up Emissions: Limited by process to 120 hours (5 days) per year at 50% capacity. (Historical start-up operations are 3-days at 50% capacity)

				Maximum	ı Design	Startup E	missions
Criteria Air Pollutants	CAS#	Combustion Emission Factor		Uncontrolled Emissions		(bypass stack)	
		(value)	(units)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
Nitrogen Oxides (NO _x) ^a	10102-43-9	1.29	lb/ton lime	26.8	117.4	13.4	0.80
Carbon Monoxide (CO)⁵	630-08-0	25.00	lb/ton lime	520.6	2280.3	260.3	15.62
Particulate Matter (PM) ^c	-	7.02	lb/ton lime	146.2	640.5	73.1	4.39
Particulate Matter < 10 Microns (PM ₁₀) ^c	-	7.02	lb/ton lime	146.2	640.5	73.1	4.39
Particulate Matter < 2.5 Microns (PM _{2.5}) ^d	-	4.25	lb/ton lime	88.4	387.3	44.2	2.65
Volatile Organic Compounds (VOC) ^e	-	0.131	lb/ton lime	2.7	11.9	1.4	0.08
Carbon Dioxide (CO ₂) ^f	-	2,047	lb/ton lime	42,627	186,708	21,314	1,279
Sulfur Dioxide (SO ₂) ^g	7446-09-5	2.14	lb/ton lime	44.6	195.2	22.3	1.34
Lead (Pb) ^h	7439-92-1	1.99E-06	lb/ton lime	4.14E-05	1.82E-04	2.07E-05	1.24E-06
Acid Gases (F, H_2SO_4 , H_2S) ¹		negl.	lb/ton lime	0.000	0.000	0.000	0.000

^a NO_x emissions based on maximum of European vertical shaft kiln data, which ranges from 5.36 to 26.79 lb/hr.

^b CO emissions based on maximum European kiln data multiplied by safety factor of 2.0 to reflect spot testing and engineering estimate.

^c PM/PM₁₀ emissions calculated from maximum venturi controlled European test data. Includes condensable portion (0.082 lb/ton lime) from AP42, Table 11.17-2.

^d PM_{2.5} emissions are calculated as 60% of PM₁₀ emissions using particle size distribution for rotary kilns, AP42, Table 11.17-7, plus condensable.

e VOC emissions based on AP42, Table 1.4-2, for natural gas combustion multipled by a safety factor of 3.0 percent to account for different combustion process.

^f CO₂ emissions based AP42, Table 1.4-2, for natural gas combustion plus mass balance of calcined limerock.

⁹ SO₂ emissions based AP42, Table 1.4-2 for natural gas combustion.

^h Pb emissions based on AP42, Table 1.4-2, for natural gas combustion.

¹ Based on the high retention of SQ₂ in the combustion process and the preferential removal of acid gases, emissions are anticipated to be negligible.

Balance Vent Emissions: 30% of combustion gas flow after gas-washer control.

Criteria Air Pollutants	CAS#	Uncontrolled Emissions		Gas Washer Control ^a	Amount of Flow	Balance Ver (normal o	nt Emissions perations)
		(lb/hr)	(tpy)	(%)	(%)	(lb/hr)	(tpy)
Nitrogen Oxides (NO _x)	10102-43-9	26.8	117.4	0%	30%	8.0	35.22
Carbon Monoxide (CO)	630-08-0	520.6	2280.3	0%	30%	156.2	684.08
Particulate Matter (PM)	-	146.2	640.5	75%	30%	11.0	48.04
Particulate Matter < 10 Microns (PM ₁₀)	-	146.2	640.5	75%	30%	11.0	48.04
Particulate Matter < 2.5 Microns (PM _{2.5})	-	88.4	387.3	75%	30%	6.6	29.05
Volatile Organic Compounds (VOC)	-	2.7	11.9	0%	30%	0.8	3.58
Carbon Dioxide (CO ₂)	-	42,627	186,708	0%	30%	12,788	56012.39
Sulfur Dioxide (SO ₂)	7446-09-5	44.6	195.2	75%	30%	3.3	14.64
Lead (Pb)	7439-92-1	0.000	0.000	75%	30%	0.000	0.00
Acid Gases (HF, H ₂ SO ₄)		0.000	0.000	0%	30%	0.000	0.000

^a Gas washer control efficiency for PM is 70%. Lead is controlled as a particulate. SQ emissions are controlled 75% due to the combination of lime dust in the

exhuast gas and the wet scrubber. Acid gases are negligible due to preferential removal.

Carbonation Vent Emissions: Remaining 70% of combustion gas flow after gas-washer control.

Criteria Air Pollutants	CAS#	Gas Washer Controlled Emissions		Carbonation Control ^ª	Amount of Flow	Carbonatio Emis	on Process sions
		(lb/hr)	(tpy)	(%)	(%)	(lb/hr)	(tpy)
Nitrogen Oxides (NO _x)	10102-43-9	26.8	117.4	0%	70%	18.8	82.17
Carbon Monoxide (CO)	630-08-0	520.6	2280.3	0%	70%	364.4	1596.18

Job No.	10352890

Computed	GJR
Checked	KB
Sheets	NA

Particulate Matter (PM)		36.6	160.1	100.0%	70%	0.00	0.00
Particulate Matter < 10 Microns (PM ₁₀)	-	36.6	160.1	100.0%	70%	0.00	0.00
Particulate Matter < 2.5 Microns (PM _{2.5})	-	22.1	96.8	100.0%	70%	0.00	0.00
Volatile Organic Compounds (VOC)	- '	2.7	11.9	0%	70%	1.9	8.36
Carbon Dioxide (CO ₂)	-	42,627	186708.0	90%	70%	2,984	13,070
Sulfur Dioxide (SO ₂)	7446-09-5	11.1	48.8	95%	70%	0.4	1.71
Lead (Pb)	7439-92-1	0.000	0.0	100.0%	70%	0.000	0.000
Acid Gases (HF, H ₂ SO ₄)	1	0.000	0.0	95%	70%	0.000	0.000

^a Carbonation process controls 100% of remaining particulate matter and 95% of remaining SQ/acid gases. 90% of CO₂ is abosorbed in the carbonation process and recombined with CaO to form CaCO₃.

Total KR6.5 Lime Kiln Emissions

	Start Up	Emissions	Balance Vent	Emissions	Carbonatio	on Process	Total
Criteria Air Pollutants	(bypass stack)		(normal operations)		Emissions		Emissions
	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(tpy)
Nitrogen Oxides (NO _x)	13.40	0.8	8.04	35.2	18.76	82.2	118.19
Carbon Monoxide (CO)	260.30	15.6	156.18	684.1	364.43	1596.2	2295.88
Particulate Matter (PM)	73.11	4.4	10.97	48.0	0.00	0.0	52.42
Particulate Matter < 10 Microns (PM ₁₀)	73.11	4.4	10.97	48.0	0.00	0.0	52.42
Particulate Matter < 2.5 Microns (PM _{2.5})	44.21	2.7	6.63	29.0	0.00	0.0	31.70
Volatile Organic Compounds (VOC)	1.36	0.1	0.82	3.6	1.91	8.4	12.03
Carbon Dioxide (CO ₂)	21,314	1,279	12,788	56,012	2,984	13,070	70,361
Sulfur Dioxide (SO ₂)	22.28	1.3	3.34	14.6	0.39	1.7	17.7
Lead (Pb)	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Acid Gases (HF, H ₂ SO ₄)	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Project	American Crystal Sugar Company
Subject	Drayton Expansion 2022 - Potential Emissions
Task	EU29/EP28 Sugar Dryer Granulator

Hours	Throughput (tph)	Flowrate (dscfm)
8760	100.0	38,000

Job No.	10352890

Computed	GJR
Checked	KB
Sheets	NA

PSD Regulated Air Pollutants	CAS#	Emission Factor	Potential	Emissions
		(gr/scf)	(lb/hr)	(tpy)
Particulate Matter (PM) ^a	-	0.008	2.2	9.7
Particulate Matter < 10 Microns (PM ₁₀) ^b	-	0.008	2.2	9.7
Particulate Matter < 2.5 Microns (PM _{2.5}) ^c	-	0.002	0.5	2.0

Notes:

^a PM emissions based on manufactuer data (32,381 dscfm)

 $^{\rm b}~{\rm PM}_{\rm 10}$ filterable is equal to PM filterable

 $^{\rm c}$ ${\rm PM}_{2.5}$ emissions are 23.2% of PM filterable based on following average parameters:

		PM _{2.5}
Section	Source Type	(%less than)
8.XX	Boric Acid Dryer	3.3
8.XX	Potash (Postassium Sulfate) Dryer	18.0
10.50	Woodworking Waste Collection Operations	14.3
11.10	Coal Cleaning: Dry Process	16.0
11.20	Lightweight Aggregate (Clay): Reciprocating Grate Clinker Cooler	39.0
11.21	Phosphate Rock Processing: Roller Mill and Bowl Mill Grinding	25.0
11.XX	Nonmetalic Minerals: Fluorspar Ore Rotary Drum Dryer	10.0
12.10	Primary Aluminum Production: Bauxite Ore Storage Storage	50.0
12.15	Storage Battery Production: Lead Oxide Mill	32.8
Average F	23.2	

Project	American Crystal Sugar Company
Subject	Drayton Expansion 2022 - Potential Emissions
Task	EU30/EP29 Lime Slaker

Hours	Throughput (tph)	Flowrate (acfm)
8760	20.8	3,000

Job No.	10352890

Computed	GJR
Checked	KB
Sheets	NA

PSD Regulated Air Pollutants	CAS#	Emission Factor	Potential Emissions	
		(lb/ton)	(lb/hr)	(tpy)
Particulate Matter (PM) ^a	-	0.16	3.33	14.58
Particulate Matter < 10 Microns (PM ₁₀) ^b	-	0.16	3.33	14.58
Particulate Matter < 2.5 Microns (PM _{2.5}) ^c	-	0.06	1.24	5.41

Notes:

^a AP42 Table 11.17-2 incorporating a 200% safety factor for variable process

 $^{\rm b}~{\rm PM}_{\rm 10}$ filterable is equal to PM filterable

 $^{\rm c}$ ${\rm PM}_{2.5}$ filterable is 37.1% of PM based on the average parameters listed below

^d Flowrate is passive as a result of exothermic process

AP-42, Appendix B, Particle Size Distribution For Multiclone And Scrubber Controlled Sources:

		PM _{2.5}
Section	Source Type	(% less than)
9.70	Cotton Ginning: Battery Condensor	11.0
9.70	Cotton Ginning: Lint Cleaner Air Exhaust	11.0
10.50	Woodworking Waste Collection Operations	29.5
11.10	Coal Cleaning: Thermal Dryer	53.0
11.10	Coal Processing: Thermal Incinerator	21.3
11.20	Lightweight Aggregate (Clay): Rotary Kiln	55.0
11.20	Lightweight Aggregate (Clay): Reciprocating Grate Clinker Cooler	19.3
11.20	Lightweight Aggregate (Slate): Rotary Kiln	33.0
11.21	Phosphate Rock Processing: Calciner	94.0
11.21	Phosphate Rock Processing: Oil-Fired Rotary Drier	89.0
11.21	Phosphate Rock Processing: Oil-Fired Rotary Drier	15.7
11.21	Phosphate Rock Processing: Ball Mill	6.5
11.21	Phosphate Rock Processing: Roller Mill and Bowl Mill Grinding	21.0
12.10	Primary Aluminum Production: Bauxite Processing	60.5
Average F	Particle Size Distribution	37.1

Job No. 10352890

Project	American Crystal Sugar Company
Subject	Drayton Expansion 2022 - Potential Emissions
Task	EU31, EU33, EU34/EP30 Pulp Pellet Mills & Cooler

Hours	Throughput (tph)	Flowrate (acfm)
8760	30.0	35,000

Computed	GJR
Checked	KB
Sheets	NA

PSD Regulated Air Pollutants	CAS#	Emission Factor	Potential Emissions	
		(gr/scf)	(lb/hr)	(tpy)
Particulate Matter (PM) ^a	-	0.005	1.50	6.6
Particulate Matter < 10 Microns (PM ₁₀) ^b	-	0.005	1.50	6.6
Particulate Matter < 2.5 Microns (PM _{2.5}) ^c	-	0.001	0.35	1.5

Notes:

^a PM emissions based on manufactuer data (35,000 dscfm)

 $^{\rm b}~{\rm PM}_{\rm 10}$ filterable is equal to PM filterable

 $^{\rm c}$ ${\rm PM}_{2.5}$ emissions are 23.2% of PM filterable based on following average parameters:

		PM _{2.5}
Section	Source Type	(%less than)
8.XX	Boric Acid Dryer	3.3
8.XX	Potash (Postassium Sulfate) Dryer	18.0
10.50	Woodworking Waste Collection Operations	14.3
11.10	Coal Cleaning: Dry Process	16.0
11.20	Lightweight Aggregate (Clay): Reciprocating Grate Clinker Cooler	39.0
11.21	Phosphate Rock Processing: Roller Mill and Bowl Mill Grinding	25.0
11.XX	Nonmetalic Minerals: Fluorspar Ore Rotary Drum Dryer	10.0
12.10	Primary Aluminum Production: Bauxite Ore Storage Storage	50.0
12.15	Storage Battery Production: Lead Oxide Mill	32.8
Average F	Particle Size Distribution	23.2

Project	American Crystal Sugar Company
Subject	Drayton Expansion 2022 - Potential Emissions
Task	EU32/EP31 Pellet Loadout

Hours	Throughput (tph)	Flowrate (acfm)
8760	16.8	1,000

Job No.	10352890	
Computed	GJR	
Checked	KB	
Sheets	NA	

PSD Regulated Air Pollutants	CAS#	Emission Factor	Potential Emissions	
		(gr/cf)	(lb/hr)	(tpy)
Particulate Matter (PM) ^a	-	0.005	0.04	0.2
Particulate Matter < 10 Microns (PM ₁₀) ^b	-	0.005	0.04	0.2
Particulate Matter < 2.5 Microns (PM _{2.5}) ^c	-	0.001	0.01	0.0

Notes:

^a Air Emission Permit No. T5-X73015

 $^{\rm b}~{\rm PM}_{\rm 10}$ filterable is equal to PM filterable

 $^{\rm c}$ ${\rm PM}_{2.5}$ emissions are 23.2% of PM filterable based on following average parameters:

		PM _{2.5}
Section	Source Type	(%less than)
8.XX	Boric Acid Dryer	3.3
8.XX	Potash (Postassium Sulfate) Dryer	18.0
10.50	Woodworking Waste Collection Operations	14.3
11.10	Coal Cleaning: Dry Process	16.0
11.20	Lightweight Aggregate (Clay): Reciprocating Grate Clinker Cooler	39.0
11.21	Phosphate Rock Processing: Roller Mill and Bowl Mill Grinding	25.0
11.XX	Nonmetalic Minerals: Fluorspar Ore Rotary Drum Dryer	10.0
12.10	Primary Aluminum Production: Bauxite Ore Storage Storage	50.0
12.15	Storage Battery Production: Lead Oxide Mill	32.8
Average F	23.2	

Job No.	10352890
000 140.	10002000

Project	American Crystal Sugar Company
Subject	Drayton Expansion 2022 - Potential Emissions
Task	NEW Natural Gas-Fired Package Boiler (EU35)

Computed	GJR
Checked	KB
Sheets	NA

Hours	Capacity	Production	Heat Content	Input	Fuel Input	Fuel Use
	(%)	(pph)	(Btu/scf)	MMBtu/hr	(scf/hr)	(MMscf/yr)
8,760	100	300,000	1,020	359.28	352,237	3,086

Criteria Air Pollutants & GHG	CAS#	Emission Factor	Potential Emissions	
		(lb/MMBtu)	(lb/hr)	(tpy)
Nitrogen Oxides (NO _x) ^a	10102-43-9	2.00E-02	7.19	31.47
Carbon Monoxide (CO) ^b	630-08-0	3.69E-02	13.26	58.07
Particulate Matter (PM) ^c	-	7.45E-03	2.68	11.72
Particulate Matter < 10 Microns (PM ₁₀) ^c	-	7.45E-03	2.68	11.72
Particulate Matter < 2.5 Microns (PM _{2.5}) ^c	-	7.45E-03	2.68	11.72
Volatile Organic Compounds (VOC) ^c	-	5.39E-03	1.94	8.48
Sulfur Dioxide (SO ₂) ^c	7446-09-5	5.88E-04	0.21	0.93
Carbon Dioxide (CO ₂) ^c	-	1.18E+02	42,251	185,062
Nitrous Oxide (N ₂ O) ^c	-	2.16E-03	0.78	3.40
Methane (CH ₄) ^c	74-82-8	2.55E-03	0.92	4.01
Carbon Dioxide Equivalent (CO ₂ e) ^d	-	NA	42,506	186,175

Hazardous Air Pollutants	CAS#	CAS# Emission Factor		Potential Emissions	
		(lb/MMBtu)	(lb/hr)	(tpy)	
Lead ^c	NA	4.90E-07	1.76E-04	7.71E-04	
Polycyclic Organic Matter (POM) ^e	NA	8.60E-08	3.09E-05	1.35E-04	
Benzene ^e	71-43-2	2.06E-06	7.40E-04	3.24E-03	
Dichlorobenzene ^e	25321-22-6	1.18E-06	4.23E-04	1.85E-03	
Formaldehyde ^e	50-00-0	7.35E-05	2.64E-02	1.16E-01	
Hexane ^e	110-54-3	1.76E-03	6.34E-01	2.78E+00	
Naphthalene ^e	91-20-3	5.98E-07	2.15E-04	9.41E-04	
Toluene ^e	108-88-3	3.33E-06	1.20E-03	5.24E-03	
Arsenic ^f	7440-38-2	1.96E-07	7.04E-05	3.08E-04	
Beryllium ^f	7440-41-7	1.20E-08	4.31E-06	1.89E-05	
Cadmium ^f	7440-43-9	1.08E-06	3.87E-04	1.70E-03	
Chromium ^f	7440-47-3	1.37E-06	4.93E-04	2.16E-03	
Cobalt ^f	7440-48-4	8.20E-08	2.95E-05	1.29E-04	
Manganese ^f	7439-96-5	3.73E-07	1.34E-04	5.87E-04	
Mercury ^f	7439-97-6	2.55E-07	9.16E-05	4.01E-04	
Nickel ^f	7440-02-0	2.06E-06	7.40E-04	3.24E-03	
Selenium ^f	7782-49-2	2.40E-08	8.62E-06	3.78E-05	
Fotal HAPs					

^a ULNB+FGR equipped. 17 ppm NO_x @ 3% O₂ (0.0364 lb/MMBtu).

^b ULNB+FGR equipped. 50 ppm CO @ 3% O₂ (0.0369 lb/MMBtu).

 $^{\rm c}$ Emission factors from AP-42 (07/98), Chapter 1.4, Table 1.4-2. $^{\rm d}$ Global warming potential from 40 CFR 98, Table A-1 (CH₄: 25, N₂O: 298).

^e Emission factors from AP-42 (07/98), chapter 1.4, Table 1.4-3.

^f Emission factors from AP-42 (07/98), chapter 1.4, Table 1.4-4.

Project	American Crystal Sugar Company
Subject	Drayton Expansion 2022 - Potential Emissions
Task	NEW Pulp Dryer No. 2 (EU36)

Job No.	10352890
Computed	GJR

Computed	GJR	
Checked	KB	
Sheets	NA	
Sheets	11/1	

Hours	Pressed Pulp (tph)	Fuel Type	Heat Content (Btu/lb, Btu/scf)	Heat Input (MMBtu/hr)	Firing Rate (ton/hr, scf/hr)	Fuel Use (ton/yr, MMscf/yr)
8760	65.0	Coal Natural Gas	9,400 1,020	162 40	8.6 39,215.7	75,485 344

PSD Regulated Air Pollutants	CAS#	Emission Factor	Potential Emissions	
		(lb/ton, lb/10 ⁶ scf)	(lb/hr)	(tpy)
Nitrogen Oxides (NO _x) ^a - coal	10102-43-9	0.66	46.8	205.1
Nitrogen Oxides (NO _x) ^b - gas	10102-43-9	100.00		
Carbon Monoxide (CO) ^c - coal	630-08-0	7.00	458.3	2007.3
Carbon Monoxide (CO) ^b - gas	630-08-0	84.00		
Particulate Matter (PM) ^d - coal + gas	-	0.49	31.9	139.7
Particulate Matter < 10 Microns (PM ₁₀) ^e	-	0.91	59.0	258.5
Particulate Matter < 2.5 Microns (PM _{2.5}) ^f	-	0.56	36.7	160.7
Volatile Organic Compounds (VOC) ^a - coal	-	1.20	78.2	342.6
Volatile Organic Compounds (VOC) ^g - gas	-	5.50		
Sulfur Dioxide (SO ₂) ^h - coal + gas	7446-09-5	0.93	60.3	264
Sulfuric Acid Mist (H ₂ SO ₄) ⁱ - coal + gas	-	0.00	0.2	0.8
Fluorides (measured as HF) ^l - coal + gas	-	0.03	0.2	1.0
Lead (Pb) ^k - coal	7439-92-1	0.0004	0.0	0.0
Lead (Pb) ^g - gas		0.0005		
Carbon Dioxide $(CO_2)^a$ - coal	124-38-9	370	28,756	125,951
Carbon Dioxide (CO ₂) ^g - gas	124-38-9	120,000		
Methane (CH ₄) ^l - coal	74-82-8	0.06	0.6	2.7
Methane (CH ₄) ^g - gas	74-82-8	2.30		
Nitrous Oxide (N ₂ O) ^l - coal	10024-97-2	0.04	0.4	1.9
Nitrous Oxide (N ₂ O) ^g - gas	10024-97-2	2.20		
Carbon Dioxide Equivalent (CO ₂ e) ^m	-	NA	28,899	126,580

Hazardous Air Pollutants	CAS#	Emission Factor	Potential Emissions		
	(lb/ton, lb/10 ⁶ scf)		(lb/hr)	(tpy)	
Organic Compounds:					
Acetaldehyde ⁿ	75-07-0	5.70E-04	4.91E-03	2.15E-02	
Acetophenone ⁿ	98-86-2	1.50E-05	1.29E-04	5.66E-04	
Acrolein ⁿ	107-02-8	2.90E-04	2.50E-03	1.09E-02	
Benzene ⁿ - coal	71-43-2	1.30E-03	1.13E-02	4.94E-02	
Benzene ^r - gas	71-43-2	2.10E-03			
Benzyl chloride ⁿ	100-44-7	7.00E-04	6.03E-03	2.64E-02	
Bis(2-ethylhexyl)phthalate (DEHP) ⁿ	117-81-7	7.30E-05	6.29E-04	2.76E-03	
Bromoform ⁿ	75-25-2	3.90E-05	3.36E-04	1.47E-03	
Carbon disulfide ⁿ	75-15-0	1.30E-04	1.12E-03	4.91E-03	
2-Chloroacetophenone ⁿ	532-27-4	7.00E-06	6.03E-05	2.64E-04	
Chlorobenzene ⁿ	108-90-7	2.20E-05	1.90E-04	8.30E-04	
Chloroform ⁿ	67-66-3	5.90E-05	5.08E-04	2.23E-03	
Cumene ⁿ	98-82-8	5.30E-06	4.57E-05	2.00E-04	
Cyanide ⁿ	57-12-5	2.50E-03	2.15E-02	9.44E-02	
Dichlorobenzene ^r - gas	25321-22-6	1.20E-03	4.71E-05	2.06E-04	
2,4-Dinitrotoluene ⁿ	121-14-2	2.80E-07	2.41E-06	1.06E-05	

Dimethyl sulfate ⁿ	77-78-1	4.80E-05	4.14E-04	1.81E-03
Ethylbenzene ⁿ	100-41-4	9.40E-05	8.10E-04	3.55E-03
Ethyl chloride ⁿ	75-00-3	4.20E-05	3.62E-04	1.59E-03
Ethylene dichloride ⁿ	107-06-2	4.00E-05	3.45E-04	1.51E-03
Ethylene dibromide ⁿ	106-93-4	1.20E-06	1.03E-05	4.53E-05
Formaldehyde ⁿ - coal	50-00-0	2.40E-04	5.01E-03	2.19E-02
Formaldehyde ^r - gas	50-00-0	7.50E-02		
Hexane ⁿ - coal	110-54-3	6.70E-05	7.12E-02	3.12E-01
Hexane ^r - gas	110-54-3	1.80E+00		
lsophorone ⁿ	78-59-1	5.80E-04	5.00E-03	2.19E-02
Methyl bromide ⁿ	74-83-9	1.60E-04	1.38E-03	6.04E-03
Methyl chloride ⁿ	74-87-3	5.30E-04	4.57E-03	2.00E-02
Methyl hydrazine ⁿ	60-34-4	1.70E-04	1.46E-03	6.42E-03
Methyl methacrylate ⁿ	80-62-6	2.00E-05	1.72E-04	7.55E-04
Methyl tert butyl ether ⁿ	1634-04-4	3.50E-05	3.02E-04	1.32E-03
Methylene chloride ⁿ	75-09-2	2.90E-04	2.50E-03	1.09E-02
Phenol ⁿ	108-95-2	1.60E-05	1.38E-04	6.04E-04
Propionaldehyde ⁿ	123-38-6	3.80E-04	3.27E-03	1.43E-02
Tetrachlorethylene (Perc) ⁿ	127-18-4	4.30E-05	3.71E-04	1.62E-03
Toluene ⁿ - coal	108-88-3	2.40E-04	2.20E-03	9.64E-03
Toluene ^r - gas	108-88-3	3.40E-03		
1,1,1-Trichloroethane (methyl chloroform) ⁿ	71-55-6	2.00E-05	1.72E-04	7.55E-04
Styrene ⁿ	100-42-5	2.50E-05	2.15E-04	9.44E-04
Vinyl acetate ⁿ	108-05-4	7.60E-06	6.55E-05	2.87E-04
Xylenes ⁿ	1330-20-7	3.70E-05	3.19E-04	1.40E-03
Dioxins/Furans (PCDD/PCDF) ^o	-	2.44E-07	2.10E-06	9.21E-06
PAH [₽] - coal	-	2.08E-05	2.07E-04	9.05E-04
PAH ^r - gas	-	6.98E-04		
HCI (Hydrochloric acid) ^q	7647-01-0	2.40E-02	2.07E-01	9.06E-01
HF (Hydrofluoric acid) ^J	7664-39-3	2.65E-02	2.29E-01	1.00E+00
Antimony ^k	7440-36-0	1.80E-05	1.55E-04	6.79E-04
Arsenic ^k - coal	7440-38-2	4.10E-04	3.54E-03	1.55E-02
Arsenic ^s - gas	7440-38-2	2.00E-04		
Beryllium ^k - coal	7440-41-7	2.10E-05	1.81E-04	7.95E-04
Beryllium ^s - gas	7440-41-7	1.20E-05		
Cadmium ^k - coal	7440-43-9	5.10E-05	4.83E-04	2.11E-03
Cadmium ^s - gas	7440-43-9	1.10E-03		
Chromium ^ĸ - coal	7440-47-3	2.60E-04	2.30E-03	1.01E-02
Chromium ^s - gas	7440-47-3	1.40E-03		
Cobalt ^k - coal	7440-48-4	1.00E-04	8.65E-04	3.79E-03
Cobalt ^s - gas	7440-48-4	8.40E-05		
Lead ^ĸ - coal	7439-92-1	4.20E-04	3.64E-03	1.59E-02
Lead ^g - gas	7439-92-1	5.00E-04		
Manganese ^ĸ - coal	7439-96-5	4.90E-04	4.24E-03	1.86E-02
Manganese ^s - gas	7439-96-5	3.80E-04		
Mercury ^k - coal	7439-97-6	8.30E-05	7.25E-04	3.18E-03
Mercury ^s - gas	7439-97-6	2.60E-04		
Nickel ^k - coal	7440-02-0	2.80E-04	2.50E-03	1.09E-02
Nickel ^s - gas	7440-02-0	2.10E-03		
Selenium ^k - coal	7782-49-2	1.30E-03	1.12E-02	4.91E-02
Selenium ^s - gas	7782-49-2	2.40E-05		
			Total HAPs =	2.7

Notes:

^a AP42 Table 9.10.1.2-2, NO_x 0.66 lb/ton pulp, VOC 1.2 lb/ton pulp, CO₂ 370 lb/ton pulp, SO₂ 0.79 lb/ton pulp

^b AP42 Table 1.4-1, NOx 100 lb/10⁶ scf, CO 84 lb/10⁶ scf

 $^{\rm c}$ ACS HLB stack test 7.0 lb CO/ton wet pulp

^d Manufacturer specification plus 10% safety factor

 $^{\rm e}$ PM₁₀ assumed to be 100% of PM plus condensable fraction equal to 85% of PM₁₀

^f PM2.5 assumed to be 30% of PM (AP42, Appendix B average) plus condensable fraction

^g AP42 Table 1.4-2, VOC 5.5 lb/10⁶ scf, CO₂ 120,000 lb/10⁶ scf, CH₄ 2.3 lb/10⁶ scf, N₂O 2.2 lb/10⁶ scf

^h AP42 (9/98) Table 1.1-3, maximum sulfur content of 0.5 percent and 60% inherent control

ⁱ EPRI (3/12) Estimating Total Sulfuric Acid Emissions from Stationary Power Plants, 0.29% of SO₂

^j Spring Creek Mine Coal Specification, 41.9 ppm F as HF. Also incorporates 60% inherent control.

^k AP42 (9/98) Table 1.1-18

¹ AP42 (9/98) Table 1.1-19

 $^{\rm m}$ 40 CFR 98, Subpart A, GWP CH_4 25, N_2O 298

^m AP-42 (9/98) Table 1.1-14

° AP-42 (9/98) Table 1.1-12

^p AP-42 (9/98) Table 1.1-13

^q Spring Creek Mine Coal Specification, 16.65 ppm Cl

^r AP42 Table 1.4-3

^s AP42 Table 1.4-4

Page 3 of 3

FJS	Computation	Job No.	10352890
		I	
Project	American Crystal Sugar Company	Computed	GJR
Subject	Drayton Expansion 2022 - Potential Emissions	Checked	KB
Task	Fug 2a Coal Handling Emissions	Sheets	NA

Calculation Assumptions:

Material throughput (maximum):	36.1 ton/hr
Moisture content ^a :	4.50 %
Mean wind speed:	10.3 mph (Grand Forks, ND)

Material Handling Emission Factor^a:

$$E = k(0.0032) \qquad \frac{(U/5)^{1.3}}{(M/2)^{1.4}} \qquad E = \text{emission factor (lb/ton)} \\ k (PM_{10}) = \text{particle size constant (0.35)} \\ k (PM_{2.5}) = \text{particle size constant (0.053)} \\ U = \text{mean wind speed (mph)} \\ M = \text{material moisture content (\%)} \end{cases}$$

Material handling emission factor (PM ₁₀):	9.21E-04 lb/ton
Material handling emission factor (PM _{2.5}):	2.57E-06 lb/ton

Material Handling (Dumping) Potentilal Emissions:

Material dump emissions (PM ₁₀) ^C :	0.033 lb/hr	0.146 ton/yr
Material dump emissions (PM _{2.5}) ^C :	0.0001 lb/hr	0.0004 ton/yr

^a AP-42, Chapter 13.2.4, Aggregate Handling and Storage Piles

^c Potential emissions based on a single dump operation of total material throughput

FC	Computation	Job No.	10352890
Project	American Crystal Sugar Company	Computed	GJR
Subject	Drayton Expansion 2022 - Potential Emissions	Checked	KB
Task	Fug 2b Coal Handling Wind Erosion	Sheets	NA

Storage Pile Data:

Active Spent Lime Disposal Area: Short Term Emission Basis: 1.0 acres10 percent of pile disturbed daily

Emission Factor Calculation^a:

Maximum 2-min wind speed (U ₁₀) ^b :	19.7 m/sec
Threshold friction velocity $(U_t)^c$	0.55 m/sec
Pile Orientation (A) ^d	conical
PM ₁₀ multiplier (k):	0.5 constant
PM _{2.5} multiplier (k):	0.075 constant

Pile	Wind	Surface Wind	Friction	Friction	Threshold	Pile	Subarea
Subarea	Speed	Speed	Velocity	Threshold	Comparison	Area	Pile Size
U _s /U _r	U ₁₀	Us	U*	Ut	Yes or No		
		[U ₁₀ (U _s /U _r)]	[0.1U _s]		$[U^* > U_t]$		
(na)	(m/s)	(m/s)	(m/s)	(m/s)	(na)	(%)	(m ²)
0.2	19.7	3.94	0.394	0.55	No	5	202
0.2	19.7	3.94	0.394	0.55	No	35	1,416
0.6	19.7	11.82	1.182	0.55	Yes	48	1,943
0.9	19.7	17.73	1.773	0.55	Yes	12	486

For U*>U_t: P (g/m^2) = 58 $(U^* - U_t)^2$ + 25 $(U^* - U_t)$ E (lb/disturbance) = (k)(P)(Area)/(453.59 g/lb)

Pile			
Subarea	Р	E PM ₁₀	E PM _{2.5}
U _s /U _r	(g/m^2)	(lb/dist.)	(lb/dist.)
0.2	0.0	0.0	0.0
0.2	0.0	0.0	0.0
0.6	39.0	83.4	12.5
0.9	117.3	62.8	9.4
Total Pile Emis	sions	146.2	21.9

Emission Rate Calculation:

Emissions based on 5% of pile disturbed per 24-hrs:	PM_{10}		PM _{2.5}	
	0.61	lb/hr	0.09	lb/hr
	2.67	tons/yr	0.40	tons/yr

^a AP-42, Chapter 13.2.5, Industrial Wind Erosion

^b Grand Forks, ND, fastest mile

^c AP-42, Table 13.2.5-2, Ground Coal

^d AP-42, Figure 13.2.5-2, Contours of normalized surface windspeeds.

Computation		Job No.	10352890	
Project	American Crystal Sugar Company	Computed	GJR	
Subject	Drayton Expansion 2022 - Potential Emissions	Checked	KB	
Task	Fug 3 Limerock Handling Emissions	Sheets	NA	
•				

Calculation Assumptions:

Material throughput (maximum):	37.2 ton/hr
Moisture content ^a :	2.10 %
Mean wind speed:	10.3 mph (Grand Forks, ND)

Material Handling Emission Factor^a:

$$E = k(0.0032) \qquad \frac{(U/5)^{1.3}}{(M/2)^{1.4}} \qquad E = \text{emission factor (lb/ton)} \\ k (PM_{10}) = \text{particle size constant (0.35)} \\ k (PM_{2.5}) = \text{particle size constant (0.053)} \\ U = \text{mean wind speed (mph)} \\ M = \text{material moisture content (\%)} \end{cases}$$

Material handling emission factor (PM ₁₀):	2.68E-03 lb/ton
Material handling emission factor (PM _{2.5}):	9.18E-07 lb/ton

Material Handling (Dumping) Potentilal Emissions:

Material dump emissions (PM ₁₀) ^C :	0.099 lb/hr	0.436 ton/yr
Material dump emissions (PM _{2.5}) ^C :	0.00003 lb/hr	0.0001 ton/yr

^a AP-42, Chapter 13.2.4, Aggregate Handling and Storage Piles

^c Potential emissions based on a single dump operation of total material throughput

FJS	Computation	Job No.	10352890
Project	American Crystal Sugar Company	Computed	GJR
Subject	Drayton Expansion 2022 - Potential Emissions	Checked	KB
Task	Fug 4 Spent Lime Wind Erosion	Sheets	NA

Storage Pile Data:

Active Spent Lime Disposal Area: Short Term Emission Basis: 3.0 acres5 percent of pile disturbed daily

Emission Factor Calculation^a:

Maximum 2-min wind speed (U ₁₀) ^b :	19.7 m/sec
Threshold friction velocity $(U_t)^c$	1.02 m/sec
Pile Orientation (A) ^d	conical
PM ₁₀ multiplier (k):	0.5 constant
PM _{2.5} multiplier (k):	0.075 constant

Pile	Wind	Surface Wind	Friction	Friction	Threshold	Pile	Subarea
Subarea	Speed	Speed	Velocity	Threshold	Comparison	Area	Pile Size
U _s /U _r	U ₁₀	Us	U*	Ut	Yes or No		
		[U ₁₀ (U _s /U _r)]	[0.1U _s]		$[U^* > U_t]$		
(na)	(m/s)	(m/s)	(m/s)	(m/s)	(na)	(%)	(m ²)
0.2	19.7	3.94	0.394	1.02	No	5	607
0.2	19.7	3.94	0.394	1.02	No	35	4,249
0.6	19.7	11.82	1.182	1.02	Yes	48	5,828
0.9	19.7	17.73	1.773	1.02	Yes	12	1,457

For U*>U_t: P (g/m^2) = 58 $(U^* - U_t)^2$ + 25 $(U^* - U_t)$ E (lb/disturbance) = (k)(P)(Area)/(453.59 g/lb)

Pile			
Subarea	Р	E PM ₁₀	E PM _{2.5}
U _s /U _r	(g/m²)	(lb/dist.)	(lb/dist.)
0.2	0.0	0.0	0.0
0.2	0.0	0.0	0.0
0.6	5.6	35.8	5.4
0.9	51.7	83.0	12.5
Total Pile Emissions		118.8	17.8

Emission Rate Calculation:

Emissions based on 5% of pile disturbed per 24-hrs: P	۶M
---	----

PM_{10}		PM _{2.5}
0.25	lb/hr	0.04
1.08	tons/yr	0.16

0.04 lb/hr 0.16 tons/yr

^a AP-42, Chapter 13.2.5, Industrial Wind Erosion

^b Grand Forks, ND, fastest mile

^c AP-42, Table 13.2.5-2, Overburden

^d AP-42, Figure 13.2.5-2, Contours of normalized surface windspeeds.

FJS	Computation	Job No. 10352890
Project	American Crystal Sugar Company	Computed GJR
Subject	Drayton Expansion 2022 - Potential Emissions	Checked KB
Task	Unpaved Road Fugitive Emissions	Sheets NA

PM Emissions

Vehicle Type	Vehicles Per	Mean Wt.	Round Trip	Silt Content	PM	PM	PM
	Day	(tons)	(miles)	(%)	(lb/VMT)	(lb/hr)	(tpy)
Beet Truck	160	25	1.025	4.8	6.77	49.99	218.98
Coal Truck	13	32.5					
Coke Truck	8	32.5	1.081	4.8	7.54	5.43	23.80
Anthracite Truck	8	32.5					
Spent Lime	12	22.5	1.305	4.8	6.39	4.17	18.26
Totals						59.60	261.03

PM₁₀ Emissions

Vehicle Type	Vehicles Per	Mean Wt.	Round Trip	Silt Content	PM ₁₀	PM ₁₀	PM ₁₀
	Day	(tons)	(miles)	(%)	(lb/VMT)	(lb/hr)	(tpy)
Beet Truck	160	25	1.025	4.8	1.72	12.74	55.81
Coal Truck	13	32.5					
Coke Truck	8	32.5	1.081	4.8	1.92	1.38	6.06
Anthracite Truck	8	32.5					
Spent Lime	12	22.5	1.305	4.8	1.63	1.06	4.65
Totals						15.19	66.53

PM_{2.5} Emissions

Vehicle Type	Vehicles Per	Mean Wt.	Round Trip	Silt Content	PM _{2.5}	PM _{2.5}	PM _{2.5}
	Day	(tons)	(miles)	(%)	(lb/VMT)	(lb/hr)	(tpy)
Beet Truck	160	25	1.025	4.8	0.17	1.27	5.58
Coal Truck	13	32.5					
Coke Truck	8	32.5	1.081	4.8	0.19	0.14	0.61
Anthracite Truck	8	32.5					
Spent Lime	12	22.5	1.305	4.8	0.16	0.11	0.47
Totals						1.52	6.65
FC	Computation	Jo	ob No.	10352890			
---------	--	----	---------	----------			
Project	American Crystal Sugar Company	C	omputed	GJR			
Subject	Drayton Expansion 2022 - Past Actual Emissions	C	hecked	KB			
Task	EU1/EP1 B&W Boiler	SI	heets	NA			

Hours	Steam Output	Heat Content	Heat Input	Firing Rate	Fuel Use
	(pph)	(Btu/lb)	(MMBtu/hr)	(ton/hr)	(ton/yr)
6,804	300,000	9,326	392	16.0	108,628

PSD Regulated Air Pollutants	CAS#	Emission Factor	Potential	Emissions
		(lb/ton)	(lb/hr)	(tpy)
Nitrogen Oxides (NO _x) ^b	10102-43-9	9.48	151.3	514.6
Carbon Monoxide (CO) ^c	630-08-0	5.00	79.8	271.6
Particulate Matter (PM) ^c	-	0.12	2.0	6.8
Particulate Matter < 10 Microns (PM ₁₀) ^e	-	0.89	14.2	48.4
Particulate Matter < 2.5 Microns (PM _{2.5}) ^f	-	0.85	13.5	45.9
Volatile Organic Compounds (VOC) ^g	-	0.05	0.8	2.7
Sulfur Dioxide (SO ₂) ^h	7446-09-5	5.93	94.7	322
Sulfuric Acid Mist (H ₂ SO ₄) ⁱ	-	0.02	0.3	0.9
Fluorides (measured as HF) ^j	-	0.0007	0.0	0.0
Lead (Pb) ^k	7439-92-1	0.0004	0.0	0.0
Carbon Dioxide (CO ₂) ^l	124-38-9	4,810	76,793	261,250
Methane (CH ₄) ^g	74-82-8	0.06	1.0	3.3
Nitrous Oxide (N ₂ O) ^g	10024-97-2	0.04	0.6	2.2
Carbon Dioxide Equivalent (CO ₂ e) ^m	-	NA	77,007	261,979

Hazardous Air Pollutants	CAS#	Emission Factor	Potential	Emissions
		(lb/ton)	(lb/hr)	(tpy)
Organic Compounds:				
Acetaldehyde ⁿ	75-07-0	5.70E-04	9.10E-03	3.10E-02
Acetophenone ⁿ	98-86-2	1.50E-05	2.39E-04	8.15E-04
Acrolein ⁿ	107-02-8	2.90E-04	4.63E-03	1.58E-02
Benzene ⁿ	71-43-2	1.30E-03	2.08E-02	7.06E-02
Benzyl chloride ⁿ	100-44-7	7.00E-04	1.12E-02	3.80E-02
Bis(2-ethylhexyl)phthalate (DEHP) ⁿ	117-81-7	7.30E-05	1.17E-03	3.96E-03
Bromoform ⁿ	75-25-2	3.90E-05	6.23E-04	2.12E-03
Carbon disulfide ⁿ	75-15-0	1.30E-04	2.08E-03	7.06E-03
2-Chloroacetophenone ⁿ	532-27-4	7.00E-06	1.12E-04	3.80E-04
Chlorobenzene ⁿ	108-90-7	2.20E-05	3.51E-04	1.19E-03
Chloroform ⁿ	67-66-3	5.90E-05	9.42E-04	3.20E-03
Cumene ⁿ	98-82-8	5.30E-06	8.46E-05	2.88E-04
Cyanide ⁿ	57-12-5	2.50E-03	3.99E-02	1.36E-01
2,4-Dinitrotoluene ⁿ	121-14-2	2.80E-07	4.47E-06	1.52E-05
Dimethyl sulfate ⁿ	77-78-1	4.80E-05	7.66E-04	2.61E-03
Ethylbenzene ⁿ	100-41-4	9.40E-05	1.50E-03	5.11E-03
Ethyl chloride ⁿ	75-00-3	4.20E-05	6.71E-04	2.28E-03
Ethylene dichloride ⁿ	107-06-2	4.00E-05	6.39E-04	2.17E-03
Ethylene dibromide ⁿ	106-93-4	1.20E-06	1.92E-05	6.52E-05
Formaldehyde ⁿ	50-00-0	2.40E-04	3.83E-03	1.30E-02

Hexane ⁿ	110-54-3	6.70E-05	1.07E-03	3.64E-03
Isophorone ⁿ	78-59-1	5.80E-04	9.26E-03	3.15E-02
Methyl bromide ⁿ	74-83-9	1.60E-04	2.55E-03	8.69E-03
Methyl chloride ⁿ	74-87-3	5.30E-04	8.46E-03	2.88E-02
Methyl hydrazine ⁿ	60-34-4	1.70E-04	2.71E-03	9.23E-03
Methyl methacrylate ⁿ	80-62-6	2.00E-05	3.19E-04	1.09E-03
Methyl tert butyl ether ⁿ	1634-04-4	3.50E-05	5.59E-04	1.90E-03
Methylene chloride ⁿ	75-09-2	2.90E-04	4.63E-03	1.58E-02
Phenol ⁿ	108-95-2	1.60E-05	2.55E-04	8.69E-04
Propionaldehyde ⁿ	123-38-6	3.80E-04	6.07E-03	2.06E-02
Tetrachlorethylene (Perc) ⁿ	127-18-4	4.30E-05	6.87E-04	2.34E-03
Toluene ⁿ	108-88-3	2.40E-04	3.83E-03	1.30E-02
1,1,1-Trichloroethane (methyl chloroform) ⁿ	71-55-6	2.00E-05	3.19E-04	1.09E-03
Styrene ⁿ	100-42-5	2.50E-05	3.99E-04	1.36E-03
Vinyl acetate ⁿ	108-05-4	7.60E-06	1.21E-04	4.13E-04
Xylenes ⁿ	1330-20-7	3.70E-05	5.91E-04	2.01E-03
Dioxins/Furans (PCDD/PCDF) [°]	-	1.76E-09	2.81E-08	9.56E-08
Polynuclear Aromatic Hydrocarbons (PAH) ^p	-	2.08E-05	3.32E-04	1.13E-03
HCl (Hydrochloric acid) ^q	7647-01-0	2.40E-02	3.83E-01	1.30E+00
HF (Hydrofluoric acid) ^j	7664-39-3	7.36E-04	1.18E-02	4.00E-02
Antimony ^k	7440-36-0	1.80E-05	2.87E-04	9.78E-04
Arsenic ^k	7440-38-2	4.10E-04	6.55E-03	2.23E-02
Beryllium ^k	7440-41-7	2.10E-05	3.35E-04	1.14E-03
Cadmium ^k	7440-43-9	5.10E-05	8.14E-04	2.77E-03
Chromium ^k	7440-47-3	2.60E-04	4.15E-03	1.41E-02
Cobalt ^ĸ	7440-48-4	1.00E-04	1.60E-03	5.43E-03
Lead ^k	7439-92-1	4.20E-04	6.71E-03	2.28E-02
Manganese ^k	7439-96-5	4.90E-04	7.82E-03	2.66E-02
Mercury ^k	7439-97-6	8.30E-05	1.33E-03	4.51E-03
Nickel ^ĸ	7440-02-0	2.80E-04	4.47E-03	1.52E-02
Selenium ^k	7782-49-2	1.30E-03	2.08E-02	7.06E-02
		•	Total HAPs =	2.0

Notes:

^a Production parameters based on 2017/2018 operating year average

^b NO_x emissions based on 2006 source test (0.508 lb/MMBtu)

^c AP42 (9/98) Table 1.1-3

^d PM filterable emissions based on 2018 source test (0.0067 lb/MMBtu)

^e PM₁₀ filterable emissions based on 2015 source test (0.0078 lb/MMBtu) and PM condensable emissions based on AP42 (9/98) Table 1.1-5 (0.04 lb/MMBtu)

^f AP42 (9/98) Tables 1.1-5 and 1.1-9, condensable PM is 0.04 lb/MMBtu, PM_{2.5} is 68% of PM10

^g AP42 (9/98) Table 1.1-19

^h SO₂ emissions based on 2015 source test (0.318 lb/MMBtu)

ⁱ EPRI (3/12) Estimating Total Sulfuric Acid Emissions from Stationary Power Plants, 0.29% of SO ₂

^j EPA MACT Floor Analysis - data request for ESP controlled, subbituminous-fired boilers.

^k AP42 (9/98) Table 1.1-18

¹ AP-42 (9/98) Table 1.1-20

^m 40 CFR 98, Subpart A, GWP CH₄ 25, N₂O 298

ⁿ AP-42 (9/98) Table 1.1-14

° AP-42 (9/98) Table 1.1-12

^p AP-42 (9/98) Table 1.1-13

^q Spring Creek Mine Coal Specification, 16.65 ppm Cl

Project	American Crystal Sugar Company
Subject	Drayton Expansion 2022 - Past Actual Emissions
Task	EU1a/EP1a Coal Handling Dust Collector

Hours	Throughput (tph)	Flowrate (acfm)
6,804	16.0	1,700

Job No.	10352890
Computed	GJR
Checked	KB
Sheets	NA

PSD Regulated Air Pollutants	CAS#	Emission Factor	Potential	Emissions
		(gr/cf)	(lb/hr)	(tpy)
Particulate Matter (PM) ^a	-	0.020	0.29	1.0
Particulate Matter < 10 Microns (PM ₁₀) ^b	-	0.020	0.29	1.0
Particulate Matter < 2.5 Microns (PM _{2.5}) ^c	-	0.005	0.07	0.2

Notes:

^a Air Emission Permit No. T5-X73015

 $^{\rm b}$ ${\rm PM}_{\rm 10}$ filterable is equal to PM filterable

 $^{\rm c}$ PM $_{2.5}$ emissions are 23.2% of PM filterable based on following average parameters:

^d Production parameters based on 2017/2018 operating year average

		PIVI _{2.5}
Section	Source Type	(%less than)
8.XX	Boric Acid Dryer	3.3
8.XX	Potash (Postassium Sulfate) Dryer	18.0
10.50	Woodworking Waste Collection Operations	14.3
11.10	Coal Cleaning: Dry Process	16.0
11.20	Lightweight Aggregate (Clay): Reciprocating Grate Clinker Cooler	39.0
11.21	Phosphate Rock Processing: Roller Mill and Bowl Mill Grinding	25.0
11.XX	Nonmetalic Minerals: Fluorspar Ore Rotary Drum Dryer	10.0
12.10	Primary Aluminum Production: Bauxite Ore Storage Storage	50.0
12.15	Storage Battery Production: Lead Oxide Mill	32.8
Average F	23.2	

Job No.	10352890
---------	----------

Project	American Crystal Sugar Company
Subject	Drayton Expansion 2022 - Past Actual Emissions
Task	EU3/EP3 Pulp Dryer No. 2

Computed	GJR
Checked	KB
Sheets	NA

Hours	Throughput	Heat Content	Heat Input	Firing Rate	Fuel Use
	(tph)	(Btu/lb)	(MMBtu/hr)	(ton/hr)	(ton/yr)
6,579	21.9	9,326	100	2.7	18,081

PSD Regulated Air Pollutants	D Regulated Air Pollutants CAS# Emission Factor		Potential	Emissions
		(lb/ton)	(lb/hr)	(tpy)
Nitrogen Oxides (NO _x) ^b	10102-43-9	3.97	10.9	35.9
Carbon Monoxide (CO) ^c	630-08-0	7.50	164.3	540.3
Particulate Matter (PM) ^d	-	11.97	32.9	108.2
Particulate Matter < 10 Microns (PM ₁₀) ^e	-	22.15	60.9	200.3
Particulate Matter < 2.5 Microns (PM _{2.5}) ^f	-	13.77	37.8	124.5
Volatile Organic Compounds (VOC) ^g	-	2.73	7.5	24.7
Sulfur Dioxide (SO ₂) ^h	7446-09-5	2.16	5.9	20
Sulfuric Acid Mist (H ₂ SO ₄) ⁱ	-	0.01	0.0	0.1
Fluorides (measured as HF) ^J	-	0.03	0.1	0.2
Lead (Pb) ^k	7439-92-1	0.0004	0.0	0.0
Carbon Dioxide (CO ₂) ^l	124-38-9	2,360	6,486	21,335
Methane (CH ₄) ^m	74-82-8	0.06	0.2	0.5
Nitrous Oxide (N ₂ O) ^m	10024-97-2	0.04	0.1	0.4
Carbon Dioxide Equivalent (CO ₂ e) ⁿ	-	NA	6,523	21,456

Hazardous Air Pollutants	CAS#	Emission Factor	Potential	Emissions
		(lb/ton)	(lb/hr)	(tpy)
Organic Compounds:				
Acetaldehyde [°]	75-07-0	5.70E-04	1.57E-03	5.15E-03
Acetophenone ^o	98-86-2	1.50E-05	4.12E-05	1.36E-04
Acrolein ^o	107-02-8	2.90E-04	7.97E-04	2.62E-03
Benzene [°]	71-43-2	1.30E-03	3.57E-03	1.18E-02
Benzyl chloride [°]	100-44-7	7.00E-04	1.92E-03	6.33E-03
Bis(2-ethylhexyl)phthalate (DEHP) ^o	117-81-7	7.30E-05	2.01E-04	6.60E-04
Bromoform ^o	75-25-2	3.90E-05	1.07E-04	3.53E-04
Carbon disulfide [°]	75-15-0	1.30E-04	3.57E-04	1.18E-03
2-Chloroacetophenone ^o	532-27-4	7.00E-06	1.92E-05	6.33E-05
Chlorobenzene ^o	108-90-7	2.20E-05	6.05E-05	1.99E-04
Chloroform ^o	67-66-3	5.90E-05	1.62E-04	5.33E-04
Cumene°	98-82-8	5.30E-06	1.46E-05	4.79E-05
Cyanide ^o	57-12-5	2.50E-03	6.87E-03	2.26E-02
2,4-Dinitrotoluene ^o	121-14-2	2.80E-07	7.70E-07	2.53E-06
Dimethyl sulfate [°]	77-78-1	4.80E-05	1.32E-04	4.34E-04
Ethylbenzene ^o	100-41-4	9.40E-05	2.58E-04	8.50E-04
Ethyl chloride ^o	75-00-3	4.20E-05	1.15E-04	3.80E-04
Ethylene dichloride [°]	107-06-2	4.00E-05	1.10E-04	3.62E-04
Ethylene dibromide ^o	106-93-4	1.20E-06	3.30E-06	1.08E-05
Formaldehyde [°]	50-00-0	2.40E-04	6.60E-04	2.17E-03

Hexane ^o	110-54-3	6.70E-05	1.84E-04	6.06E-04
Isophorone ^o	78-59-1	5.80E-04	1.59E-03	5.24E-03
Methyl bromide [°]	74-83-9	1.60E-04	4.40E-04	1.45E-03
Methyl chloride [°]	74-87-3	5.30E-04	1.46E-03	4.79E-03
Methyl hydrazine [°]	60-34-4	1.70E-04	4.67E-04	1.54E-03
Methyl methacrylate [°]	80-62-6	2.00E-05	5.50E-05	1.81E-04
Methyl tert butyl ether ^o	1634-04-4	3.50E-05	9.62E-05	3.16E-04
Methylene chloride [°]	75-09-2	2.90E-04	7.97E-04	2.62E-03
Phenol ^o	108-95-2	1.60E-05	4.40E-05	1.45E-04
Propionaldehyde ^o	123-38-6	3.80E-04	1.04E-03	3.44E-03
Tetrachlorethylene (Perc) [°]	127-18-4	4.30E-05	1.18E-04	3.89E-04
Toluene ^o	108-88-3	2.40E-04	6.60E-04	2.17E-03
1,1,1-Trichloroethane (methyl chloroform) $^{\circ}$	71-55-6	2.00E-05	5.50E-05	1.81E-04
Styrene ^o	100-42-5	2.50E-05	6.87E-05	2.26E-04
Vinyl acetate [°]	108-05-4	7.60E-06	2.09E-05	6.87E-05
Xylenes ^o	1330-20-7	3.70E-05	1.02E-04	3.34E-04
Dioxins/Furans (PCDD/PCDF) ^p	-	1.76E-09	4.84E-09	1.59E-08
Polynuclear Aromatic Hydrocarbons (PAH) ^q	-	2.08E-05	5.72E-05	1.88E-04
HCI (Hydrochloric acid) ^r	7647-01-0	2.40E-02	6.60E-02	2.17E-01
HF (Hydrofluoric acid)	7664-39-3	2.65E-02	7.29E-02	2.40E-01
Antimony ^s	7440-36-0	1.80E-05	4.95E-05	1.63E-04
Arsenic ^s	7440-38-2	4.10E-04	1.13E-03	3.71E-03
Beryllium ^s	7440-41-7	2.10E-05	5.77E-05	1.90E-04
Cadmium ^s	7440-43-9	5.10E-05	1.40E-04	4.61E-04
Chromium ^s	7440-47-3	2.60E-04	7.15E-04	2.35E-03
Cobalt ^s	7440-48-4	1.00E-04	2.75E-04	9.04E-04
Lead ^s	7439-92-1	4.20E-04	1.15E-03	3.80E-03
Manganese ^s	7439-96-5	4.90E-04	1.35E-03	4.43E-03
Mercury ^s	7439-97-6	8.30E-05	2.28E-04	7.50E-04
Nickel ^s	7440-02-0	2.80E-04	7.70E-04	2.53E-03
Selenium ^s	7782-49-2	1.30E-03	3.57E-03	1.18E-02
			Total HAPs =	0.6

Notes:

^a Production parameters based on 2017/2018 operating year average

^b NO_x emissions based on 1997 source test (10.9 lb/hr)

^c ACS HLB stack test 7.0 lb CO/ton pressed pulp

^d PM emissions based on 2015 source test (32.91 lb/hr)

 $^{\rm e}$ $\rm PM_{10}$ assumed to be 100% of PM plus condensable fraction equal to 85% of $\rm PM_{10}$

^f PM_{2.5} assumed to be 30% of PM (AP42, Appendix B average) plus condensable fraction

^g VOC emissions based on 2006 source test at HLB (7.5 lb/hr)

^h SO₂ emissions based on 2015 source test (0.116 lb/MMBtu)

ⁱ EPRI (3/12) Estimating Total Sulfuric Acid Emissions from Stationary Power Plants, 0.29% of SO₂

^j Spring Creek Mine Coal Specification, 41.9 ppm F as HF. Also incorporates 60% inherent control.

^k AP42 (9/98) Table 1.1-18

¹ AP42 (3/97) Table 9.10.1.2-2, CO₂ 370 lb/ton pulp

^m AP42 (9/98) Table 1.1-19

 $^{\rm n}$ 40 CFR 98, Subpart A, GWP CH $_4$ 25, N $_2$ O 298

^o AP-42 (9/98) Table 1.1-14

^p AP-42 (9/98) Table 1.1-12

^q AP-42 (9/98) Table 1.1-13

^r Spring Creek Mine Coal Specification, 16.65 ppm Cl

^s AP42 (9/98) Table 1.1-18

Computation FSS

Project

Subject

Task

Computation	Job No.
American Crystal Sugar Company	Computed
Dravton Expansion 2022 - Past Actual Emissions	Checked
j -	-

EU4/EP4 Pulp Dryer No. 1

Computed	GJR
Checked	KB
Sheets	NA

10352890

Hours	Throughput	Heat Content	Heat Input	Firing Rate	Fuel Use
	(tph)	(Btu/lb)	(MMBtu/hr)	(ton/hr)	(ton/yr)
6,579	21.9	9,326	125	2.7	18,081

PSD Regulated Air Pollutants	O Regulated Air Pollutants CAS# Emission Factor		Potential	Emissions
		(lb/ton)	(lb/hr)	(tpy)
Nitrogen Oxides (NO _x) ^b	10102-43-9	4.77	13.1	43.1
Carbon Monoxide (CO) ^c	630-08-0	7.00	153.3	504.3
Particulate Matter (PM) ^d	-	14.00	38.5	126.6
Particulate Matter < 10 Microns (PM ₁₀) ^e	-	25.91	71.2	234.2
Particulate Matter < 2.5 Microns (PM _{2.5}) ^f	-	23.81	65.4	215.2
Volatile Organic Compounds (VOC) ^g	-	3.82	10.5	34.5
Sulfur Dioxide (SO ₂) ^h	7446-09-5	3.08	8.5	28
Sulfuric Acid Mist (H ₂ SO ₄) ⁱ	-	0.01	0.0	0.1
Fluorides (measured as HF) ^J	-	0.03	0.1	0.2
Lead (Pb) ^k	7439-92-1	0.0004	0.0	0.0
Carbon Dioxide (CO ₂) ^l	124-38-9	2,315	6,363	20,928
Methane (CH ₄) ^m	74-82-8	0.06	0.2	0.5
Nitrous Oxide (N ₂ O) ^m	10024-97-2	0.04	0.1	0.4
Carbon Dioxide Equivalent (CO ₂ e) ⁿ	-	NA	6,399	21,049

Hazardous Air Pollutants	CAS#	Emission Factor	Potential	Emissions
		(lb/ton)	(lb/hr)	(tpy)
Organic Compounds:				
Acetaldehyde [°]	75-07-0	5.70E-04	1.57E-03	5.15E-03
Acetophenone ^o	98-86-2	1.50E-05	4.12E-05	1.36E-04
Acrolein ^o	107-02-8	2.90E-04	7.97E-04	2.62E-03
Benzene [°]	71-43-2	1.30E-03	3.57E-03	1.18E-02
Benzyl chloride [°]	100-44-7	7.00E-04	1.92E-03	6.33E-03
Bis(2-ethylhexyl)phthalate (DEHP) ^o	117-81-7	7.30E-05	2.01E-04	6.60E-04
Bromoform ^o	75-25-2	3.90E-05	1.07E-04	3.53E-04
Carbon disulfide [°]	75-15-0	1.30E-04	3.57E-04	1.18E-03
2-Chloroacetophenone ^o	532-27-4	7.00E-06	1.92E-05	6.33E-05
Chlorobenzene ^o	108-90-7	2.20E-05	6.05E-05	1.99E-04
Chloroform ^o	67-66-3	5.90E-05	1.62E-04	5.33E-04
Cumene°	98-82-8	5.30E-06	1.46E-05	4.79E-05
Cyanide ^o	57-12-5	2.50E-03	6.87E-03	2.26E-02
2,4-Dinitrotoluene ^o	121-14-2	2.80E-07	7.70E-07	2.53E-06
Dimethyl sulfate ^o	77-78-1	4.80E-05	1.32E-04	4.34E-04
Ethylbenzene ^o	100-41-4	9.40E-05	2.58E-04	8.50E-04
Ethyl chloride ^o	75-00-3	4.20E-05	1.15E-04	3.80E-04
Ethylene dichloride [°]	107-06-2	4.00E-05	1.10E-04	3.62E-04
Ethylene dibromide ^o	106-93-4	1.20E-06	3.30E-06	1.08E-05
Formaldehyde [°]	50-00-0	2.40E-04	6.60E-04	2.17E-03

Hexane ^o	110-54-3	6.70E-05	1.84E-04	6.06E-04
Isophorone ^o	78-59-1	5.80E-04	1.59E-03	5.24E-03
Methyl bromide ^o	74-83-9	1.60E-04	4.40E-04	1.45E-03
Methyl chloride [°]	74-87-3	5.30E-04	1.46E-03	4.79E-03
Methyl hydrazine⁰	60-34-4	1.70E-04	4.67E-04	1.54E-03
Methyl methacrylate [°]	80-62-6	2.00E-05	5.50E-05	1.81E-04
Methyl tert butyl ether ^o	1634-04-4	3.50E-05	9.62E-05	3.16E-04
Methylene chloride [°]	75-09-2	2.90E-04	7.97E-04	2.62E-03
Phenol ^o	108-95-2	1.60E-05	4.40E-05	1.45E-04
Propionaldehyde ^o	123-38-6	3.80E-04	1.04E-03	3.44E-03
Tetrachlorethylene (Perc) [°]	127-18-4	4.30E-05	1.18E-04	3.89E-04
Toluene ^o	108-88-3	2.40E-04	6.60E-04	2.17E-03
1,1,1-Trichloroethane (methyl chloroform) $^{\circ}$	71-55-6	2.00E-05	5.50E-05	1.81E-04
Styrene [°]	100-42-5	2.50E-05	6.87E-05	2.26E-04
Vinyl acetate [°]	108-05-4	7.60E-06	2.09E-05	6.87E-05
Xylenes ^o	1330-20-7	3.70E-05	1.02E-04	3.34E-04
Dioxins/Furans (PCDD/PCDF) ^p	-	1.76E-09	4.84E-09	1.59E-08
Polynuclear Aromatic Hydrocarbons (PAH) ^q	-	2.08E-05	5.72E-05	1.88E-04
HCI (Hydrochloric acid) ^r	7647-01-0	2.40E-02	6.60E-02	2.17E-01
HF (Hydrofluoric acid)	7664-39-3	2.65E-02	7.29E-02	2.40E-01
Antimony ^s	7440-36-0	1.80E-05	4.95E-05	1.63E-04
Arsenic ^s	7440-38-2	4.10E-04	1.13E-03	3.71E-03
Beryllium ^s	7440-41-7	2.10E-05	5.77E-05	1.90E-04
Cadmium ^s	7440-43-9	5.10E-05	1.40E-04	4.61E-04
Chromium ^s	7440-47-3	2.60E-04	7.15E-04	2.35E-03
Cobalt ^s	7440-48-4	1.00E-04	2.75E-04	9.04E-04
Lead ^s	7439-92-1	4.20E-04	1.15E-03	3.80E-03
Manganese ^s	7439-96-5	4.90E-04	1.35E-03	4.43E-03
Mercury ^s	7439-97-6	8.30E-05	2.28E-04	7.50E-04
Nickel ^s	7440-02-0	2.80E-04	7.70E-04	2.53E-03
Selenium ^s	7782-49-2	1.30E-03	3.57E-03	1.18E-02
			Total HAPs =	0.6

Notes:

^a Production parameters based on 2017/2018 operating year average

^b NO_x emissions based on 1997 source test (13.1 lb/hr)

^c ACS HLB stack test 7.0 lb CO/ton wet pulp

^d PM emissions based on 2015 source test (38.49 lb/hr)

 $^{\rm e}$ PM₁₀ assumed to be 100% of PM plus condensable fraction equal to 85% of PM₁₀

^f Based on test data PM_{2.5} equal to be 85% of PM₁₀ plus condensable fraction equal to 85% of PM₁₀

^g VOC emissions based on 2006 source test at HLB (10.5 lb/hr)

^h SO₂ emissions based on 2015 source test (0.165 lb/MMBtu)

ⁱ EPRI (3/12) Estimating Total Sulfuric Acid Emissions from Stationary Power Plants, 0.29% of SO₂

^j Spring Creek Mine Coal Specification, 41.9 ppm F as HF. Also incorporates 60% inherent control.

^k AP42 (9/98) Table 1.1-18

¹ AP42 (3/97) Table 9.10.1.2-2, CO₂ 370 lb/ton pulp

^m AP42 (9/98) Table 1.1-19

 $^{\rm n}$ 40 CFR 98, Subpart A, GWP CH_4 25, N_2O 298

^o AP-42 (9/98) Table 1.1-14

^p AP-42 (9/98) Table 1.1-12

^q AP-42 (9/98) Table 1.1-13

^r Spring Creek Mine Coal Specification, 16.65 ppm Cl

^s AP42 (9/98) Table 1.1-18

Job No.	10352890		

Computed

Checked

Sheets

GJR

KΒ

NA

Project	American Crystal Sugar Company
Subject	Drayton Expansion 2022 - Past Actual Emissions
Task	EU5 & EU24/EP5 Lime Mixing Tank and Lime Kiln Cooler

Hours	Throughput (tph)	Flowrate (acfm)
6,579	11.9	8,500

PSD Regulated Air Pollutants	CAS#	Emission Factor	Potential	Emissions
		(lb/ton)	(lb/hr)	(tpy)
Particulate Matter (PM) ^a	-	0.72	8.6	28.3
Particulate Matter < 10 Microns (PM ₁₀) ^b	-	0.48	5.7	18.7
Particulate Matter < 2.5 Microns (PM _{2.5}) ^c	-	0.27	3.2	10.5

Notes:

^a Air Emission Permit No. T5-X73015

 $^{\rm b}~\text{PM}_{\rm 10}$ filterable is 66.2% of PM based on the average parameters listed below

 $^{\rm c}$ ${\rm PM}_{\rm 2.5}$ filterable is 37.1% of PM based on the average parameters listed below

^d Production parameters based on 2017/2018 operating year average

		PM ₁₀	PM _{2.5}
Section	Source Type	(% less than)	(% less than)
9.70	Cotton Ginning: Battery Condensor	52.0	11.0
9.70	Cotton Ginning: Lint Cleaner Air Exhaust	92.0	11.0
10.50	Woodworking Waste Collection Operations	52.9	29.5
11.10	Coal Cleaning: Thermal Dryer	91.0	53.0
11.10	Coal Processing: Thermal Incinerator	43.7	21.3
11.20	Lightweight Aggregate (Clay): Rotary Kiln	84.0	55.0
11.20	Lightweight Aggregate (Clay): Reciprocating Grate Clinker Cooler	56.7	19.3
11.20	Lightweight Aggregate (Slate): Rotary Kiln	39.0	33.0
11.21	Phosphate Rock Processing: Calciner	98.0	94.0
11.21	Phosphate Rock Processing: Oil-Fired Rotary Drier	96.6	89.0
11.21	Phosphate Rock Processing: Oil-Fired Rotary Drier	58.3	15.7
11.21	Phosphate Rock Processing: Ball Mill	30.8	6.5
11.21	Phosphate Rock Processing: Roller Mill and Bowl Mill Grinding	62.0	21.0
12.10	Primary Aluminum Production: Bauxite Processing	70.0	60.5
Average Particle Size Distribution		66.2	37.1

Project	American Crystal Sugar Company
Subject	Drayton Expansion 2022 - Past Actual Emissions
Task	EU6/EP6 Pellet Mill No. 1

Hours	Throughput (tph)	Flowrate (acfm)
6,579	5.0	11,000

Job No.	10352890
Computed	GJR
Checked	KB
Sheets	NA

PSD Regulated Air Pollutants	CAS#	Emission Factor	Potential	Emissions
		(lb/ton)	(lb/hr)	(tpy)
Particulate Matter (PM) ^a	-	0.74	3.7	12.2
Particulate Matter < 10 Microns (PM ₁₀) ^b	-	0.74	3.7	12.2
Particulate Matter < 2.5 Microns (PM _{2.5}) ^c	-	0.11	0.6	1.9

Notes:

^a Air Emission Permit No. T5-X73015

 $^{\rm b}$ ${\rm PM}_{\rm 10}$ filterable is equal to PM filterable

 $^{\rm c}$ PM $_{2.5}$ emissions are 15.3% of PM filterable based on following average parameters:

^d Production parameters based on 2017/2018 operating year average

		PM _{2.5}
Section	Source Type	(% less than)
9.70	Cotton Ginning: Battery Condensor	8.0
9.70	Cotton Ginning: Lint Cleaner Air Exhaust	1.0
10.50	Woodworking Waste Collection Operations	29.5
11.10	Coal Processing: Thermal Incinerator	21.3
11.20	Lightweight Aggregate (Clay): Reciprocating Grate Clinker Cooler	19.3
11.21	Phosphate Rock Processing: Oil-Fired Rotary Drier	15.7
11.21	Phosphate Rock Processing: Ball Mill	6.5
11.21	Phosphate Rock Processing: Roller Mill and Bowl Mill Grinding	21.0
Average Pa	article Size Distribution	15.3

Project	American Crystal Sugar Company
Subject	Drayton Expansion 2022 - Past Actual Emissions
Task	EU7/EP7 Pellet Mill No. 2

Hours	Throughput	Flowrate
	(tph)	(acfm)
6,579	5.0	11,000

Job No.	10352890
Computed	GJR
Checked	KB
Sheets	NA

PSD Regulated Air Pollutants	CAS#	Emission Factor	Potential Emissions	
		(lb/ton)	(lb/hr)	(tpy)
Particulate Matter (PM) ^a	-	0.74	3.7	12.2
Particulate Matter < 10 Microns (PM ₁₀) ^b	-	0.74	3.7	12.2
Particulate Matter < 2.5 Microns (PM _{2.5}) ^c	-	0.11	0.6	1.9

Notes:

^a Air Emission Permit No. T5-X73015

 $^{\rm b}$ ${\rm PM}_{\rm 10}$ filterable is equal to PM filterable

 $^{\rm c}$ PM $_{2.5}$ emissions are 15.3% of PM filterable based on following average parameters:

^d Production parameters based on 2017/2018 operating year average

		PM _{2.5}
Section	Source Type	(% less than)
9.70	Cotton Ginning: Battery Condensor	8.0
9.70	Cotton Ginning: Lint Cleaner Air Exhaust	1.0
10.50	Woodworking Waste Collection Operations	29.5
11.10	Coal Processing: Thermal Incinerator	21.3
11.20	Lightweight Aggregate (Clay): Reciprocating Grate Clinker Cooler	19.3
11.21	Phosphate Rock Processing: Oil-Fired Rotary Drier	15.7
11.21	Phosphate Rock Processing: Ball Mill	6.5
11.21	Phosphate Rock Processing: Roller Mill and Bowl Mill Grinding	21.0
Average Pa	article Size Distribution	15.3

Project	American Crystal Sugar Company
Subject	Drayton Expansion 2022 - Past Actual Emissions
Task	EU8/EP8 Pellet Mill No. 3

Hours	Throughput	Flowrate
	(tph)	(acfm)
6,579	5.0	11,000

Job No.	10352890
Computed	GJR
Checked	KB
Sheets	NA

PSD Regulated Air Pollutants	CAS#	Emission Factor	Potential Emissions	
		(lb/ton)	(lb/hr)	(tpy)
Particulate Matter (PM) ^a	-	0.74	3.7	12.2
Particulate Matter < 10 Microns (PM ₁₀) ^b	-	0.74	3.7	12.2
Particulate Matter < 2.5 Microns (PM _{2.5}) ^c	-	0.11	0.6	1.9

Notes:

^a Air Emission Permit No. T5-X73015

 $^{\rm b}$ ${\rm PM}_{\rm 10}$ filterable is equal to PM filterable

 $^{\rm c}$ PM $_{2.5}$ emissions are 15.3% of PM filterable based on following average parameters:

^d Production parameters based on 2017/2018 operating year average

		PM _{2.5}
Section	Source Type	(% less than)
9.70	Cotton Ginning: Battery Condensor	8.0
9.70	Cotton Ginning: Lint Cleaner Air Exhaust	1.0
10.50	Woodworking Waste Collection Operations	29.5
11.10	Coal Processing: Thermal Incinerator	21.3
11.20	Lightweight Aggregate (Clay): Reciprocating Grate Clinker Cooler	19.3
11.21	Phosphate Rock Processing: Oil-Fired Rotary Drier	15.7
11.21	Phosphate Rock Processing: Ball Mill	6.5
11.21	Phosphate Rock Processing: Roller Mill and Bowl Mill Grinding	21.0
Average Pa	article Size Distribution	15.3

Project	American Crystal Sugar Company
Subject	Drayton Expansion 2022 - Past Actual Emissions
Task	EU9/EP9 Dry Pulp Belt Conveyors

Hours	Throughput (tph)	Flowrate (acfm)
6,579	16.8	3,500

Job No.	10352890
Computed	GJR
Checked	KB
Sheets	NA

PSD Regulated Air Pollutants	CAS#	Emission Factor	Potential Emissions	
		(lb/ton)	(lb/hr)	(tpy)
Particulate Matter (PM) ^a	-	0.036	0.6	2.0
Particulate Matter < 10 Microns (PM ₁₀) ^b	-	0.036	0.6	2.0
Particulate Matter < 2.5 Microns (PM _{2.5}) ^c	-	0.008	0.1	0.5

Notes:

^a Air Emission Permit No. T5-X73015

 $^{\rm b}$ ${\rm PM}_{\rm 10}$ filterable is equal to PM filterable

 $^{\rm c}$ PM $_{2.5}$ emissions are 23.2% of PM filterable based on following average parameters:

^d Production parameters based on 2017/2018 operating year average

		PIVI _{2.5}
Section	Source Type	(%less than)
8.XX	Boric Acid Dryer	3.3
8.XX	Potash (Postassium Sulfate) Dryer	18.0
10.50	Woodworking Waste Collection Operations	14.3
11.10	Coal Cleaning: Dry Process	16.0
11.20	Lightweight Aggregate (Clay): Reciprocating Grate Clinker Cooler	39.0
11.21	Phosphate Rock Processing: Roller Mill and Bowl Mill Grinding	25.0
11.XX	Nonmetalic Minerals: Fluorspar Ore Rotary Drum Dryer	10.0
12.10	Primary Aluminum Production: Bauxite Ore Storage Storage	50.0
12.15	Storage Battery Production: Lead Oxide Mill	32.8
Average F	Particle Size Distribution	23.2

Project	American Crystal Sugar Company	
Subject	Drayton Expansion 2022 - Past Actual Emissions	
Task	EU10/EP10 Dry Pulp Reclaim System	

Hours	Throughput	Flowrate
	(tph)	(acfm)
6,579	16.8	3,500

Job No.	10352890
Computed	GJR
Checked	KB
Sheets	NA

...

PSD Regulated Air Pollutants	CAS#	Emission Factor	Potential	Emissions
		(lb/ton)	(lb/hr)	(tpy)
Particulate Matter (PM) ^a	-	0.036	0.6	2.0
Particulate Matter < 10 Microns (PM ₁₀) ^b	-	0.036	0.6	2.0
Particulate Matter < 2.5 Microns (PM _{2.5}) ^c	-	0.008	0.1	0.5

Notes:

^a Air Emission Permit No. T5-X73015

 $^{\rm b}$ ${\rm PM}_{\rm 10}$ filterable is equal to PM filterable

 $^{\rm c}$ PM $_{2.5}$ emissions are 23.2% of PM filterable based on following average parameters:

^d Production parameters based on 2017/2018 operating year average

		PW _{2.5}
Section	Source Type	(%less than)
8.XX	Boric Acid Dryer	3.3
8.XX	Potash (Postassium Sulfate) Dryer	18.0
10.50	Woodworking Waste Collection Operations	14.3
11.10	Coal Cleaning: Dry Process	16.0
11.20	Lightweight Aggregate (Clay): Reciprocating Grate Clinker Cooler	39.0
11.21	Phosphate Rock Processing: Roller Mill and Bowl Mill Grinding	25.0
11.XX	Nonmetalic Minerals: Fluorspar Ore Rotary Drum Dryer	10.0
12.10	Primary Aluminum Production: Bauxite Ore Storage Storage	50.0
12.15	Storage Battery Production: Lead Oxide Mill	32.8
Average P	Particle Size Distribution	23.2

Project	American Crystal Sugar Company	
Subject	Drayton Expansion 2022 - Past Actual Emissions	
Task	EU11/EP9 Dry Pulp Bucket Elevator	

Hours	Throughput	Flowrate
	(tph)	(acfm)
6,579	16.8	3,500

Job No.	10352890
Computed	GJR
Checked	KB
Sheets	NA

PSD Regulated Air Pollutants	CAS#	Emission Factor	Potential	Emissions
		(lb/ton)	(lb/hr)	(tpy)
Particulate Matter (PM) ^a	-	0.036	0.6	2.0
Particulate Matter < 10 Microns (PM ₁₀) ^b	-	0.036	0.6	2.0
Particulate Matter < 2.5 Microns (PM _{2.5}) ^c	-	0.008	0.1	0.5

Notes:

^a Air Emission Permit No. T5-X73015

 $^{\rm b}$ ${\rm PM}_{\rm 10}$ filterable is equal to PM filterable

 $^{\rm c}$ PM $_{2.5}$ emissions are 23.2% of PM filterable based on following average parameters:

^d Production parameters based on 2017/2018 operating year average

		PIVI _{2.5}
Section	Source Type	(%less than)
8.XX	Boric Acid Dryer	3.3
8.XX	Potash (Postassium Sulfate) Dryer	18.0
10.50	Woodworking Waste Collection Operations	14.3
11.10	Coal Cleaning: Dry Process	16.0
11.20	Lightweight Aggregate (Clay): Reciprocating Grate Clinker Cooler	39.0
11.21	Phosphate Rock Processing: Roller Mill and Bowl Mill Grinding	25.0
11.XX	Nonmetalic Minerals: Fluorspar Ore Rotary Drum Dryer	10.0
12.10	Primary Aluminum Production: Bauxite Ore Storage Storage	50.0
12.15	Storage Battery Production: Lead Oxide Mill	32.8
Average F	Particle Size Distribution	23.2

Project	American Crystal Sugar Company	
Subject	Drayton Expansion 2022 - Past Actual Emissions	
Task	EU12/EP12 Sugar Dryer	

Hours	Throughput (tph)	Flowrate (acfm)
6,579	48.2	18,000

Job No.	10352890
Computed	GJR
Checked	KB
Sheets	NA

PSD Regulated Air Pollutants	CAS#	Emission Factor	Potential	Emissions
		(lb/ton)	(lb/hr)	(tpy)
Particulate Matter (PM) ^a	-	0.064	3.1	10.2
Particulate Matter < 10 Microns (PM ₁₀) ^b	-	0.064	3.1	10.2
Particulate Matter < 2.5 Microns (PM _{2.5}) ^c	-	0.010	0.5	1.6

Notes:

^a AP42, Table 9.10.1.2-1

 $^{\rm b}$ ${\rm PM}_{\rm 10}$ filterable is equal to PM filterable

 $^{\rm c}$ PM $_{2.5}$ emissions are 15.3% of PM filterable based on following average parameters:

^d Production parameters based on 2017/2018 operating year average

		PM _{2.5}
Section	Source Type	(% less than)
9.70	Cotton Ginning: Battery Condensor	8.0
9.70	Cotton Ginning: Lint Cleaner Air Exhaust	1.0
10.50	Woodworking Waste Collection Operations	29.5
11.10	Coal Processing: Thermal Incinerator	21.3
11.20	Lightweight Aggregate (Clay): Reciprocating Grate Clinker Cooler	19.3
11.21	Phosphate Rock Processing: Oil-Fired Rotary Drier	15.7
11.21	Phosphate Rock Processing: Ball Mill	6.5
11.21	Phosphate Rock Processing: Roller Mill and Bowl Mill Grinding	21.0
Average Pa	article Size Distribution	15.3

Computation

Project	American Crystal Sugar Company
Subject	Drayton Expansion 2022 - Past Actual Emissions
Task	EU13/EP13a-f Belgian Lime Kiln

Production Parameters

Operating Scenario	Hours	Fuel Throughput (tph)	Fuel Heat Content (Btu/lb)	Max Heat Input (MMBtu/hr)	Limerock Throughput (tph)	Lime Production (tph)
Startup	72	0.48	13,300	12.7	4.8	2.7
Normal	6,579	1.19	13,300	31.7	11.9	6.7

Kiln Vent Emissions: 40% of combustion gas flow.

Criteria Air Pollutants	CAS#	Combustion Emission Factor		Kiln Vent		Kiln Vent Emissions	
		(value)	(units)	(lb/hr)	(% flow)	(lb/hr)	(tpy)
Nitrogen Oxides (NO _x) ^a	10102-43-9	1.753	lb/ton limerock	20.9	40%	8.4	27.51
Carbon Monoxide (CO) ^b	630-08-0	32.432	lb/ton limerock	386.8	40%	154.7	508.96
Particulate Matter (PM) ^c	-	0.669	lb/ton limerock	8.0	40%	3.2	10.50
Particulate Matter < 10 Microns (PM ₁₀) ^c	-	0.669	lb/ton limerock	8.0	40%	3.2	10.50
Particulate Matter < 2.5 Microns (PM _{2.5}) ^d	-	0.080	lb/ton limerock	1.0	40%	0.4	1.26
Volatile Organic Compounds (VOC) ^e	-	0.030	lb/ton limerock	0.4	40%	0.1	0.47
Carbon Dioxide (CO ₂) ^f	-	1,733	lb/ton limerock	20670.5	40%	8268.2	27,196
Sulfur Dioxide (SO ₂) ⁹	7446-09-5	3.000	lb/ton limerock	35.8	40%	14.3	47.08
Lead (Pb) ^h	7439-92-1	8.89E-04	lb/ton limerock	0.0	40%	0.0	0.014
Acid Gases (HF, H ₂ SO ₄) [']		negl.	lb/ton limerock	0.000	40%	0.0	0.000

 $^{\rm a}$ NO_{\rm x} emissions based on maximum of European kiln data, which ranges from 3.89 to 19.46 lb/hr

 $^{\rm b}$ CO emissions based on engineering test of similar kiln (HLB), 360 lb/hr

^c PM/PM₁₀ emissions based on 2007 source test (7.423 lb/hr)

^d PM_{2.5} emissions are calculated as 12% of PM₁₀ emissions using particle size distribution for rotary kilns, AP42, Table 11.17-7. Condensables, AP42, Table 11.17-2

e VOC emissions based on AP42, Table 1.2-6, for anthracite coal combustion.

 $^{\rm f}\,{\rm CO}_2$ emissions based on manufacturer mass balance production information for similar kiln

⁹ SO₂ emissions based on 1.5% sulfur fuel and an assumed 50% retention for combustion process. This is equivalent to AP42, Table 11.17-6, for rotary kilns.

^h Pb emissions based on AP42, Table 1.2-3, for anthracite coal combustion.

¹Based on the high retention of SO₂ in the combustion process and the preferential removal of acid gases, emissions are anticipated to be negligible.

Carbonation Vent Emissions: Remaining 60% of combustion gas flow after carbonation process control.

Critorio Air Bollutonto	CA8#	Uncontroll	d Emissions	Carbonation	Amount of	Carbonatio	on Process
	CA3#	(lb/hr)	(tpy)	(%)	(%)	(lb/hr)	(tpy)
Nitrogen Oxides (NO _x)	10102-43-9	20.9	68.78	0%	60%	12.5	41.27
Carbon Monoxide (CO)	630-08-0	386.8	1272.40	0%	60%	232.1	763.44
Particulate Matter (PM)	-	8.0	26.25	100.0%	60%	0.0	0.00
Particulate Matter < 10 Microns (PM ₁₀)	-	8.0	26.25	100.0%	60%	0.0	0.00
Particulate Matter < 2.5 Microns (PM _{2.5})	-	1.0	3.15	100.0%	60%	0.0	0.00
Volatile Organic Compounds (VOC)	-	0.4	1.18	0%	60%	0.2	0.71
Carbon Dioxide (CO ₂)	-	20670.5	67,990	75%	60%	3,101	10,199
Sulfur Dioxide (SO ₂)	7446-09-5	35.8	117.70	95%	60%	1.1	3.53
Lead (Pb)	7439-92-1	0.0	0.03	100.0%	60%	0.000	0.000
Acid Gases (HF, H ₂ SO ₄)		0.0	0.000	95%	60%	0.000	0.000

^a Carbonation process controls 100% of remaining particulate matter and 95% of remaining SO ₂/acid gases. 75% of CO₂ is abosorbed in the carbonation process and recombined with CaO to form CaCO₃.

EUI 11 Lime Kiln Past Actual Emissions

Criteria Air Pollutants	Kiln Vent Emissions (normal operations)		Carbonation Pro	Total Emissions	
	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(tpy)
Nitrogen Oxides (NO _x)	8.36	27.5	12.55	41.3	68.78
Carbon Monoxide (CO)	154.73	509.0	232.10	763.4	1272.40
Particulate Matter (PM)	3.19	10.5	0.00	0.0	10.50
Particulate Matter < 10 Microns (PM ₁₀)	3.19	10.5	0.00	0.0	10.50
Particulate Matter < 2.5 Microns (PM _{2.5})	0.38	1.3	0.00	0.0	1.26
Volatile Organic Compounds (VOC)	0.14	0.5	0.21	0.7	1.18
Carbon Dioxide (CO ₂)	8268.19	27196.1	3,101	10,199	37394.70
Sulfur Dioxide (SO ₂)	14.31	47.1	1.07	3.5	50.61
Lead (Pb)	0.00	0.0	0.000	0.000	0.01
Acid Gases (HF, H ₂ SO ₄)	0.00	0.0	0.000	0.000	0.00

Job No. 10352890

.

Computed	GJR
Checked	КВ
Sheets	NA

Project	American Crystal Sugar Company
Subject	Drayton Expansion 2022 - Past Actual Emissions
Task	EU14a/EP14a MAC 2 Flow Headhouse

Hours	Throughput (tph)	Flowrate (acfm)
8,760	NA	20,000

Job No.	10352890
Computed	GJR
Checked	KB
Sheets	NA

PSD Regulated Air Pollutants	CAS#	Emission Factor	Potential Emissions	
		(gr/cf)	(lb/hr)	(tpy)
Particulate Matter (PM) ^a	-	0.020	3.4	15.0
Particulate Matter < 10 Microns (PM ₁₀) ^b	-	0.020	3.4	15.0
Particulate Matter < 2.5 Microns (PM _{2.5}) ^c	-	0.005	0.8	3.5

Notes:

^a Air Emission Permit No. T5-X73015

 $^{\rm b}$ $\rm PM_{10}$ filterable is equal to PM filterable

 $^{\rm c}$ PM $_{2.5}$ emissions are 23.2% of PM filterable based on following average parameters:

^d Production parameters based on 2017/2018 operating year average

		PIVI _{2.5}
Section	Source Type	(%less than)
8.XX	Boric Acid Dryer	3.3
8.XX	Potash (Postassium Sulfate) Dryer	18.0
10.50	Woodworking Waste Collection Operations	14.3
11.10	Coal Cleaning: Dry Process	16.0
11.20	Lightweight Aggregate (Clay): Reciprocating Grate Clinker Cooler	39.0
11.21	Phosphate Rock Processing: Roller Mill and Bowl Mill Grinding	25.0
11.XX	Nonmetalic Minerals: Fluorspar Ore Rotary Drum Dryer	10.0
12.10	Primary Aluminum Production: Bauxite Ore Storage Storage	50.0
12.15	Storage Battery Production: Lead Oxide Mill	32.8
Average F	Particle Size Distribution	23.2

Job No.	10352890

Project	American Crystal Sugar Company
Subject	Drayton Expansion 2022 - Past Actual Emissions
Task	EU14b & EU 14c/EP14b Hummer Pulsaire and MAC

Hours	Throughput (tph)	Flowrate (acfm)
8,760	NA	19,000

Computed	GJR
Checked	KB
Sheets	NA

...

PSD Regulated Air Pollutants	CAS#	Emission Factor	Potential Emissions	
		(gr/cf)	(lb/hr)	(tpy)
Particulate Matter (PM) ^a	-	0.020	3.3	14.3
Particulate Matter < 10 Microns (PM ₁₀) ^b	-	0.020	3.3	14.3
Particulate Matter < 2.5 Microns (PM _{2.5}) ^c	-	0.005	0.8	3.3

Notes:

^a Air Emission Permit No. T5-X73015

 $^{\rm b}$ $\rm PM_{10}$ filterable is equal to PM filterable

 $^{\rm c}$ PM $_{2.5}$ emissions are 23.2% of PM filterable based on following average parameters:

^d Production parameters based on 2017/2018 operating year average

Section	Source Type	PM _{2.5} (%less than)
8.XX	Boric Acid Dryer	3.3
8.XX	Potash (Postassium Sulfate) Dryer	18.0
10.50	Woodworking Waste Collection Operations	14.3
11.10	Coal Cleaning: Dry Process	16.0
11.20	Lightweight Aggregate (Clay): Reciprocating Grate Clinker Cooler	39.0
11.21	Phosphate Rock Processing: Roller Mill and Bowl Mill Grinding	25.0
11.XX	Nonmetalic Minerals: Fluorspar Ore Rotary Drum Dryer	10.0
12.10	Primary Aluminum Production: Bauxite Ore Storage Storage	50.0
12.15	Storage Battery Production: Lead Oxide Mill	32.8
Average F	Particle Size Distribution	23.2

Project	American Crystal Sugar Company
Subject	Drayton Expansion 2022 - Past Actual Emissions
Task	EU15/EP15 Pulp Pellet Bin No. 1

Hours	Throughput (tph)	Flowrate (acfm)
8,760	NA	2,140

Job No.	10352890
Computed	GJR
Checked	KB
Sheets	NA

PSD Regulated Air Pollutants	CAS#	Emission Factor	Potential Emissions	
		(gr/cf)	(lb/hr)	(tpy)
Particulate Matter (PM) ^a	-	0.020	0.367	1.6
Particulate Matter < 10 Microns (PM ₁₀) ^b	-	0.020	0.367	1.6
Particulate Matter < 2.5 Microns (PM _{2.5}) ^c	-	0.003	0.055	0.2

Notes:

^a Air Emission Permit No. T5-X73015

 $^{\rm b}$ $\rm PM_{10}$ filterable is equal to PM filterable

 $^{\rm c}$ $\rm PM_{2.5}$ emissions are 15% of $\rm PM_{10}$ filterable based on AP42 Chapter 13.2.4

^d Source is uncontrolled, flowrate based on material displacement

^e Production parameters based on 2017/2018 operating year average

Project	American Crystal Sugar Company
Subject	Drayton Expansion 2022 - Past Actual Emissions
Task	EU16/EP16 Pulp Pellet Bin No. 2

Hours	Throughput (tph)	Flowrate (acfm)
8,760	NA	2,140

Job No.	10352890
Computed	GJR
Checked	KB
Sheets	NA

PSD Regulated Air Pollutants	CAS#	Emission Factor	Potential Emissions	
		(gr/cf)	(lb/hr)	(tpy)
Particulate Matter (PM) ^a	-	0.020	0.367	1.6
Particulate Matter < 10 Microns (PM ₁₀) ^b	-	0.020	0.367	1.6
Particulate Matter < 2.5 Microns (PM _{2.5}) ^c	-	0.003	0.055	0.2

Notes:

^a Air Emission Permit No. T5-X73015

 $^{\rm b}$ $\rm PM_{10}$ filterable is equal to PM filterable

 $^{\rm c}$ $\rm PM_{2.5}$ emissions are 15% of $\rm PM_{10}$ filterable based on AP42 Chapter 13.2.4

^d Source is uncontrolled, flowrate based on material displacement

^e Production parameters based on 2017/2018 operating year average

Project	American Crystal Sugar Company
Subject	Drayton Expansion 2022 - Past Actual Emissions
Task	EU17/EP17 Pulp Pellet Bin No. 3

Hours	Throughput (tph)	Flowrate (acfm)
8,760	NA	2,140

Job No.	10352890
Computed	GJR
Checked	KB
Sheets	NA

PSD Regulated Air Pollutants	CAS#	Emission Factor	Potential Emissions	
		(gr/cf)	(lb/hr)	(tpy)
Particulate Matter (PM) ^a	-	0.020	0.367	1.6
Particulate Matter < 10 Microns (PM ₁₀) ^b	-	0.020	0.367	1.6
Particulate Matter < 2.5 Microns (PM _{2.5}) ^c	-	0.003	0.055	0.2

Notes:

^a Air Emission Permit No. T5-X73015

 $^{\rm b}$ $\rm PM_{10}$ filterable is equal to PM filterable

 $^{\rm c}$ $\rm PM_{2.5}$ emissions are 15% of $\rm PM_{10}$ filterable based on AP42 Chapter 13.2.4

^d Source is uncontrolled, flowrate based on material displacement

^e Production parameters based on 2017/2018 operating year average

Project	American Crystal Sugar Company
Subject	Drayton Expansion 2022 - Past Actual Emissions
Task	EU19a/EP19a Bulk Loading Pulsaire

Hours	Throughput (tph)	Flowrate (acfm)
8,760	NA	2,560

Job No.	10352890
Computed	GJR
Checked	KB
Sheets	NA

PSD Regulated Air Pollutants	CAS#	Emission Factor	Potential Emissions	
		(gr/cf)	(lb/hr)	(tpy)
Particulate Matter (PM) ^a	-	0.005	0.110	0.5
Particulate Matter < 10 Microns (PM ₁₀) ^b	-	0.005	0.110	0.5
Particulate Matter < 2.5 Microns (PM _{2.5}) ^c	-	0.001	0.025	0.1

Notes:

^a Air Emission Permit No. T5-X73015

 $^{\rm b}$ $\rm PM_{10}$ filterable is equal to PM filterable

 $^{\rm c}$ PM $_{2.5}$ emissions are 23.2% of PM filterable based on following average parameters:

^d Production parameters based on 2017/2018 operating year average

		PIVI _{2.5}
Section	Source Type	(%less than)
8.XX	Boric Acid Dryer	3.3
8.XX	Potash (Postassium Sulfate) Dryer	18.0
10.50	Woodworking Waste Collection Operations	14.3
11.10	Coal Cleaning: Dry Process	16.0
11.20	Lightweight Aggregate (Clay): Reciprocating Grate Clinker Cooler	39.0
11.21	Phosphate Rock Processing: Roller Mill and Bowl Mill Grinding	25.0
11.XX	Nonmetalic Minerals: Fluorspar Ore Rotary Drum Dryer	10.0
12.10	Primary Aluminum Production: Bauxite Ore Storage Storage	50.0
12.15	Storage Battery Production: Lead Oxide Mill	32.8
Average Particle Size Distribution		

Project	American Crystal Sugar Company
Subject	Drayton Expansion 2022 - Past Actual Emissions
Task	EU19b/EP19b North Bulk Sugar Loadout

Hours	Throughput	Flowrate
	(tph)	(acfm)
8,760	NA	12,000

10352890
GJR
KB
NA

PSD Regulated Air Pollutants	CAS#	Emission Factor	Potential	Emissions
		(gr/cf)	(lb/hr)	(tpy)
Particulate Matter (PM) ^a	-	0.005	0.514	2.3
Particulate Matter < 10 Microns (PM ₁₀) ^b	-	0.005	0.514	2.3
Particulate Matter < 2.5 Microns (PM _{2.5}) ^c	-	0.001	0.119	0.5

Notes:

^a Air Emission Permit No. T5-X73015

 $^{\rm b}$ $\rm PM_{10}$ filterable is equal to PM filterable

 $^{\rm c}$ PM $_{2.5}$ emissions are 23.2% of PM filterable based on following average parameters:

^d Production parameters based on 2017/2018 operating year average

		PM _{2.5}
Section	Source Type	(%less than)
8.XX	Boric Acid Dryer	3.3
8.XX	Potash (Postassium Sulfate) Dryer	18.0
10.50	Woodworking Waste Collection Operations	14.3
11.10	Coal Cleaning: Dry Process	16.0
11.20	Lightweight Aggregate (Clay): Reciprocating Grate Clinker Cooler	39.0
11.21	Phosphate Rock Processing: Roller Mill and Bowl Mill Grinding	25.0
11.XX	Nonmetalic Minerals: Fluorspar Ore Rotary Drum Dryer	10.0
12.10	Primary Aluminum Production: Bauxite Ore Storage Storage	50.0
12.15	Storage Battery Production: Lead Oxide Mill	32.8
Average P	article Size Distribution	23.2

Computation

Project	American Crystal Sugar Company
Subject	Drayton Expansion 2022 - Past Actual Emissions
Task	EU19c/EP19c South Bulk Sugar Loadout

Hours	Throughput (tph)	Flowrate (acfm)
8,760	NA	10,000

Job No.	10352890
Computed	GJR
Checked	KB
Sheets	NA

PSD Regulated Air Pollutants	CAS#	Emission Factor	Potential Emissions	
		(gr/cf)	(lb/hr)	(tpy)
Particulate Matter (PM) ^a	-	0.005	0.429	1.9
Particulate Matter < 10 Microns (PM ₁₀) ^b	-	0.005	0.429	1.9
Particulate Matter < 2.5 Microns (PM _{2.5}) ^c	-	0.001	0.099	0.4

Notes:

^a Air Emission Permit No. T5-X73015

 $^{\rm b}$ $\rm PM_{10}$ filterable is equal to PM filterable

 $^{\rm c}$ PM $_{2.5}$ emissions are 23.2% of PM filterable based on following average parameters:

^d Production parameters based on 2017/2018 operating year average

		PM _{2.5}
Section	Source Type	(%less than)
8.XX	Boric Acid Dryer	3.3
8.XX	Potash (Postassium Sulfate) Dryer	18.0
10.50	Woodworking Waste Collection Operations	14.3
11.10	Coal Cleaning: Dry Process	16.0
11.20	Lightweight Aggregate (Clay): Reciprocating Grate Clinker Cooler	39.0
11.21	Phosphate Rock Processing: Roller Mill and Bowl Mill Grinding	25.0
11.XX	Nonmetalic Minerals: Fluorspar Ore Rotary Drum Dryer	10.0
12.10	Primary Aluminum Production: Bauxite Ore Storage Storage	50.0
12.15	Storage Battery Production: Lead Oxide Mill	32.8
Average Particle Size Distribution		

Project	American Crystal Sugar Company
Subject	Drayton Expansion 2022 - Past Actual Emissions
Task	EU20/EP20 Main Sugar Warehouse Pulsaire

Hours	Throughput (tph)	Flowrate (acfm)
8,760	NA	10,500

Job No.	10352890
Computed	GJR
Checked	KB
Sheets	NA

PSD Regulated Air Pollutants	CAS#	Emission Factor	Potential	Emissions
		(gr/cf)	(lb/hr)	(tpy)
Particulate Matter (PM) ^a	-	0.005	0.450	2.0
Particulate Matter < 10 Microns (PM ₁₀) ^b	-	0.005	0.450	2.0
Particulate Matter < 2.5 Microns (PM _{2.5}) ^c	-	0.001	0.104	0.5

Notes:

^a Air Emission Permit No. T5-X73015

 $^{\rm b}$ $\rm PM_{10}$ filterable is equal to PM filterable

 $^{\rm c}$ PM $_{2.5}$ emissions are 23.2% of PM filterable based on following average parameters:

^d Production parameters based on 2017/2018 operating year average

AP-42, Appendix B, Particle Size Distribution For Fabric Filter Controlled Sources:

		PIVI _{2.5}
Section	Source Type	(%less than)
8.XX	Boric Acid Dryer	3.3
8.XX	Potash (Postassium Sulfate) Dryer	18.0
10.50	Woodworking Waste Collection Operations	14.3
11.10	Coal Cleaning: Dry Process	16.0
11.20	Lightweight Aggregate (Clay): Reciprocating Grate Clinker Cooler	39.0
11.21	Phosphate Rock Processing: Roller Mill and Bowl Mill Grinding	25.0
11.XX	Nonmetalic Minerals: Fluorspar Ore Rotary Drum Dryer	10.0
12.10	Primary Aluminum Production: Bauxite Ore Storage Storage	50.0
12.15	Storage Battery Production: Lead Oxide Mill	32.8
Average Particle Size Distribution		23.2

Project	American Crystal Sugar Company
Subject	Drayton Expansion 2022 - Past Actual Emissions
Task	EU22/EP22 Pulp Pellet Mill & Cooler

Hours	Throughput (tph)	Flowrate (acfm)
6,579	15.0	9,998

Job No.	10352890
Computed	GJR
Checked	KB
Sheets	NA

PSD Regulated Air Pollutants	CAS#	Emission Factor	Potential	Emissions
		(lb/ton)	(lb/hr)	(tpy)
Particulate Matter (PM) ^a	-	0.02	0.24	0.8
Particulate Matter < 10 Microns (PM ₁₀) ^b	-	0.02	0.24	0.8
Particulate Matter < 2.5 Microns (PM _{2.5}) ^c	-	0.002	0.04	0.1

Notes:

^a PM emissions based on 2008 source test (0.243 lb/hr)

 $^{\rm b}$ $\rm PM_{10}$ filterable is equal to PM filterable

 $^{\rm c}$ PM $_{2.5}$ emissions are 15.3% of PM filterable based on following average parameters:

^d Production parameters based on 2017/2018 operating year average

AP-42, Appendix B, Particle Size Distribution For Multiclone Controlled Sources:

	PIVI _{2.5}
Source Type	(% less than)
Cotton Ginning: Battery Condensor	8.0
Cotton Ginning: Lint Cleaner Air Exhaust	1.0
Woodworking Waste Collection Operations	29.5
Coal Processing: Thermal Incinerator	21.3
Lightweight Aggregate (Clay): Reciprocating Grate Clinker Cooler	19.3
Phosphate Rock Processing: Oil-Fired Rotary Drier	15.7
Phosphate Rock Processing: Ball Mill	6.5
Phosphate Rock Processing: Roller Mill and Bowl Mill Grinding	21.0
Average Particle Size Distribution	
	Source Type Cotton Ginning: Battery Condensor Cotton Ginning: Lint Cleaner Air Exhaust Woodworking Waste Collection Operations Coal Processing: Thermal Incinerator Lightweight Aggregate (Clay): Reciprocating Grate Clinker Cooler Phosphate Rock Processing: Oil-Fired Rotary Drier Phosphate Rock Processing: Ball Mill Phosphate Rock Processing: Roller Mill and Bowl Mill Grinding article Size Distribution

Project	American Crystal Sugar Company
Subject	Drayton Expansion 2022 - Past Actual Emissions
Task	EU23/EP23 Pulp Dryer Coal Hopper

Hours	Throughput (tph)	Flowrate (acfm)
6,579	NA	5,200

Job No.	10352890
Computed	GJR
Checked	KB
Sheets	NA

PSD Regulated Air Pollutants	CAS#	Emission Factor	ctor Potential Emissions	
		(gr/cf)	(lb/hr)	(tpy)
Particulate Matter (PM) ^a	-	0.020	0.89	2.9
Particulate Matter < 10 Microns (PM ₁₀) ^b	-	0.020	0.89	2.9
Particulate Matter < 2.5 Microns (PM _{2.5}) ^c	-	0.005	0.21	0.7

Notes:

^a Air Emission Permit No. T5-X73015

 $^{\rm b}$ ${\rm PM}_{\rm 10}$ filterable is equal to PM filterable

 $^{\rm c}$ PM $_{2.5}$ emissions are 23.2% of PM filterable based on following average parameters:

^d Production parameters based on 2017/2018 operating year average

		PIVI _{2.5}
Section	Source Type	(%less than)
8.XX	Boric Acid Dryer	3.3
8.XX	Potash (Postassium Sulfate) Dryer	18.0
10.50	Woodworking Waste Collection Operations	14.3
11.10	Coal Cleaning: Dry Process	16.0
11.20	Lightweight Aggregate (Clay): Reciprocating Grate Clinker Cooler	39.0
11.21	Phosphate Rock Processing: Roller Mill and Bowl Mill Grinding	25.0
11.XX	Nonmetalic Minerals: Fluorspar Ore Rotary Drum Dryer	10.0
12.10	Primary Aluminum Production: Bauxite Ore Storage Storage	50.0
12.15	Storage Battery Production: Lead Oxide Mill	32.8
Average F	Particle Size Distribution	23.2

Job No. 10352890

Project	American Crystal Sugar Company
Subject	Drayton Expansion 2022 - Past Actual Emissions
Task	EU25/EP24 Flume Lime Slaker

Hours	Throughput (tph)	Flowrate (acfm)
0	0.5	NA

Computed	GJR
Checked	KB
Sheets	NA

DID NOT OPERATE DURING BASELINE PERIOD

PSD Regulated Air Pollutants	CAS#	Emission Factor	Potential Emissions	
		(lb/ton)	(lb/hr)	(tpy)
Particulate Matter (PM) ^a	-	0.08	0.04	0.00
Particulate Matter < 10 Microns (PM ₁₀) ^b	-	0.08	0.04	0.00
Particulate Matter < 2.5 Microns (PM _{2.5}) ^c	-	0.03	0.01	0.00

Notes:

^a AP42 Table 11.17-2

 $^{\rm b}$ ${\rm PM}_{\rm 10}$ filterable is equal to PM filterable

 $^{\rm c}$ $\rm PM_{2.5}$ filterable is 37.1% of PM based on the average parameters listed below

^d Air Emission Permit No. T5-X73015 - insignificant activity

^e Flowrate is passive as a result of exothermic process

^f Did not operate during baseline period

		PM _{2.5}
Section	Source Type	(% less than)
9.70	Cotton Ginning: Battery Condensor	11.0
9.70	Cotton Ginning: Lint Cleaner Air Exhaust	11.0
10.50	Woodworking Waste Collection Operations	29.5
11.10	Coal Cleaning: Thermal Dryer	53.0
11.10	Coal Processing: Thermal Incinerator	21.3
11.20	Lightweight Aggregate (Clay): Rotary Kiln	55.0
11.20	Lightweight Aggregate (Clay): Reciprocating Grate Clinker Cooler	19.3
11.20	Lightweight Aggregate (Slate): Rotary Kiln	33.0
11.21	Phosphate Rock Processing: Calciner	94.0
11.21	Phosphate Rock Processing: Oil-Fired Rotary Drier	89.0
11.21	Phosphate Rock Processing: Oil-Fired Rotary Drier	15.7
11.21	Phosphate Rock Processing: Ball Mill	6.5
11.21	Phosphate Rock Processing: Roller Mill and Bowl Mill Grinding	21.0
12.10	Primary Aluminum Production: Bauxite Processing	60.5
Average F	Particle Size Distribution	37.1

Project	American Crystal Sugar Company
Subject	Drayton Expansion 2022 - Past Actual Emissions
Task	EU26/EP25 Lime Slaker

Hours	Throughput (tph)	Flowrate (acfm)
6,579	11.9	4,500

Job No.	10352890
Computed	GJR
Checked	KB
Sheets	NA

D Regulated Air Pollutants CAS# Emission F		Emission Factor	Potential Emissions	
		(lb/ton)	(lb/hr)	(tpy)
Particulate Matter (PM) ^a	-	0.08	0.95	3.14
Particulate Matter < 10 Microns (PM ₁₀) ^b	-	0.08	0.95	3.14
Particulate Matter < 2.5 Microns (PM _{2.5}) ^c	-	0.03	0.35	1.17

Notes:

^a AP42 Table 11.17-2

 $^{\rm b}$ ${\rm PM}_{\rm 10}$ filterable is equal to PM filterable

 $^{\rm c}$ PM $_{2.5}$ filterable is 37.1% of PM based on the average parameters listed below

 $^{\rm d}$ Flowrate is passive as a result of exothermic process

^e Production parameters based on 2017/2018 operating year average

		PM _{2.5}
Section	Source Type	(% less than)
9.70	Cotton Ginning: Battery Condensor	11.0
9.70	Cotton Ginning: Lint Cleaner Air Exhaust	11.0
10.50	Woodworking Waste Collection Operations	29.5
11.10	Coal Cleaning: Thermal Dryer	53.0
11.10	Coal Processing: Thermal Incinerator	21.3
11.20	Lightweight Aggregate (Clay): Rotary Kiln	55.0
11.20	Lightweight Aggregate (Clay): Reciprocating Grate Clinker Cooler	19.3
11.20	Lightweight Aggregate (Slate): Rotary Kiln	33.0
11.21	Phosphate Rock Processing: Calciner	94.0
11.21	Phosphate Rock Processing: Oil-Fired Rotary Drier	89.0
11.21	Phosphate Rock Processing: Oil-Fired Rotary Drier	15.7
11.21	Phosphate Rock Processing: Ball Mill	6.5
11.21	Phosphate Rock Processing: Roller Mill and Bowl Mill Grinding	21.0
12.10	Primary Aluminum Production: Bauxite Processing	60.5
Average F	Particle Size Distribution	37.1

Project	American Crystal Sugar Company
Subject	Drayton Expansion 2022 - Past Actual Emissions
Task	Fug 1 Pellet Loadout Area

Hours	Throughput (tph)	Flowrate (acfm)	
6579	16.8	NA	

|--|

Computed	GJR
Checked	KB
Sheets	NA

PSD Regulated Air Pollutants	CAS#	Emission Factor	Potential Emissions	
		(lb/ton)	(lb/hr)	(tpy)
Particulate Matter (PM) ^a	-	0.027	0.45	1.49
Particulate Matter < 10 Microns (PM ₁₀) ^b	-	0.027	0.45	1.49
Particulate Matter < 2.5 Microns (PM _{2.5}) ^c	-	0.00037	0.01	0.02

Notes:

^a AP-42, Chapter 9.9.1, Grain Elevators and Process, Rail Car Shipping/Loading

^b Air Emission Permit No. T5-X73015 - insignificant activity

^c Potential emissions based on a single dump/loading operation of total material throughput

^d Production parameters based on 2017/2018 operating year average

FSS	Computation	Job No.	10352890
Designet	American Cryptal Sugar Company		CIR
Project	American Crystal Sugar Company	Computed	GJR
Subject	Drayton Expansion 2022 - Past Actual Emissions	Checked	KB
Task	Fug 2a Coal Handling Emissions	Sheets	NA

Calculation Assumptions:

Material throughput (maximum):	21.5 ton/hr
Moisture content ^a :	4.50 %
Mean wind speed:	10.3 mph (Grand Forks, ND)

Material Handling Emission Factor^a:

$$E = k(0.0032) \qquad \frac{(U/5)^{1.3}}{(M/2)^{1.4}} \qquad E = \text{emission factor (lb/ton)} \\ k (PM_{10}) = \text{particle size constant (0.35)} \\ k (PM_{2.5}) = \text{particle size constant (0.053)} \\ U = \text{mean wind speed (mph)} \\ M = \text{material moisture content (\%)} \end{cases}$$

Material handling emission factor (PM ₁₀):	9.21E-04 lb/ton
Material handling emission factor (PM _{2.5}):	5.33E-06 lb/ton

Material Handling (Dumping) Potentilal Emissions:

Material dump emissions (PM ₁₀) ^C :	0.020 lb/hr	0.087 ton/yr
Material dump emissions (PM _{2.5}) ^C :	0.000 lb/hr	0.001 ton/yr

^a AP-42, Chapter 13.2.4, Aggregate Handling and Storage Piles

^c Potential emissions based on a single dump operation of total material throughput

FJS	Computation	Job No.	10352890
Project	American Crystal Sugar Company	Computed	GJR
Subject	Drayton Expansion 2022 - Past Actual Emissions	Checked	KB
Task	Fug 2b Coal Handling Wind Erosion	Sheets	NA

Storage Pile Data:

Active Spent Lime Disposal Area: Short Term Emission Basis: 1.0 acres10 percent of pile disturbed daily

Emission Factor Calculation^a:

19.7 m/sec	Maximum 2-min wind speed (U ₁₀) [°] :
0.55 m/sec	Threshold friction velocity $(U_t)^c$
conical	Pile Orientation (A) ^d
0.5 constant	PM ₁₀ multiplier (k):
0.075 constant	PM _{2.5} multiplier (k):

Pile	Wind	Surface Wind	Friction	Friction	Threshold	Pile	Subarea
Subarea	Speed	Speed	Velocity	Threshold	Comparison	Area	Pile Size
U _s /U _r	U ₁₀	Us	U*	Ut	Yes or No		
		[U ₁₀ (U _s /U _r)]	[0.1U _s]		$[U^* > U_t]$		
(na)	(m/s)	(m/s)	(m/s)	(m/s)	(na)	(%)	(m ²)
0.2	19.7	3.94	0.394	0.55	No	5	202
0.2	19.7	3.94	0.394	0.55	No	35	1,416
0.6	19.7	11.82	1.182	0.55	Yes	48	1,943
0.9	19.7	17.73	1.773	0.55	Yes	12	486

For U*>U_t: P (g/m^2) = 58 $(U^* - U_t)^2$ + 25 $(U^* - U_t)$ E (lb/disturbance) = (k)(P)(Area)/(453.59 g/lb)

Pile			
Subarea	Р	E PM ₁₀	E PM _{2.5}
U _s /U _r	(g/m ²)	(lb/dist.)	(lb/dist.)
0.2	0.0	0.0	0.0
0.2	0.0	0.0	0.0
0.6	39.0	83.4	12.5
0.9	117.3	62.8	9.4
Total Pile Emis	sions	146.2	21.9

Emission Rate Calculation:

Emissions based on 5% of pile disturbed per 24-hrs:	PM ₁₀		PM _{2.5}	PM _{2.5}	
	0.61	lb/hr	0.09	lb/hr	
	2.67	tons/yr	0.40	tons/yr	

^a AP-42, Chapter 13.2.5, Industrial Wind Erosion

^b Grand Forks, ND, fastest mile

^c AP-42, Table 13.2.5-2, Ground Coal

^d AP-42, Figure 13.2.5-2, Contours of normalized surface windspeeds.

FJS	Computation	Job No.	10352890
Project	American Crystal Sugar Company	Computed	GJR
Subject	Drayton Expansion 2022 - Past Actual Emissions	Checked	KB
Task	Fug 3 Limerock & Coke Handling Emissions	Sheets	NA

Calculation Assumptions:

Material throughput (maximum):	13.1 ton/hr
Moisture content ^a :	2.10 %
Mean wind speed:	10.3 mph (Grand Forks, ND)

Material Handling Emission Factor^a:

$$E = k(0.0032) \qquad \frac{(U/5)^{1.3}}{(M/2)^{1.4}} \qquad E = \text{emission factor (lb/ton)} \\ k (PM_{10}) = \text{particle size constant (0.35)} \\ k (PM_{2.5}) = \text{particle size constant (0.053)} \\ U = \text{mean wind speed (mph)} \\ M = \text{material moisture content (\%)} \end{cases}$$

Material handling emission factor (PM ₁₀):	2.68E-03 lb/ton
Material handling emission factor (PM _{2.5}):	3.94E-06 lb/ton

Material Handling (Dumping) Potentilal Emissions:

Material dump emissions (PM ₁₀) ^C :	0.035 lb/hr	0.154 ton/yr
Material dump emissions (PM _{2.5}) ^C :	0.000 lb/hr	0.000 ton/yr

^a AP-42, Chapter 13.2.4, Aggregate Handling and Storage Piles

^c Potential emissions based on a single dump operation of total material throughput

FSS	Computation	Job No.	10352890
Project	American Crystal Sugar Company	Computed	GJR
Subject	Drayton Expansion 2022 - Past Actual Emissions	Checked	KB
Task	Fug 4 Spent Lime Wind Erosion	Sheets	NA
Subject Task	Drayton Expansion 2022 - Past Actual Emissions Fug 4 Spent Lime Wind Erosion	Checked	t

Storage Pile Data:

Active Spent Lime Disposal Area: Short Term Emission Basis: 3.0 acres5 percent of pile disturbed daily

Emission Factor Calculation^a:

Maximum 2-min wind speed $(U_{10})^{b}$:	19.7 m/sec
Threshold friction velocity $(U_t)^c$	1.02 m/sec
Pile Orientation (A) ^d	conical
PM ₁₀ multiplier (k):	0.5 constant
PM _{2.5} multiplier (k):	0.075 constant

Pile	Wind	Surface Wind	Friction	Friction	Threshold	Pile	Subarea
Subarea	Speed	Speed	Velocity	Threshold	Comparison	Area	Pile Size
U _s /U _r	U ₁₀	Us	U*	Ut	Yes or No		
		[U ₁₀ (U _s /U _r)]	[0.1U _s]		$[U^* > U_t]$		
(na)	(m/s)	(m/s)	(m/s)	(m/s)	(na)	(%)	(m ²)
0.2	19.7	3.94	0.394	1.02	No	5	607
0.2	19.7	3.94	0.394	1.02	No	35	4,249
0.6	19.7	11.82	1.182	1.02	Yes	48	5,828
0.9	19.7	17.73	1.773	1.02	Yes	12	1,457

For U*>U_t: P (g/m^2) = 58 $(U^* - U_t)^2$ + 25 $(U^* - U_t)$ E (lb/disturbance) = (k)(P)(Area)/(453.59 g/lb)

Pile			
Subarea	Р	E PM ₁₀	E PM _{2.5}
U _s /U _r	(g/m²)	(lb/dist.)	(lb/dist.)
0.2	0.0	0.0	0.0
0.2	0.0	0.0	0.0
0.6	5.6	35.8	5.4
0.9	51.7	83.0	12.5
Total Pile Emis	sions	118.8	17.8

Emission Rate Calculation:

Emissions based on 5% of pile disturbed per 24-hrs:	PM_{10}		
	0.25	lb/hr	

1.08

tons/yr

^a AP-42, Chapter 13.2.5, Industrial Wind Erosion

^b Grand Forks, ND, fastest mile

^c AP-42, Table 13.2.5-2, Overburden

^d AP-42, Figure 13.2.5-2, Contours of normalized surface windspeeds.

Page 1 of 1

PM_{2.5} 0.04

0.16

lb/hr

tons/yr

FJS	Computation	Ļ	Job No.	10352890
Project	American Crystal Sugar Company	C	Computed	GJR
Subject	Drayton Expansion 2022 - Past Actual Emissions	c	Checked	
Task	Unpaved Road Fugitive Emissions	5	Sheets	NA

PM Emissions

Vehicle Type	Vehicles Per	Mean Wt.	Round Trip	Silt Content	PM	PM	PM	
	Day	(tons)	(miles)	(%)	(lb/VMT)	(lb/hr)	(tpy)	
Beet Truck	160	25	1.025	4.8	6.77	49.99	170.08	
Coal Truck	13	32.5						
Coke Truck	8	32.5	1.081	4.8	7.54	5.43	18.48	
Anthracite Truck	8	32.5						
Spent Lime	12	22.5	1.305	4.8	6.39	4.17	14.18	
Totals						59.60	202.75	

PM₁₀ Emissions

Vehicle Type Vehicles Per		Mean Wt.	Round Trip	Silt Content	PM ₁₀	PM ₁₀	PM ₁₀		
	Day	(tons)	(miles)	(%)	(lb/VMT)	(lb/hr)	(tpy)		
Beet Truck	160	25	1.025	4.8	1.72	12.74	43.35		
Coal Truck	13	32.5							
Coke Truck	8	32.5	1.081	4.8	1.92	1.38	4.71		
Anthracite Truck	8	32.5							
Spent Lime	12	22.5	1.305	4.8	1.63	1.06	3.61		
Totals	15.19	51.67							

PM_{2.5} Emissions

Vehicle Type	Vehicles Per	Mean Wt.	Round Trip	Silt Content	PM _{2.5}	PM _{2.5}	PM _{2.5}	
	Day	(tons)	(miles)	(%)	(lb/VMT)	(lb/hr)	(tpy)	
Beet Truck	160	25	1.025	4.8	0.17	1.27	4.33	
Coal Truck	13	32.5						
Coke Truck	8	32.5	1.081	4.8	0.19	0.14	0.47	
Anthracite Truck	8	32.5						
Spent Lime	12	22.5	1.305	4.8	0.16	0.11	0.36	
Totals	-		-			1.52	5.17	

GJR Computed KB Checked NA

10352890

Job No.

Sheets

Project American Crystal Sugar Company Subject Drayton Expansion 2022 - Past Actual Emissions

Baseline Production Data Task

								Baseline Years															
Production Data		2	012	20	013	2	014	2	015	20	016	2	017	20	018	20	19	20	020	20	21	Baseline	Average
Unit	Description	(hrs)	(tons)	(hrs)	(tons)	(hrs)	(tons)	(hrs)	(tons)	(hrs)	(tons)	(hrs)	(tons)	(hrs)	(tons)	(hrs)	(tons)	(hrs)	(tons)	(hrs)	(tons)	(hrs)	(tons)
EU1	Boiler	6,480	104,114	6,552	106,972	6,648	104,250	6,072	97,095	6,840	96,477	6,840	108,125	6,768	109,130	6,624	104,435	6,624	89,045	6,624	98,282	6,804	108,628
EU3	Pulp Dryer 2	6,432	14,866	6,552	16,274	6,648	17,077	6,072	16,507	6,456	15,346	6,509	18,026	6,648	18,135	6,504	14,331	5,712	12,404	5,568	13,697	6,579	18,081
EU4	Pulp Dryer 1	6,432	14,866	6,552	16,274	6,648	17,077	6,072	16,507	6,456	15,346	6,509	18,026	6,648	18,135	6,504	21,497	5,712	18,605	5,568	20,545	6,579	18,081
EU1a	Coal Handling	6,480	104,114	6,552	106,972	6,648	104,250	6,072	97,095	6,840	96,477	6,840	108,126	6,768	109,130	6,624	104,435	6,624	89,045	6,624	98,282	6,804	108,628
EU5	Lime Mixing Tank	6,384	67,688	6,552	81,433	6,648	74,485	6,072	62,754	6,672	76,528	6,509	75,635	6,648	81,296	6,504	83,277	5,712	65,856	-	-	6,579	78,466
EU6	Pellet Mills	6,384	-	6,552	-	6,648	-	6,072	-	6,456	-	6,509	-	6,648	-	6,504	-	5,712	-	5,568	-	6,579	-
EU7	Pellet Mills	6,384	-	6,552	-	6,648	-	6,072	-	6,456	-	6,509	-	6,648	-	6,504	-	5,712	-	5,568	-	6,579	-
EU8	Pellet Mills	6,384	-	6,552	-	6,648	-	6,072	-	6,456	-	6,509	-	6,648	-	6,504	-	5,712	-	5,568	-	6,579	-
EU9	Dry Pulp Conveyor	6,384	-	6,552	-	6,648	-	6,072	-	6,456	-	6,509	-	6,648	-	6,504	-	5,712	-	5,568	-	6,579	-
EU10	Dry Pulp Reclaim	6,324	-	6,552	-	6,648	-	6,072	-	6,456	-	6,509	-	6,648	-	6,504	-	5,712	-	5,568	-	6,579	-
EU11	Dry Pulp Bucket Elevator	6,324	-	6,552	-	6,648	-	6,072	-	6,456	-	6,509	-	6,648	-	6,504	-	5,712	-	5,568	-	6,579	-
EU12	Sugar Dryer/Granulator	6,384	252,898	6,552	264,538	6,648	273,468	6,072	256,005	6,456	292,255	6,509	290,998	6,648	343,750	3,288	155,460	-	-	-	-	6,579	317,374
EU13	Lime Kiln	6,384	67,688	6,552	81,433	6,648	74,485	6,072	62,754	6,456	76,528	6,509	75,635	6,648	81,296	6,504	83,277	5,712	65,856	1,540	22,118	6,579	78,466
EU14a	MAC2 Flow Headhouse	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-
EU14b	Hummer Room Pulsaire	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-
EU14c	Hummer Room MAC	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-
EU15	Pellet Storage 1	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-
EU16	Pellet Storage 2	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-
EU17	Pellet Storage 3	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-
EU19a	Bulk Loading	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-
EU19b	North Bulk Sugar Loadout	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-
EU19c	South Bulk Sugar Loadout	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-
EU20	Main Sugar Warehouse	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-	8,760	-
EU21	Fire Pump	27	-	27	-	27	-	15	-	28	-	24	-	24	-	24	-	24	-	24	-	24	-
EU22	Pellet Mill/Cooler	6,432	-	6,552	-	6,648	-	6,072	-	6,456	-	6,509	-	6,648	-	6,504	-	5,712	-	5,568	-	6,579	-
EU23	Pulp Dryer Coal Hopper	6,432	-	6,552	-	6,648	-	6,072	-	6,456	-	6,509	-	6,648	-	6,624	-	5,712	-	5,568	-	6,579	-
EU25	Flume Lime Slaker	NA	-	NA	-	NA	-	NA	-	NA	-	NA	-	NA	-	NA	-	NA	-	NA	-	NA	-
EU26	Lime Slaker	6,384	67,688	6,552	81,433	6,648	74,485	6,072	62,754	6,672	76,528	6,509	75,635	6,648	81,296	6,504	83,277	5,712	65,856	1,540	22,118	6,579	78,466
EU28	Lime Kiln	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4,028	57,852	-	-
EU29	Sugar Dryer/Granulator	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3,288	147,282	5,712	-	5,568	NA	-	-
EU30	Lime Slaker	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5,568	57,852	-	-
EU32	Pellet Loadout	-	-	-	-	-	-	-	-	-	-	-	-	-	-	6,504	-	5,712	-	5,568	-	-	-
Noto: 2010	to 2021 word transition waars for	first Draut	on Expansion	- EU120 EI	120 and EUG	0 woro br	waht online	to roplace	E1112 E1112	and EU26													

Note: 2019 to 2021 were transition years for first Drayton Expansion. EU28, EU29 and EU30 were brought online to replace EU12, EU13 and EU26

Stack Test Resu	ults	PM	PIV	110	SO2	!	N	Ox	,	voc	
EU1	Boiler	0.0724 lb/MMBtu	5/10/2011	0.0463 lb/MMBtu	3/8/2011	0.29 lb/MMBtu	4/1/2006	0.508 lb/MMBtu	4/1/2006		
EU1	Boiler	0.0106 lb/MMBtu	10/1/2015	0.0078 lb/MMBtu	10/1/2015	0.318 lb/MMBtu	10/1/2015				
EU1	Boiler	0.0067 lb/MMBtu	1/1/2018								
EU3	Pulp Dryer 2	22.08 lb/hr	3/1/2011			10.68 lb/hr	3/1/2011	10.9 lb/hr	11/1/1997	7.5 lb/hr	11/1/2006
EU3	Pulp Dryer 2	32.91 lb/hr	10/1/2015			0.116 lb/MMBtu	10/1/2015				
EU4	Pulp Dryer 1	32.197 lb/hr	3/1/2011			16.67 lb/hr	3/1/2011	13.1 lb/hr	11/1/1997	10.5 lb/hr	11/1/2006
EU4	Pulp Dryer 1	38.49 lb/hr	10/1/2015			0.165 lb/MMBtu	10/1/2015				
EU5	Lime Mixing Tank	0.257 lb/hr	2/1/2015								
EU22	Pellet Mill/Cooler	0.234 lb/hr	1/1/2008								
EU13	Lime Kiln	7.423 lb/hr	9/1/2007								
Appendix D

Air Toxics Analysis

Agency Watermark

American Crystal Sugar Company Project

Subject Drayton Expansion Phase II - Toxics Review

Task Proposed Package Boiler

Hours	Production (pph)	Fuel Type	Heat Content (Btu/scf)	Heat Input (MMBtu/hr)	Firing Rate (scf/hr)	Fuel Use (10 ⁶ scf/yr)
8760	300,000	Natural Gas	1,020	359	352,237	3,086

Data and Co	Data and Constants Used in Calculating MICR and HI										
Vent	SCREEN3 in mg/m ³	Flow	PM Control	Acid Control		Multipliers Converting 1-Hour Concentrations			Cor	version Factors	
Boiler	0.008	100%	0%	0%		70-year	8-hour		3600	Seconds Per Hour	
						0.08	0.7		453.59 1000	Grams Per Pound μg Per mg	

Hazardous Air Pollutants	CAS#	Emission Factor	Pollutant Emissions			
Organic Compounds:		(lb/10 ^⁵ scf)	(lb/hr)	(TPY)		
Nitrous Oxide (N ₂ O) ^a	10024-97-2	2.20	7.75E-01	3.39E+00		
Benzene ^b	71-43-2	2.10E-03	7.40E-04	3.24E-03		
Dichlorobenzene ^b	25321-22-6	1.20E-03	4.23E-04	1.85E-03		
Formaldehyde ^b	50-00-0	7.50E-02	2.64E-02	1.16E-01		
Hexane ^b	110-54-3	1.80E+00	6.34E-01	2.78E+00		
Toluene [□]	108-88-3	3.40E-03	1.20E-03	5.25E-03		
POM/Dioxins/Furans:		(lb/10 ⁶ scf)	(lb/hr)	(TPY)		
Acenaphthene ^b	83-32-9	1.80E-06	6.34E-07	2.78E-06		
Acenaphthylene ^b	203-96-8	1.80E-06	6.34E-07	2.78E-06		
Anthracene	120-12-7	2.40E-06	8.45E-07	3.70E-06		
Benzo(a)anthracene ^b	56-55-3	1.80E-06	6.34E-07	2.78E-06		
Benzo(a)pyrene [⊳]	50-32-8	1.20E-06	4.23E-07	1.85E-06		
Benzo(b,j,k)fluoranthene ^b	205-99-2	1.80E-06	6.34E-07	2.78E-06		
Benzo(g,h,i)perylene ^b	191-24-2	1.20E-06	4.23E-07	1.85E-06		
Benzo(k)fluoranthene ^b	207-08-9	1.80E-06	6.34E-07	2.78E-06		
Chrysene ^b	218-01-9	1.80E-06	6.34E-07	2.78E-06		
Dibenzo(a,h)anthracene ^b	53-70-3	1.20E-06	4.23E-07	1.85E-06		
7,12-Dimethylbenzene(a)anthraceneb	NA	1.60E-05	5.64E-06	2.47E-05		
Fluoranthene ^b	206-44-0	3.00E-06	1.06E-06	4.63E-06		
Fluorene ^b	86-73-7	2.80E-06	9.86E-07	4.32E-06		
Indeno(1,2,3-cd)pyrene ^b	193-39-5	1.80E-06	6.34E-07	2.78E-06		
3-Methylcholanthrene ^b	56-49-5	1.80E-06	6.34E-07	2.78E-06		
2-Methylnaphthalene ^b	91-57-6	2.40E-05	8.45E-06	3.70E-05		
Naphthalene ^b	91-20-3	6.10E-04	2.15E-04	9.41E-04		
Phenanathrene ^b	85-01-8	1.70E-05	5.99E-06	2.62E-05		
Pyrene ^D	129-00-0	5.00E-06	1.76E-06	7.71E-06		
Metals:		(lb/10 ⁶ scf)	(lb/hr)	(TPY)		
Arsenic ^c	7440-38-2	2.00E-04	7.04E-05	3.09E-04		
Beryllium ^c	7440-41-7	1.20E-05	4.23E-06	1.85E-05		
Cadmium ^c	7440-43-9	1.10E-03	3.87E-04	1.70E-03		
Chromium ^c	7440-47-3	1.40E-03	4.93E-04	2.16E-03		
Cobalt ^c	7440-48-4	8.40E-05	2.96E-05	1.30E-04		
Lead ^c	7439-92-1	5.00E-04	1.76E-04	7.71E-04		
Manganese ^c	7439-96-5	3.80E-04	1.34E-04	5.86E-04		
Mercury ^c	7439-97-6	2.60E-04	9.16E-05	4.01E-04		
Nickel ^c	7440-02-0	2.10E-03	7.40E-04	3.24E-03		
Selenium ^c	7782-49-2	2.40E-05	8.45E-06	3.70E-05		
		•	Total HAPs =	2.9		

			· · · · ·	Ste	ep 5	Step 6	Step 7a	Step 7b	Step 8a	Ster	o 8b	Step 8c
Guid Concentra	eline tions (GC)	Unit Risk Factor for Carcinogens	PM or Acid	Pu Max 1-Hour Emission Rate	ulp Off- Property 1-	Total Dryer Off- Property 1- Hour Conc.	70-Year Average Conc.	MICR	Total Dryer Off- Property 8- Hour Conc.	1-Hour MC/GC	8-Hour MC/GC	Hazard Index
1-Hour	8-Hour		<u> </u>	Tuto	nour oone.	(MC)			(MC)			
(mg/m ³)	(mg/m ³)	(m ³ ′µg)		(g/sec)	(mg/m ³)	(mg/m ³)	(µg/m³)	(µg/m ³)	(mg/m ³)			
	1.80E+00			9.76E-02	7.47E-04	7.47E-04	5.98E-02		5.23E-04		2.91E-04	2.91E-04
1.60E-01	3.19E-02	7.80E-06		9.32E-05	7.13E-07	7.13E-07	5.71E-05	4.45E-10	4.99E-07	4.46E-06	1.57E-05	1.57E-05
6.01E+00	3.01E+00			5.33E-05	4.08E-07	4.08E-07	3.26E-05		2.85E-07	6.78E-08	9.49E-08	9.49E-08
7.37E-03	<u> </u>	1.30E-05		3.33E-03	2.55E-05	2.55E-05	2.04E-03	2.65E-08	1.78E-05	3.46E-03		3.46E-03
	3.53E+00		<u> </u>	7.99E-02	6.12E-04	6.12E-04	4.89E-02		4.28E-04		1.21E-04	1.21E-04
	1.51E+00		<u> </u>	1.51E-04	1.16E-06	1.16E-06	9.24E-05		8.09E-07		5.37E-07	5.37E-07
(mg/m ³)	(mg/m ³)	(m³′µg)		(g/sec)	mg/m ³	mg/m ³	(µg/m³)	(µg/m ³)	mg/m ³			
	————		ļ'									
		1 105 01	ļ'	7.005.00	2 405 40	2.405.40	1005.00	5.005.40	1005 40			
	I	1.10E-04	↓ ′	7.99E-08	6.12E-10	6.12E-10	4.89E-08	5.38E-12	4.28E-10			
	I	1.10E-03	↓ ′	5.33E-08	4.08E-10	4.08E-10	3.26E-08	3.59E-11	2.85E-10			
	—	1.10E-04	└─── ′	7.99E-08	6.12E-10	6.12E-10	4.89E-08	5.38E-12	4.28E-10			
		1 405 04	'	7.005.00	2 405 40	0.405.40	1 005 00	5 205 42	1 005 40			
	J	1.10E-04	└──── ′	7.99E-08	6.12E-10	6.12E-10	4.89E-08	5.38E-12	4.28E-10			
	J	1.10E-05	└──── ′	7.99E-00	6.12E-10	6.12E-10	4.89E-00	5.38E-13	4.28E-10			
	I	1.20E-03	↓ ′	5.33E-00	4.08E-10	4.08E-10	3.20E-Uo	3.91E-11	2.045.00			
		7.10E-02	L	7.10E-07	5.44E-09	5.44E-09	4.35E-07	3.09⊑-06	3.81E-09			
			ļ'									
	r	1 105 04		7.005.09	6 12E 10	6 12E 10	4 90E 09	E 20E 12	4 29E 10			
	i	1.10E-04	↓ ′	7.99E-00	0.12E-10	0.12E-10	4.09E-00	3.30E-12	4.20E-10			
		6.30E-03	L	7.99E-00	6.12E-10	6.12E-10	4.09E-00	3.00E-10	4.20E-10			
1.57E±00	1.05E±00	3.40E.05	⁻	2 71E 05	2.075.07	2.07E.07	1.66E.05	5.64E 10	1.45E.07	1 32E 07	1 38E 07	1 38E 07
1.57 - 105	1.000	3.402-00	├ ───′	2.712-00	2.07 - 07	2.07 -07	1.002-00	0.04L-10	1.402-01	1.020-07	1.002-07	1.002-07
(ma/m^3)	(ma/m ³)	(m ³ /µa)		(a/sec)	ma/m ³	ma/m ³	(µg/m ³)	(ug/m ³)	ma/m ³			
(ing/in)	2.00E-04	4 30E-03	PM	8.88E-06	6 79E-08	6 79E-08	5.44E-06	2 34E-08	4 76E-08		2 38E-04	2 38E-04
	1.00E-06	2.40E-03	PM	5.33E-07	4.08E-09	4.08E-09	3.26E-07	7.83E-10	2.85E-09		2.85E-03	2.85E-03
	2.00E-04	1.80E-03	PM	4.88E-05	3.74E-07	3.74E-07	2.99E-05	5.38E-08	2.62E-07		1.31E-03	1.31E-03
	1.00E-02	1.002.00	PM	6.21E-05	4.76E-07	4.76E-07	3.81E-05	0.002 00	3.33E-07		3.33E-05	3.33E-05
	4.00E-04		PM	3.73E-06	2.85E-08	2.85E-08	2.28E-06		2.00E-08		4.99E-05	4.99E-05
	1.00E-03		PM	2.22E-05	1.70E-07	1.70E-07	1.36E-05		1.19E-07		1.19E-04	1.19E-04
	4.00E-03		PM	1.69E-05	1.29E-07	1.29E-07	1.03E-05	1	9.04E-08		2.26E-05	2.26E-05
	5.00E-04		PM	1.15E-05	8.83E-08	8.83E-08	7.07E-06		6.18E-08		1.24E-04	1.24E-04
	3.00E-02		PM	9.32E-05	7.13E-07	7.13E-07	5.71E-05	1	4.99E-07		1.66E-05	1.66E-05
	4.00E-03		PM	1.07E-06	8.15E-09	8.15E-09	6.52E-07		5.71E-09		1.43E-06	1.43E-06
				B		D	rver MICR =	1.37E-07	1		Drver HI =	8.65E-03

Notes:

^a AP42 (7/98) Table 1.4-2 ^b AP42 (7/98) Table 1.4-3 ^c AP42 (7/98) Table 1.4-4

Job No. 10352890

FC	Computation
----	-------------

Project American Crystal Sugar Company

Subject Drayton Expansion Phase II - Toxics Review

Task Proposed New Pulp Dryer

Hours	Throughput (tph)	Fuel Type	Heat Content (Btu/lb, Btu/scf)	Heat Input (MMBtu/hr)	Firing Rate (ton/hr, scf/hr)	Fuel Use (ton/yr, 10 ⁶ scf/yr)
8760	65.0	Coal Natural Gas	9,400 1,020	162 40	8.6 39,216	75,485 344

				Ste	ep 5	Step 6	Step 7a	Step 7b	Step 8a	Ste	p 8b	Step
Guid Concentra 1-Hour	leline itions (GC) 8-Hour	Unit Risk Factor for Carcinogens	PM or Acid	Pi Max 1-Hour Emission Rate	ulp Off- Property 1- Hour Conc.	Total Dryer Off- Property 1- Hour Conc. (MC)	70-Year Average Conc.	MICR	Total Dryer Off- Property 8- Hour Conc. (MC)	1-Hour MC/GC	8-Hour MC/GC	Haza Inde
$(m\alpha/m^3)$	(ma/m^3)	(m ^{3/} µg)		(a/sec)	(ma/m^3)	(ma/m^3)	(µg/m ³)	$(u \alpha / m^3)$	(ma/m^3)			
(ing/in)	1.80E+00	() 0/		5.43E-02	2.03E-04	2.03E-04	1.62E-02	(µg/)	1.42E-04		7.88E-05	7.88E
	1.002.00			0.102.02	2.002 01	2.002 01	TOLL OF		THEE OT		1.002.00	1.002
	4 00E 03			2 20E 02	8 23E 05	8 23E 05	6 58E 03		5 76E 05		1 44E 02	1 445
0.045.04	4.00L-03	2 205 06		2.202-02	0.23E-00	0.232-03	0.302-03	4.075 40	3.70E-03	2.565.06	1.44L-02	0.565
9.01E-01	0.92E.01	2.20E-00		0.19E-04	2.31E-00	2.31E-00	1.03E-04	4.07E-10	1.02E-00	2.30E-00	4 22E 09	2.30E
4.505.02	9.63E-01	-		1.63E-05	0.06E-06	0.00E-00	4.60E-06		4.20E-06	0.565.04	4.33E-06	4.33E
4.59E-03	2 405 02	7.005.00		3.15E-04	1.18E-06	1.18E-06	9.41E-05	2.245.00	8.23E-07	2.56E-04	4.475.04	2.56E
1.00E-01	3.19E-02	7.60E-06		1.42E-03	5.31E-00	5.31E-06	4.25E-04	3.31E-09	3.72E-00	3.32E-05	1.17E-04	1.1/E
E 75E 00		4 005 05		7.005.04	0.045.00	0.045.00	0.075.04	4.445.00	1.005.00	4.045.05		4.045
0.70E-02	1.005.01	4.90E-05		7.00E-04	2.04E-00	2.04E-00	2.275.05	1.11E-08	1.99E-06	4.94E-05	2.075.00	4.94E
	1.00E-01	2.40E-00		1.93E-05	2.90E-07	2.90E-07	2.3/E-05	0.00E-11	2.0/E-0/		2.07E-00	2.07E
6 205 02	1.03E-01	1.10E-06		4.23E-05	1.58E-07	1.58E-07	1.26E-05	1.39E-11	1.11E-07	0.505.00	1.07E-06	1.07E
0.20E-02	0.005.00			1.41E-04	5.27E-07	5.27E-07	4.22E-05		3.69E-07	6.50E-00	0.445.00	0.50E
	6.32E-03	-		7.60E-06	2.84E-08	2.84E-08	2.27E-06		1.99E-08		3.14E-06	3.14E
	9.21E-01	0.005.05		2.39E-05	8.92E-08	8.92E-08	7.14E-06	4.405.40	6.24E-08		6.78E-08	6.78E
	9.77E-01	2.30E-05		6.41E-05	2.39E-07	2.39E-07	1.91E-05	4.40E-10	1.67E-07		1.71E-07	1./1E
	4.92E+00	-		5.75E-06	2.15E-08	2.15E-08	1.72E-06		1.50E-08		3.06E-09	3.06E
0.045.00	1.00E-01	-		2.71E-03	1.01E-05	1.01E-05	8.11E-04		7.09E-06	0.005.00	7.09E-05	7.09E
6.01E+00	3.01E+00			5.93E-06	2.21E-08	2.21E-08	1.77E-06		1.55E-08	3.68E-09	5.16E-09	5.16E
	4.00E-03	8.90E-05		3.04E-07	1.14E-09	1.14E-09	9.08E-08	8.08E-12	7.95E-10		1.99E-07	1.99E
	1.03E-02			5.21E-05	1.95E-07	1.95E-07	1.56E-05		1.36E-07		1.32E-05	1.32E
1.09E+01	8.68E+00	2.50E-06		1.02E-04	3.81E-07	3.81E-07	3.05E-05	7.62E-11	2.67E-07	3.51E-08	3.07E-08	3.51E
	5.28E+00			4.56E-05	1.70E-07	1.70E-07	1.36E-05		1.19E-07		2.26E-08	2.26E
	8.09E-01	2.60E-05		4.34E-05	1.62E-07	1.62E-07	1.30E-05	3.37E-10	1.14E-07		1.40E-07	1.40E
		6.00E-04		1.30E-06	4.86E-09	4.86E-09	3.89E-07	2.34E-10	3.41E-09			
7.37E-03		1.30E-05		6.31E-04	2.36E-06	2.36E-06	1.89E-04	2.45E-09	1.65E-06	3.20E-04		3.20E
	3.53E+00			8.97E-03	3.35E-05	3.35E-05	2.68E-03		2.34E-05		6.65E-06	6.65E
5.65E-01		2.70E-07		6.30E-04	2.35E-06	2.35E-06	1.88E-04	5.08E-11	1.65E-06	4.16E-06		4.16E
	7.77E-02			1.74E-04	6.49E-07	6.49E-07	5.19E-05		4.54E-07		5.84E-06	5.84E
4.13E+00	2.07E+00			5.75E-04	2.15E-06	2.15E-06	1.72E-04		1.50E-06	5.20E-07	7.28E-07	7.28E
	3.80E-04	3.10E-04		1.85E-04	6.89E-07	6.89E-07	5.51E-05	1.71E-08	4.82E-07		1.27E-03	1.27E
8.19E+00	4.10E+00			2.17E-05	8.11E-08	8.11E-08	6.49E-06		5.68E-08	9.90E-09	1.39E-08	1.39E
	3.61E+00	2.60E-07		3.80E-05	1.42E-07	1.42E-07	1.14E-05	2.95E-12	9.93E-08		2.75E-08	2.75E
		4.70E-07		3.15E-04	1.18E-06	1.18E-06	9.41E-05	4.42E-11	8.23E-07			
	3.85E-01		ļ	1.74E-05	6.49E-08	6.49E-08	5.19E-06		4.54E-08		1.18E-07	1.18E
	9.51E-01			4.13E-04	1.54E-06	1.54E-06	1.23E-04		1.08E-06		1.13E-06	1.13E
1.36E+01	3.39E+00			4.67E-05	1.74E-07	1.74E-07	1.39E-05		1.22E-07	1.29E-08	3.60E-08	3.60E
	1.51E+00			2.77E-04	1.04E-06	1.04E-06	8.29E-05		7.25E-07		4.81E-07	4.81E
4.91E+01	3.82E+01	1.60E-05		2.17E-05	8.11E-08	8.11E-08	6.49E-06	1.04E-10	5.68E-08	1.65E-09	1.49E-09	1.65E
3.41E+00	1.70E+00			2.71E-05	1.01E-07	1.01E-07	8.11E-06		7.09E-08	2.97E-08	4.16E-08	4.16E
1.06E+00	7.04E-01			8.25E-06	3.08E-08	3.08E-08	2.46E-06		2.16E-08	2.92E-08	3.06E-08	3.06E
1.30E+01	8.68E+00			4.02E-05	1.50E-07	1.50E-07	1.20E-05		1.05E-07	1.15E-08	1.21E-08	1.21E
(mg/m ³)	(mg/m ³)	(m³/μg)		(g/sec)	mg/m ³	mg/m ³	(µg/m³)	(µg/m ³)	mg/m ³			

Hazardous Air Pollutants	CAS#	Emission Factor	Pollutar	t Emissions	
	CA3#	(lb/ten lb/40 ⁸ act)	(h. fi. a)	(TD)()	
Organic Compounds:	10001.07.0	(ID/ton, ID/10 Scr)	(ID/nr)	(1PY)	
Nitrous Oxide (N ₂ O) ⁻ - coal	10024-97-2	0.04	4.31E-01	1.89E+00	
Nitrous Oxide (N ₂ O) ² - gas	10024-97-2	2.20			
Sulfuric Acid Mist (H ₂ SO ₄) ^u	-	0.02	1.75E-01	7.66E-01	
Acetaldehyde ^c	75-07-0	5.70E-04	4.91E-03	2.15E-02	
Acetophenone ^c	98-86-2	1.50E-05	1.29E-04	5.66E-04	
Acrolein ^c	107-02-8	2.90E-04	2.50E-03	1.09E-02	
Benzene ^c - coal	71-43-2	1.30E-03	1.13E-02	4.94E-02	
Benzene ^k - gas	71-43-2	2.10E-03			
Benzyl chloride ^c	100-44-7	7.00E-04	6.03E-03	2.64E-02	
Bis(2-ethylhexyl)phthalate (DEHP) ^c	117-81-7	7.30E-05	6.29E-04	2.76E-03	
Bromoform ^c	75-25-2	3.90E-05	3.36E-04	1.47E-03	
Carbon disulfide ^c	75-15-0	1.30E-04	1.12E-03	4.91E-03	
2-Chloroacetophenone ^c	532-27-4	7.00E-06	6.03E-05	2.64E-04	
Chlorobenzene ^c	108-90-7	2.20E-05	1.90E-04	8.30E-04	
Chloroform ^c	67-66-3	5.90E-05	5.08E-04	2.23E-03	
Cumene ^c	98-82-8	5.30E-06	4.57E-05	2.00E-04	
Cyanide ^c	57-12-5	2.50E-03	2.15E-02	9.44E-02	
Dichlorobenzene ^k - gas	25321-22-6	1.20E-03	4.71E-05	2.06E-04	
2,4-Dinitrotoluene ^c	121-14-2	2.80E-07	2.41E-06	1.06E-05	
Dimethyl sulfate ^c	77-78-1	4.80E-05	4.14E-04	1.81E-03	
Ethylbenzene ^c	100-41-4	9.40E-05	8.10E-04	3.55E-03	
Ethyl chloride ^c	75-00-3	4.20E-05	3.62E-04	1.59E-03	
Ethylene dichloride ^c	107-06-2	4.00E-05	3.45E-04	1.51E-03	
Ethylene dibromide ^c	106-93-4	1.20E-06	1.03E-05	4.53E-05	
Formaldehyde ^c - coal	50-00-0	2.40E-04	5.01E-03	2.19E-02	
Formaldehyde ^k - gas	50-00-0	7.50E-02			
Hexane ^c - coal	110-54-3	6.70E-05	7.12E-02	3.12E-01	
Hexane ^k - gas	110-54-3	1.80E+00			
Isophorone ^c	78-59-1	5.80E-04	5.00E-03	2.19E-02	
Methyl bromide ^c	74-83-9	1.60E-04	1.38E-03	6.04E-03	
Methyl chloride ^c	74-87-3	5.30E-04	4.57E-03	2.00E-02	
Methyl hydrazine ^c	60-34-4	1.70E-04	1.46E-03	6.42E-03	
Methyl methacrylate ^c	80-62-6	2.00E-05	1.72E-04	7.55E-04	
Methyl tert butyl ether ^c	1634-04-4	3.50E-05	3.02E-04	1.32E-03	
Methylene chloride ^c	75-09-2	2.90E-04	2.50E-03	1.09E-02	
Phenol ^c	108-95-2	1.60E-05	1.38E-04	6.04E-04	
Propionaldehvde ^c	123-38-6	3.80E-04	3.27E-03	1.43E-02	
Tetrachlorethylene (Perc) ^c	127-18-4	4.30E-05	3.71E-04	1.62E-03	
Toluene ^c - coal	108-88-3	2.40E-04	2.20E-03	9.64E-03	
Toluene ^k - gas	108-88-3	3.40E-03			
1.1.1-Trichloroethane (methyl chloroform) ^c	71-55-6	2.00E-05	1.72E-04	7.55E-04	
Styrene ^c	100-42-5	2.50E-05	2.15E-04	9.44E-04	
Vinyl acetate ^c	108-05-4	7.60E-06	6.55E-05	2.87E-04	
Xylenes ^c	1330-20-7	3.70E-05	3.19E-04	1.40E-03	
POM/Dioxins/Furans:		(lb/ton, lb/10 ⁶ scf)	(lb/hr)	(TPY)	
Acenaphthene ^d - coal	83-32-9	5.10E-07	4.47E-06	1.96E-05	
Acenaphthene ^k - gas	83-32-9	1.80E-06			
Acenaphthylene ^d - coal	203-96-8	2.50E-07	2.22E-06	9.74E-06	
Acenaphthylene ^k - gas	203-96-8	1.80E-06			

Data and Constants Used in Calculating MICR and HI										
Vent	SCREEN3 in mg/m ³	Flow	PM Control	Acid Control ⁱ		Multipliers 1-Hour Con	Converting centrations		Con	version Factors
Pulp	0.004	100%	0%	60%		70-year	8-hour		3600	Seconds Per Hour
						0.08	0.7		453.59 1000	Grams Per Pound μg Per mg

Job No. 10352890

GJR Computed MKD Checked

NA Sheets

Anunacene - COal	120-12-7	2.10E-07	1.90E-06	8.34E-06
Anthracenek - gas	120-12-7	2.40E-06		
Benzo(a)anthracene ^d - coal	56-55-3	8.00E-08	7.60E-07	3.33E-06
Benzo(a)anthracene ^k - gas	56-55-3	1.80E-06		
Benzo(a)pyrene ^d - coal	50-32-8	3.80E-08	3.75E-07	1.64E-06
Benzo(a)pyrene ^k - gas	50-32-8	1.20E-06		
Benzo(b,j,k)fluoranthene ^d - coal	205-99-2	1.10E-07	1.02E-06	4.46E-06
Benzo(b,j,k)fluoranthene ^k - gas	205-99-2	1.80E-06		
Benzo(g,h,i)perylene ^d - coal	191-24-2	2.70E-08	2.80E-07	1.23E-06
Benzo(g,h,i)perylene ^k - gas	191-24-2	1.20E-06		
Benzo(k)fluoranthene ^k - gas	207-08-9	1.80E-06	7.06E-08	3.09E-07
Biphenyl ^d	92-52-4	1.70E-06	1.46E-05	6.42E-05
Chrysene ^d - coal	218-01-9	1.00E-07	9.32E-07	4.08E-06
Chrysene ^k - gas	218-01-9	1.80E-06		
Dibenzo(a,h)anthracenek - gas	53-70-3	1.20E-06	4.71E-08	2.06E-07
7.12-Dimethylbenzene(a)anthracene ^k - gas	NA	1.60E-05	6.27E-07	2.75E-06
Fluoranthene ^d - coal	206-44-0	7 10E-07	6 24E-06	2 73E-05
Eluoranthene ^k - das	206-44-0	3.00E-06	0.212 00	2.702.00
Eluorene ^d - coal	86-73-7	9 10E-07	7 95E-06	3 48E-05
Fluorene ^k - das	86-73-7	2.80E-06		0.402-00
Indeno(1.2.3-cd)pyrene ^d - coal	103_30_5	6.10E-08	5 96E-07	2.61E-06
Indeno(1,2,3-cd)pyrene - coal	103 30 5	1 80E 06	3.30L-07	2.012-00
5 Methyl chrysene ^d	3607 24 2	2 20E 08	1 90E 07	8 30E 07
3 Methylcholanthrene ^k das	5097-24-3 EG 40 E	2.20E-00	7.065.09	2.00E-07
2 Mothylpaphthologo ^k goo	01 57 6	1.0UE-U0 2.40E.05	0.41E.07	3.09E-07
z-weurymaphinaiene - gas	91-07-0	2.40E-00	9.41E-07	4.12E-00
Naphthalana ^k gao	91-20-3	1.30E-05	1.12E-04	4.91E-04
Naprinaiene - gas	91-20-3	0.10E-04	2.39E-05	1.05E-04
Pnenanathrene ⁻ - coal	85-01-8	2.70E-06	2.39E-05	1.05E-04
Prienanathrene - gas	85-01-8	1.70E-05		
	100.00.0	0.005.07	0.045.00	1 005 05
Pyrene ^a - coal	129-00-0	3.30E-07	3.04E-06	1.33E-05
Pyrene ^a - coal Pyrene ^k - gas	129-00-0 129-00-0	3.30E-07 5.00E-06	3.04E-06	1.33E-05
Pyrene ^e - coal Pyrene ^k - gas Total TCDD ^e	129-00-0 129-00-0 -	3.30E-07 5.00E-06 3.93E-10	3.04E-06	1.33E-05
Pyrene ^a - coal Pyrene ^k - gas Total TCDD [®] Total HxCDD [®]	129-00-0 129-00-0 - -	3.30E-07 5.00E-06 3.93E-10 3.00E-09	3.04E-06 3.39E-09 2.59E-08	1.33E-05 1.48E-08 1.13E-07
Pyrene [®] - coal Pyrene [®] - gas Total TCDD [®] Total HxCDD [®] Acid Gases:	129-00-0 129-00-0 - -	3.30E-07 5.00E-06 3.93E-10 3.00E-09 (lb/ton)	3.04E-06 3.39E-09 2.59E-08 (lb/hr)	1.33E-05 <u>1.48E-08</u> <u>1.13E-07</u> (TPY)
Pyrene [®] - coal Pyrene [®] - gas Total TCDD [®] Total HXCDD [®] Acid Gases: HCI (Hydrochloric acid) ¹	129-00-0 129-00-0 - - 7647-01-0	3.30E-07 5.00E-06 3.93E-10 3.00E-09 (lb/ton) 2.40E-02	3.04E-06 3.39E-09 2.59E-08 (lb/hr) 2.07E-01	1.33E-05 1.48E-08 1.13E-07 (TPY) 9.06E-01
Pyrene ⁶ - coal Pyrene ⁸ - gas Total TCD0 ⁶ Total HxCDD ⁶ Acid Gases: HCI (Hydrochloric acid) ⁵ HF (Hydrofluoric acid) ⁹	129-00-0 129-00-0 - - 7647-01-0 7664-39-3	3.30E-07 5.00E-06 3.93E-10 3.00E-09 (lb/ton) 2.40E-02 2.65E-02	3.04E-06 3.39E-09 2.59E-08 (lb/hr) 2.07E-01 2.29E-01	1.33E-05 1.48E-08 1.13E-07 (TPY) 9.06E-01 1.00E+00
Pyrene [®] - coal Pyrene [®] - gas Total TCDD [®] Total HxCDD [®] Acid Gases: HCI (Hydrochloric acid) ^f HF (Hydrofluoric acid) ^g Metals:	129-00-0 129-00-0 - - 7647-01-0 7664-39-3	3.30E-07 5.00E-06 3.93E-10 3.00E-09 (Ib/ton) 2.40E-02 2.65E-02 (Ib/ton, Ib/10° scf)	3.04E-06 3.39E-09 2.59E-08 (lb/hr) 2.07E-01 2.29E-01 (lb/hr)	1.33E-05 1.48E-08 1.13E-07 (TPY) 9.06E-01 1.00E+00 (TPY)
Pyrene ⁶ - coal Pyrene ⁶ - gas Total TCDD ⁶ Total TACDD ⁶ Acid Gases: HCI (Hydrochloric acid) ⁶ HF (Hydrofluoric acid) ⁹ Metals: Antimony ¹⁶	129-00-0 129-00-0 - - 7647-01-0 7664-39-3 7440-36-0	3.30E-07 5.00E-06 3.93E-10 3.00E-09 (lb/ton) 2.40E-02 2.65E-02 (lb/ton, lb/10° scf) 1.80E-05	3.04E-06 3.39E-09 2.59E-08 (lb/hr) 2.07E-01 2.29E-01 (lb/hr) 1.55E-04	1.33E-05 1.48E-08 1.13E-07 (TPY) 9.06E-01 1.00E+00 (TPY) 6.79E-04
Pyrene [®] - coal Pyrene [®] - gas Total TCDD [®] Total HxCDD [®] Acid Gases: HCI (Hydrochloric acid) ⁵ HF (Hydrofluoric acid) ⁹ Metals: Antimony ¹⁹ Arsenic ⁸ - coal	129-00-0 129-00-0 - - 7647-01-0 7664-39-3 7440-36-0 7440-38-2	3.30E-07 5.00E-06 3.93E-10 3.00E-09 (lb/ton) 2.40E-02 2.65E-02 (lb/ton, lb/10° scf) 1.80E-05 4.10E-04	3.04E-06 3.39E-09 2.59E-08 (lb/hr) 2.07E-01 2.29E-01 (lb/hr) 1.55E-04 3.54E-03	1.33E-05 1.48E-08 1.13E-07 (TPY) 9.06E-01 1.00E+00 (TPY) 6.79E-04 1.55E-02
Pyrene ⁶ - coal Pyrene ⁸ - gas Total TCD0 ⁶ Total HxCDD ⁶ Acid Gases: HCI (Hydrochloric acid) ¹ HF (Hydrofluoric acid) ⁹ Metals: Antimony ¹ Arsenic ¹ - coal Arsenic ¹ - gas	129-00-0 129-00-0 - - 7647-01-0 7664-39-3 - 7440-38-0 7440-38-2	3.30E-07 5.00E-06 3.393E-10 3.00E-09 (lb/ton) 2.40E-02 2.65E-02 (lb/ton, lb/10° scf) 1.80E-05 4.10E-04 2.00E-04	3.04E-06 3.39E-09 2.59E-08 (lb/hr) 2.07E-01 2.29E-01 (lb/hr) 1.55E-04 3.54E-03	1.33E-05 1.48E-08 1.13E-07 (TPY) 9.06E-01 1.00E+00 (TPY) 6.79E-04 1.55E-02
Pyrene ⁶ - coal Pyrene ⁶ - gas Total TCDD ⁶ Total HXCDD ⁹ Acid Gases: HCI (Hydrochloric acid) ⁴ HF (Hydrofluoric acid) ⁹ Metals: Antimony ^b Arsenic ¹ - gas Beryllium ⁶ - coal	129-00-0 129-00-0 - - 7647-01-0 7664-39-3 7640-38-2 7440-38-2 7440-38-2 7440-41-7	3.30E-07 5.00E-06 3.93E-10 3.00E-09 (lb/ton) 2.40E-02 2.65E-02 (lb/ton, lb/10° scf) 1.80E-05 4.10E-04 2.00E-04 2.10E-05	3.04E-06 3.39E-09 2.59E-08 (lb/hr) 2.07E-01 2.29E-01 (lb/hr) 1.55E-04 3.54E-03 1.81E-04	1.33E-05 1.48E-08 1.13E-07 (TPY) 9.06E-01 1.00E+00 (TPY) 6.79E-04 1.55E-02 7.95E-04
Pyrene ⁶ - coal Pyrene ⁸ - gas Total TCD0 ⁶ Total HxCDD ⁶ Acid Gases: HCI (Hydrochloric acid) ⁵ HF (Hydrofluoric acid) ⁹ Metals: Antimony ¹⁶ Arsenic ⁶ - coal Arsenic ¹ - gas Beryllium ¹ - coal Beryllium ¹ - gas	129-00-0 129-00-0 - - - - 7647-01-0 7664-39-3 - 7440-38-2 7440-38-2 7440-38-2 7440-38-2	3.30E-07 5.00E-06 3.393E-10 3.00E-09 (lb/ton) 2.40E-02 2.65E-02 (lb/ton, lb/10° scf) 1.80E-05 4.10E-04 2.00E-04 2.10E-05	3.04E-06 3.39E-09 2.59E-08 (lb/hr) 2.07E-01 2.07E-01 (lb/hr) 1.55E-04 3.54E-03 1.81E-04	1.33E-05 1.48E-08 1.13E-07 (TPY) 9.06E-01 1.00E+00 (TPY) 6.79E-04 1.55E-02 7.95E-04
Pyrene ⁶ - coal Pyrene ⁸ - gas Total TCD0 ⁶ Total HxCDD ⁶ Acid Gases: HCI (Hydrochloric acid) ¹ HF (Hydrofluoric acid) ⁹ Metals: Antimony ¹ Arsenic ⁶ - coal Arsenic ⁶ - coal Arsenic ¹ - gas Beryllium ¹ - coal Beryllium ¹ - coal	129-00-0 129-00-0 - - 7664-39-3 - 7440-36-0 7440-38-2 7440-38-2 7440-38-2 7440-38-2	3.30E-07 5.00E-06 3.393E-10 3.00E-09 (lb/ton) 2.40E-02 2.65E-02 (lb/ton, lb/10° scf) 1.80E-05 4.10E-04 2.00E-04 2.10E-05 5.10E-05	3.04E-06 3.39E-09 2.59E-08 (lb/hr) 2.29E-01 (lb/hr) 1.55E-04 3.54E-03 1.81E-04 4.83E-04	1.33E-05 1.48E-08 1.13E-07 (TPY) 9.06E-01 1.00E+00 (TPY) 6.79E-04 1.55E-02 7.95E-04 2.11E-03
Pyrene ⁶ - coal Pyrene ⁶ - gas Total TCDD ⁶ Total TACDD ⁶ Acid Gases: HCI (Hydrochloric acid) ⁶ HF (Hydrochloric acid) ⁹ Metals: Antimony ¹⁶ Arsenic ¹ - coal Beryllium ¹ - coal Beryllium ¹ - coal Cadmium ¹ - as	129-00-0 129-00-0 - - - - - - - - - - - - -	3.30E-07 5.00E-06 3.93E-10 3.00E-09 (lb/ton) 2.40E-02 2.65E-02 (lb/ton, lb/10° scf) 1.80E-05 4.10E-04 2.10E-05 1.20E-05 5.10E-05 5.10E-05 1.10E-03	3.04E-06 3.39E-09 2.59E-08 (lb/hr) 2.29E-01 (lb/hr) 1.55E-04 3.54E-03 1.81E-04 4.83E-04	1.33E-05 1.48E-08 1.13E-07 (TPY) 9.06E-01 1.00E+00 (TPY) 6.79E-04 1.55E-02 7.95E-04 2.11E-03
Pyrene ⁶ - coal Pyrene ⁸ - gas Total TCD0 ⁶ Total HxCDD ⁶ Acid Gases: HCI (Hydrochloric acid) ⁴ HF (Hydrofluoric acid) ⁹ Metals: Antimony ¹⁶ Arsenic ⁶ - coal Beryllium ¹ - coal Beryllium ¹ - coal Beryllium ¹ - gas Cadmium ¹ - gas Chromium ¹⁵ - coal	129-00-0 129-00-0 7647-01-0 7664-39-3 7440-38-2 7440-38-2 7440-38-2 7440-38-2 7440-41-7 7440-41-7 7440-41-7 7440-43-9 7440-47-3	3.30E-07 5.00E-06 3.393E-10 3.00E-09 (lb/ton) 2.40E-02 2.65E-02 (lb/ton, lb/10° scf) 1.80E-05 4.10E-04 2.00E-04 2.00E-05 1.20E-05 1.10E-03 2.60E-04	3.04E-06 3.39E-09 2.59E-08 (lb/hr) 2.07E-01 2.29E-01 (lb/hr) 1.55E-04 3.54E-03 1.81E-04 4.83E-04 2.30E-03	1.33E-05 1.48E-08 1.13E-07 (TPY) 9.06E-01 1.00E+00 (TPY) 6.79E-04 1.55E-02 7.95E-04 2.11E-03 1.01E-02
Pyrene ⁶ - coal Pyrene ⁸ - gas Total TCD0 ⁶ Total HxCDD ⁶ Acid Gases: HCI (Hydrochloric acid) ⁷ HF (Hydrofluoric acid) ⁹ Metals: Antimory ¹⁶ Arsenic ⁶ - coal Arsenic ¹ - coal Beryllium ¹ - coal Cadmium ¹ - coal Cadmium ¹ - coal Chromium ¹ - coal Chromium ¹ - coal	129-00-0 129-00-0 - - - - - - - - - - - - -	3.30E-07 5.00E-06 3.393E-10 3.00E-09 (lb/ton) 2.40E-02 2.66E-02 (lb/ton, lb/10° scf) 1.80E-05 4.10E-04 2.10E-05 1.20E-05 5.10E-05 1.10E-03 2.60E-04 1.40F-03	3.04E-06 3.39E-09 2.59E-08 (lb/hr) 2.29E-01 2.29E-01 (lb/hr) 1.55E-04 3.54E-03 1.81E-04 4.83E-04 2.30E-03	1.33E-05 1.48E-08 1.13E-07 (TPY) 9.06E-01 1.00E+00 (TPY) 6.79E-04 1.55E-02 7.95E-04 2.11E-03 1.01E-02
Pyrene ⁶ - coal Pyrene ⁶ - gas Total TCDD ⁶ Total TACDD ⁶ Acid Gases: HCI (Hydrochloric acid) ⁶ HF (Hydrochloric acid) ⁹ Metals: Antimony ¹⁰ Arsenic ¹¹ - coal Beryllium ¹ - coal Beryllium ¹ - coal Cadmium ¹ - coal Cadmium ¹ - gas Chromium ¹ - coal Chromium ¹ - coal Chromium ¹ - coal	129-00-0 129-00-0 - - - - - - - - - - - - -	3.30E-07 5.00E-06 3.93E-10 3.00E-09 (lb/ton) 2.40E-02 2.65E-02 (lb/ton, lb/10° scf) 1.80E-05 4.10E-04 2.101E-05 1.20E-05 5.10E-05 1.10E-05 1.10E-03 2.60E-04 1.40E-03 1.00E-04	3.04E-06 3.39E-09 2.59E-08 (lb/hr) 2.29E-01 (lb/hr) 1.55E-04 3.54E-03 1.81E-04 4.83E-04 2.30E-03 8.65E-04	1.33E-05 1.48E-08 1.13E-07 (TPY) 9.06E-01 1.00E+00 (TPY) 6.79E-04 1.55E-02 7.95E-04 2.11E-03 1.01E-02 3.79E-03
Pyrene ⁶ - coal Pyrene ⁸ - gas Total TCD0 ⁶ Total TACD0 ⁶ Acid Gases: HCI (Hydrochloric acid) ⁴ HF (Hydrofhuoric acid) ⁹ Metais: Antimony ¹⁶ Arsenic ⁶ - coal Arsenic ¹ - coal Beryllium ¹ - coal Beryllium ¹ - coal Cadmium ¹ - gas Cadmium ¹ - gas Cadmium ¹ - gas Chromium ¹ - gas Chromium ¹ - gas Chromium ¹ - gas Chomil ¹ - coal Chromium ¹ - gas Coball ² - coas	129-00-0 129-00-0 129-00-0 7647-01-0 7664-39-3 7440-38-2 7440-38-2 7440-38-2 7440-38-2 7440-41-7 7440-41-7 7440-41-7 7440-41-7 7440-47-3 7440-47-3 7440-48-4	3.30E-07 5.00E-06 3.33E-10 3.00E-09 (lb/ton) 2.40E-02 2.65E-02 (lb/ton, lb/10° scf) 1.80E-05 4.10E-04 2.00E-04 2.00E-04 1.20E-05 5.10E-05 1.10E-03 1.00E-04 1.40E-03 1.00E-04	3.04E-06 3.39E-09 2.59E-08 (lb/hr) 2.07E-01 2.29E-01 (lb/hr) 1.55E-04 3.54E-03 1.81E-04 4.83E-04 2.30E-03 8.65E-04	1.33E-05 1.48E-08 1.13E-07 (TPY) 9.06E-01 1.00E+00 (TPY) 6.79E-04 1.55E-02 7.95E-04 2.11E-03 1.01E-02 3.79E-03
Pyrene ⁶ - coal Pyrene ⁸ - gas Total TCD0° Total HxCDD° Acid Gases: HCI (Hydrochloric acid) ⁴ HC (Hydrochloric acid) ⁵ Metals: Antimony ¹⁶ Arsenic ¹ - coal Arsenic ¹ - coal Beryllium ¹ - coal Cadmium ¹ - coal Chromium ¹ - coal Chromium ¹ - coal Chromium ¹ - gas Cobalt ¹ - coal Cobalt ¹ - coal	129-00-0 129-00-0 - - - - - - - - - - - - -	3.30E-07 5.00E-06 3.393E-10 3.00E-09 (lb/ton) 2.40E-02 2.66E-02 (lb/ton, lb/10° scf) 1.80E-05 4.10E-04 2.10E-05 1.20E-05 5.10E-05 1.10E-03 1.40E-03 1.00E-04 8.40E-05 4.20E-04	3.04E-06 3.39E-09 2.59E-08 (lb/hr) 2.29E-01 (lb/hr) 1.55E-04 3.54E-03 1.81E-04 4.83E-04 2.30E-03 8.65E-04 3.64E-03	1.33E-05 1.48E-08 1.13E-07 (TPY) 9.06E-01 1.00E+00 (TPY) 6.79E-04 1.55E-02 7.95E-04 2.11E-03 1.01E-02 3.79E-03 1.50E-02
Pyrene ⁶ - coal Pyrene ⁶ - gas Total TCDD ⁶ Total TAxCDD ⁶ Acid Gases: HCI (Hydrochloric acid) ⁴ HF (Hydrochloric acid) ⁹ Metals: Antimony ¹⁶ Arsenic ¹⁷ - coal Beryllium ¹ - coal Beryllium ¹ - coal Cadmium ¹ - coal Cadmium ¹ - coal Chromium ¹ - gas Cobalt ¹⁷ - coal Chornium ¹ - gas Cobalt ¹⁷ - coal Cobalt ¹⁷ - coal Cobalt ¹ - coal Cobalt ² - coal Cobalt ² - coal Cobalt ² - coal Cobalt ² - coal	129-00-0 129-00-0 7647-01-0 7664-39-3 7440-36-0 7440-38-2 7440-38-2 7440-38-2 7440-41-7 7440-41-7 7440-41-7 7440-41-7 7440-43-9 7440-47-3 7440-47-3 7440-48-4 7440-48-4 7439-92-1 7439-92-1	3.30E-07 5.00E-06 3.393E-10 3.00E-09 (lb/ton) 2.40E-02 2.65E-02 (lb/ton, lb/10° scf) 1.80E-05 4.10E-04 2.00E-04 2.10E-05 1.20E-05 1.10E-05 1.10E-05 1.10E-03 2.60E-04 1.40E-04 8.40E-05 4.20E-04 5.00E-04	3.04E-06 3.39E-09 2.59E-08 (lb/hr) 2.29E-01 (lb/hr) 1.55E-04 3.54E-03 1.81E-04 4.83E-04 2.30E-03 8.65E-04 3.64E-03	1.33E-05 1.48E-08 1.13E-07 (TPY) 9.06E-01 1.00E+00 (TPY) 6.79E-04 1.55E-02 7.95E-04 2.11E-03 1.01E-02 3.79E-03 1.59E-02
Pyrene ⁶ - coal Pyrene ⁸ - gas Total TCD0° Total HxCDD° Acid Gases: HCI (Hydrochloric acid) ⁴ HF (Hydrochloric acid) ⁹ Metals: Antimony ¹ Arsenic ⁵ - coal Beryllium ¹ - coal Beryllium ¹ - coal Beryllium ¹ - gas Cadmium ¹ - gas Chromium ¹ - gas Chromium ¹ - coal Cobalt ¹ - coal Cobalt ¹ - coal Lead ¹ - coal Lead ¹ - gas	129-00-0 129-00-0 - - - - - - - - - - - - -	3.30E-07 5.00E-06 3.33E-10 3.00E-09 (lb/ton) 2.40E-02 2.65E-02 (lb/ton, lb/10° scf) 1.80E-05 4.10E-04 2.00E-04 2.00E-04 1.20E-05 5.10E-05 1.10E-05 1.10E-05 1.10E-04 1.40E-05 4.20E-04 1.40E-05 4.20E-04 5.00E-04 5.00E-04	3.04E-06 3.39E-09 2.59E-08 (lb/hr) 2.07E-01 2.29E-01 (lb/hr) 1.55E-04 3.54E-03 1.81E-04 4.83E-04 2.30E-03 8.65E-04 3.64E-03 4.24E.02	1.33E-05 1.48E-08 1.13E-07 (TPY) 9.06E-01 1.00E+00 (TPY) 6.79E-04 1.55E-02 7.95E-04 2.11E-03 1.01E-02 3.79E-03 1.59E-02 1.85E-02 1.85E-02
Pyrene ⁶ - coal Pyrene ⁸ - gas Total TCD0° Total HxCDD° Acid Gases: HCI (Hydrochloric acid) ⁶ HCI (Hydrochloric acid) ⁶ Metals: Antimony ^h Arsenic ¹ - coal Arsenic ¹ - coal Beryllium ¹ - coal Cadmium ¹ - gas Cadmium ¹ - gas Cobalt ¹ - coal Chromium ¹ - gas Cobalt ¹ - coal Lead ¹ - gas Lead ¹ - gas Lead ¹ - coal Lead ¹ - gas Lead ¹ - gas Lead ¹ - coal	129-00-0 129-00-0 - - - - - - - - - - - - -	3.30E-07 5.00E-06 3.33E-10 3.00E-09 (lb/ton) 2.40E-02 2.66E-02 (lb/ton, lb/10° scf) 1.80E-05 1.20E-05 1.20E-05 5.10E-05 1.10E-05 1.10E-05 1.10E-05 1.10E-05 1.10E-05 1.10E-05 1.10E-05 1.10E-05 1.10E-04 8.40E-05 4.40E-04 8.40E-05 4.500E-04 4.500E-04 4.500E-04 4.500E-04 4.500E-04 4.500E-04 5	3.04E-06 3.39E-09 2.59E-08 (lb/hr) 2.29E-01 (lb/hr) 1.55E-04 3.54E-03 1.81E-04 4.83E-04 2.30E-03 8.65E-04 3.64E-03 4.24E-03	1.33E-05 1.48E-08 1.13E-07 (TPY) 9.06E-01 1.00E+00 (TPY) 6.79E-04 1.55E-02 7.95E-04 2.11E-03 1.01E-02 3.79E-03 1.59E-02 1.86E-02
Pyrene [®] - coal Pyrene [®] - gas Total TCDD [®] Total TAXCD [®] Acid Gases: HCI (Hydrochioric acid) ¹ HF (Hydrochioric acid) ⁹ Metals: Antimony ^{1®} Arsenic ¹ - coal Beryllium ¹ - coal Beryllium ¹ - coal Cadmium ¹ - coal Cadmium ¹ - coal Chromium ¹ - gas Cobalt ¹ - coal Chordium ¹ - coal Chordium ¹ - coal Chordium ¹ - coal Chordium ¹ - coal Cobalt ¹ - coal Cobalt ¹ - coal Cobalt ¹ - coal Cobalt ² - coal Cobalt ² - coal Lead ¹ - coal Lead ¹ - coal Lead ¹ - coal Manganese ¹ - gas Marganese ¹ - gas Marganese ¹ - gas	129-00-0 129-00-0 129-00-0 7664-39-3 7640-38-2 7440-38-2 7440-38-2 7440-38-2 7440-38-2 7440-41-7 7440-41-7 7440-41-7 7440-41-7 7440-41-7 7440-43-9 7440-47-3 7440-47-3 7440-48-4 7439-92-1 7439-96-5 7439-96-5 7430-97-5	3.30E-07 5.00E-06 3.393E-10 3.00E-09 (lb/ton) 2.40E-02 2.65E-02 (lb/ton, lb/10° scf) 1.80E-05 4.10E-04 2.00E-04 2.00E-04 2.00E-05 1.20E-05 5.10E-05 1.10E-05 1.20E-05 1.10E-04 3.40E-05 4.20E-04 3.80E-04 3.80E-04 3.80E-04 3.80E-04	3.04E-06 3.39E-09 2.59E-08 (lb/hr) 2.29E-01 2.29E-01 1.55E-04 3.54E-03 1.81E-04 4.83E-04 2.30E-03 8.65E-04 3.64E-03 4.24E-03 2.05E-04	1.33E-05 1.48E-08 1.13E-07 (TPY) 9.06E-01 1.00E+00 (TPY) 6.79E-04 1.55E-02 7.95E-04 2.11E-03 1.01E-02 3.79E-03 1.59E-02 1.86E-02 2.40E-02
Pyrene [®] - coal Pyrene [®] - gas Total TCDD [®] Total TACDD [®] Acid Gases: HCI (Hydrochloric acid) [§] HF (Hydrochloric acid) [§] Metals: Antimony [®] Arsenic [®] - coal Beryllium [®] - coal Beryllium [®] - coal Beryllium [®] - coal Cadmium [®] - gas Chromium [®] - gas Chromium [®] - coal Cobalt [®] - coal Cobalt [®] - coal Lead [®] - gas Manganese [®] - coal Manganese [®] - gas Mercury [®] - coal Marganese [®] - gas	129-00-0 129-00-0 129-00-0 7647-01-0 7664-39-3 7440-38-2 7440-38-2 7440-38-2 7440-38-2 7440-41-7 7440-41-7 7440-41-7 7440-41-7 7440-41-7 7440-41-7 7440-41-7 7440-41-7 7440-41-7 7440-43-9 7440-47-3 7440-48-4 7439-92-1 7439-96-5 7439-96-5 7439-97-6	3.30E-07 5.00E-06 3.33E-10 3.00E-09 (lb/ton) 2.40E-02 2.65E-02 (lb/ton, lb/10° scf) 1.80E-05 4.10E-04 2.00E-04 2.00E-04 1.20E-05 1.10E-05 1.10E-05 1.10E-05 1.10E-05 1.10E-04 1.40E-03 1.00E-04 3.40E-05 4.20E-04 3.30E-05 4.30E-05 4.30E-05 4.30E-05 4.30E-05 4.30E-05 4.30E-05 4.30E-05 4.30E-05 4.30E-05 4.30E-05 4.30E-05 4.30E-05 4.30E-05 4.30E-05 4.30E-05 4.30E-05 4.30E-05 4.30E-05 4.30E-05 5.00E-04 4.30E-05 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-05 5.00E-05 5.00E-05 5.00E-05 5.00E-05 5.00E-05 5.00E-05 5.00E-05 5.00E-05 5.00E-05 5.00E-05 5.00E-05 5.00E-05 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-05 5.00E-05 5.00E-05 5.00E-05 5.00E-05 5.00E-05 5.00E-05 5.00E-04 5.00	3.04E-06 3.39E-09 2.59E-08 (lb/hr) 2.07E-01 2.29E-01 1.55E-04 3.54E-03 1.81E-04 4.83E-04 2.30E-03 8.65E-04 3.64E-03 4.24E-03 7.25E-04	1.33E-05 1.48E-08 1.13E-07 (TPY) 9.06E-01 1.00E+00 (TPY) 6.79E-04 1.55E-02 7.95E-04 2.11E-03 1.01E-02 3.79E-03 1.59E-02 1.86E-02 3.18E-03
Pyrene [®] - coal Pyrene [®] - gas Total TCDD [®] Total TAKCDD [®] Acid Gases: HCI (Hydrochloric acid) ⁴ HF (Hydrochloric acid) ⁹ Metals: Antimony [®] Arsenic [®] - coal Beryllium [®] - coal Beryllium [®] - coal Cadmium [®] - coal Cadmium [®] - coal Cobalt [®] - coal Cobalt [®] - coal Cobalt [®] - coal Cobalt [®] - coal Lead [®] - gas Manganese [®] - coal Lead [®] - coal Lead [®] - coal Manganese [®] - coal Marcany [®] - coal Marganese [®] - coal Marcany [®] - coal Marganese [®] - coal	129-00-0 129-00-0 - - - - - - - - - - - - -	3.30E-07 5.00E-06 3.393E-10 3.00E-09 (lb/ton) 2.40E-02 2.65E-02 (lb/ton, lb/10° scf) 1.80E-05 4.10E-04 2.10E-05 1.20E-05 1.10E-05 1.10E-05 1.10E-05 1.10E-05 1.10E-05 3.10E-05 4.20E-04 1.40E-03 1.00E-04 8.40E-05 4.20E-04 3.80E-04 3.80E-04 3.80E-04 2.26E-04 2.26E-04 3.80E-05 2.26E-04 3.80E-05 3.80E-05 3.80E-04 3.80E-05 3.8	3.04E-06 3.39E-09 2.59E-08 (Ib/hr) 2.29E-01 2.29E-01 1.55E-04 3.54E-03 1.81E-04 4.83E-04 2.30E-03 8.65E-04 3.64E-03 4.24E-03 7.25E-04	1.33E-05 1.48E-08 1.13E-07 (TPY) 9.06E-01 1.00E+00 (TPY) 6.79E-04 1.55E-02 7.95E-04 2.11E-03 1.01E-02 3.79E-03 1.59E-02 1.86E-02 3.18E-03 4.48E-03
Pyrene [®] - coal Pyrene [®] - gas Total TCDD [®] Total TAXCD [®] Acid Gases: HCI (Hydrochioric acid) ⁹ Metals: Antimony [®] Arsenic ¹ - coal Beryllium [®] - coal Beryllium [®] - coal Cadmium [®] - coal Cadmium [®] - coal Cadmium [®] - coal Cobalt [®] - coal Cobalt [®] - coal Cobalt [®] - coal Cobalt [®] - coal Lead [®] - coal Lead [®] - coal Manganese [®] - coal Manganese [®] - coal Manganese [®] - coal Mercury ¹ - gas Nickel [®] - coal Mercury ¹ - gas Nickel [®] - coal	129-00-0 129-00-0 129-00-0 7647-01-0 7664-39-3 7440-38-2 7440-38-2 7440-38-2 7440-38-2 7440-38-2 7440-41-7 7440-41-7 7440-41-7 7440-43-9 7440-43-9 7440-43-9 7440-48-4 7439-92-1 7439-96-5 7439-97-6 7440-92-0 7440-92-0	3.30E-07 5.00E-06 3.33E-10 3.00E-09 (lb/ton) 2.40E-02 2.65E-02 (lb/ton,lb/10° scf) 1.80E-05 4.10E-04 2.00E-04 2.00E-04 1.20E-05 1.20E-05 1.20E-05 1.20E-05 1.20E-05 1.20E-04 3.80E-04 3.80E-04 3.80E-04 2.80E-04 2.80E-04 2.80E-04 2.80E-04 2.80E-04 3.80E	3.04E-06 3.39E-09 2.59E-08 (lb/hr) 2.29E-01 2.29E-01 1.55E-04 3.54E-03 1.81E-04 4.83E-04 2.30E-03 8.65E-04 3.64E-03 4.24E-03 7.25E-04 2.50E-03	1.33E-05 1.48E-08 1.13E-07 (TPY) 9.06E-01 1.00E+00 (TPY) 6.79E-04 1.55E-02 7.95E-04 2.11E-03 1.01E-02 3.79E-03 1.59E-02 1.86E-02 3.18E-03 1.09E-02
Pyrene [®] - coal Pyrene [®] - gas Total TCDD [®] Total HxCDD [®] Acid Gases: HCI (Hydrochloric acid) [§] HF (Hydrochloric acid) [§] Metals: Antimony [®] Arsenic [®] - coal Arsenic [®] - coal Beryllium [®] - coal Beryllium [®] - coal Cadmium [®] - gas Chromium [®] - acal Chromium [®] - coal Cobalt [®] - coal Lead [®] - gas Manganese [®] - coal Manganese [®] - coal Mercury [®] - coal Mercury [®] - coal Nicke [®] - coal Nicke [®] - coal Nicke [®] - coal	129-00-0 129-00-0 - - - - - - - - - - - - -	3.30E-07 5.00E-06 3.33E-10 3.00E-09 (lb/ton) 2.40E-02 2.65E-02 (lb/ton, lb/10° scf) 1.80E-05 4.10E-04 2.00E-04 2.00E-04 2.00E-05 1.20E-05 1.10E-05 1.10E-05 1.10E-05 1.00E-04 1.40E-03 1.00E-04 3.80E-04 3.30E-04 2.80E-04 2.80E-04 2.80E-04 2.80E-04 2.10E-05 2.60E-04 2.80E-04 2.80E-04 2.10E-03 3.30E-04 3.30	3.04E-06 3.39E-09 2.59E-08 (lb/hr) 2.07E-01 2.29E-01 1.55E-04 3.54E-03 1.81E-04 4.83E-04 2.30E-03 8.65E-04 3.64E-03 7.25E-04 2.50E-03	1.33E-05 1.48E-08 1.13E-07 (TPY) 9.06E-01 1.00E+00 (TPY) 6.79E-04 1.55E-02 7.95E-04 2.11E-03 1.01E-02 3.79E-03 1.59E-02 1.86E-02 3.18E-03 1.09E-02
Pyrene [®] - coal Pyrene [®] - gas Total TCDD [®] Total TAxCDD [®] Acid Gases: HCI (Hydrochloric acid) ⁴ HF (Hydrochloric acid) ⁹ Metals: Antimony ¹ Arsenic ¹ - coal Beryllium ¹ - coal Beryllium ¹ - coal Cadmium ¹ - coal Cadmium ¹ - gas Chromium ¹ - coal Cobalt ¹ - coal Cobalt ¹ - gas Cobalt ¹ - coal Cobalt ¹ - gas Cobalt ¹ - gas Manganese ¹ - coal Manganese ¹ - coal Manganese ¹ - gas Marcury ¹ - coal Mercury ¹ - coal Mercury ¹ - coal Mercury ¹ - coal Micke ¹ - coal Micke ¹ - coal Mercury ¹ - coal Mercury ¹ - coal Selenium ¹ - coal	129-00-0 129-00-0 - - - - - - - - - - - - -	3.30E-07 5.00E-06 3.93E-10 3.00E-09 (lb/ton) 2.40E-02 2.65E-02 (lb/ton, lb/10° scf) 1.80E-05 4.10E-04 2.10E-05 1.20E-05 1.10E-05 1.10E-05 1.10E-05 1.10E-05 1.10E-05 4.20E-04 1.40E-03 1.00E-04 8.40E-05 4.20E-04 4.90E-04 3.80E-04 2.80E-04 2.80E-04 2.80E-04 2.80E-04 2.80E-04 2.80E-04 2.80E-04 2.10E-03 1.30E-03 1.30E-03	3.04E-06 3.39E-09 2.59E-08 (lb/hr) 2.29E-01 (lb/hr) 1.55E-04 3.54E-03 1.81E-04 4.83E-04 2.30E-03 8.65E-04 3.64E-03 4.24E-03 7.25E-04 2.50E-03 1.12E-02	1.33E-05 1.48E-08 1.13E-07 (TPY) 9.06E-01 1.00E+00 (TPY) 6.79E-04 1.55E-02 7.95E-04 2.11E-03 1.01E-02 3.79E-03 1.59E-02 1.86E-02 3.18E-03 1.09E-02 4.91E-02

.

.

		1.10E-04		9.58E-08	3.58E-10	3.58E-10	2.86E-08	3.15E-12	2.50E-10			
		1.10E-03		4.72E-08	1.76E-10	1.76E-10	1.41E-08	1.55E-11	1.23E-10			
		1.10E-04		1.28E-07	4.79E-10	4.79E-10	3.83E-08	4.22E-12	3.35E-10			
		4.405.04		0.005.00	0.005.44	0.005.44	0.005.00	0.005.40	0.005.44			
	2.505.02	1.10E-04		8.89E-09	3.32E-11	3.32E-11	2.66E-09	2.92E-13	2.32E-11		4.025.07	4 025 07
	2.50E-02	1 10E 05		1.03E-00	0.09E-09	0.09E-09	3.51E-07	3 86E 13	4.62E-09		1.93E-07	1.93E-07
		1.102-03		1.176-07	4.332-10	4.33L-10	3.31L-00	3.00L-13	3.072-10			
		1.20E-03		5.93E-09	2.21E-11	2.21E-11	1.77E-09	2.13E-12				
		7.10E-02		7.91E-08	2.95E-10	2.95E-10	2.36E-08	1.68E-09	2.07E-10			
		1.10E-04		7.51E-08	2.81E-10	2.81E-10	2.24E-08	2.47E-12	1.96E-10			
		1.105.05		0.005.45	0.005.4	0.005.4						
		1.10E-03		2.39E-08	8.92E-11	8.92E-11	7.14E-09	7.85E-12	6.24E-11			
		6.30E-03		8.89E-09	3.32E-11	3.32E-11	2.66E-09	1.6/E-11	2.32E-11			
1.57E±00	1.05E±00	3 40E 05		1.41E.05	5.27E.08	5 27E 08	4 22E 06	1.43E 10	3.60E.08	3 35E 08	3.52E.08	3 52E 08
1.572100	1.032100	3.40L-03		1.412-03	J.27L-00	J.27L-00	4.22L-00	1.452-10	3.03⊑=00	3.33L-00	J.J2L-00	3.32L-00
		3.30E+01		4.27E-10	1.59E-12	1.59E-12	1.27E-10	4.21E-09	1.12E-12			
		1.30E+00		3.26E-09	1.22E-11	1.22E-11	9.73E-10	1.26E-09	8.51E-12			
(mg/m ³)	(mg/m ³)	(m³′µg)		(g/sec)	mg/m ³	mg/m ³	(µg/m³)	(µg/m ³)	mg/m ³			
0.0597			Acid	1.04E-02	3.89E-05	3.89E-05	3.11E-03		2.72E-05	6.52E-04		6.52E-04
0.0327	0.00818		Acid	1.15E-02	4.30E-05	4.30E-05	3.44E-03		3.01E-05	1.32E-03	3.68E-03	3.68E-03
(mg/m³)	(mg/m³)	(m̃µg)		(g/sec)	mg/m³	mg/m°	(µg/m ⁻)	(µg/m³)	mg/m°			
	1.00E-02	1005.00	PM	1.95E-05	7.30E-08	7.30E-08	5.84E-06		5.11E-08		5.11E-06	5.11E-06
	2.00E-04	4.30E-03	PM	4.46E-04	1.67E-06	1.67E-06	1.33E-04	5.73E-07	1.1/E-06		5.83E-03	5.83E-03
	1.005.06	2 405 02	DM	2 20E 05	9 545 09	9 E4E 09	6 925 06	1.64E.09	5 09E 09		5 09E 02	5 09E 02
	1.00E-00	2.40E-03	FIVI	2.29E-03	0.34E-00	0.04E-00	0.03E-00	1.04E-00	0.90E-00		5.96E-02	0.90E-02
	2 00E-04	1.80E-03	PM	6.08E-05	2 27E-07	2 27E-07	1 82E-05	3 27E-08	1.59E-07		7 95E-04	7 95E-04
	2.002.04			5.002 00				5.27 2 50				
	1.00E-02		PM	2.89E-04	1.08E-06	1.08E-06	8.64E-05		7.56E-07		7.56E-05	7.56E-05
	4.00E-04		PM	1.09E-04	4.07E-07	4.07E-07	3.26E-05		2.85E-07		7.12E-04	7.12E-04
	1.00E-03		PM	4.58E-04	1.71E-06	1.71E-06	1.37E-04		1.20E-06		1.20E-03	1.20E-03
	4.00E-03		PM	5.34E-04	1.99E-06	1.99E-06	1.59E-04		1.40E-06		3.49E-04	3.49E-04
	5 00F 01		DM	0.445.05	2.445.07	2.445.07	0.705.05		2 205 07		4 705 01	4 705 04
	5.00E-04		PM	9.14E-05	3.41E-07	3.41E-07	2.73E-05		2.39E-07		4.78E-04	4.78E-04
	3.00E-02		PM	3 14E-04	1 17E-06	1 17E-06	9.39E-05		8 22E-07		2 74E-05	2 74E-05
	5.00L-02		1 191	0.146-04	7.17⊑-00		0.00L-00		3.222-01		2.742-00	2.742-00
	4.00E-03		PM	1.41E-03	5.27E-06	5.27E-06	4.22E-04		3.69E-06		9.22E-04	9.22E-04
						D	ryer MICR =	6.65E-07			Dryer HI =	9.11E-02

Notes:

⁵ AP42 (9/98) Table 1.1-19
 ^b AP42 (9/98) Table 1.1-3, maximum sulfur content of 0.5 percent and 60% inherent control EPRI (3/12) Estimating Total Sulfuric Acid Emissions from Stationary Power Plants, 0.29% of SO₂

^c AP-42 (9/98) Table 1.1-14

^d AP-42 (9/98) Table 1.1-13 ^e AP-42 (9/98) Table 1.1-12

¹ Spring Creek Mine Coal Specification, 16.65 ppm Cl ⁹ Spring Creek Mine Coal Specification, 41.9 ppm F as HF. Also incorporates 60% inherent control. ^h AP42 (9/98) Table 1.1-18

^k AP42 (7/98) Table 1.4-3 ^I AP42 (7/98) Table 1.4-4

¹ The pulp dryer represents 60% control of acid gases (and SO₂) provided by inherent scrubbing

properties of the pulp. AP42 (7/98) Table 1.4-2

FC Computation

Project American Crystal Sugar Company

Subject Drayton Expansion Phase II - Toxics Review

Task Proposed New Dryer and Package Boiler

Total Project Emissions From: Proposed New Dryer Proposed New Package Boiler

Г

Hazardous Air Pollutants	CAS#	Pollutant E	missions
	_	lb/hr	TPY
Organic Compounds:			
Nitrous Oxide (N ₂ O)	10024-97-2	1.21E+00	5.28E+00
Sulfuric Acid Mist (H ₂ SO ₄)	-	1.75E-01	7.66E-01
Acetaldehyde	75-07-0	4.91E-03	2.15E-02
Acetophenone	98-86-2	1.29E-04	5.66E-04
Acrolein	107-02-8	2.50E-03	1.09E-02
Benzene	71-43-2	1.20E-02	5.27E-02
Benzyl chloride	100-44-7	6.03E-03	2.64E-02
Bis(2-ethylhexyl)phthalate	117-81-7	6.29E-04	2.76E-03
Bromoform	75-25-2	3.36E-04	1.47E-03
Carbon disulfide	75-15-0	1.12E-03	4.91E-03
2-Chloroacetophenone	532-27-4	6.03E-05	2.64E-04
Chlorobenzene	108-90-7	1.90E-04	8.30E-04
Chloroform	67-66-3	5.08E-04	2.23E-03
Cumene	98-82-8	4.57E-05	2.00E-04
Cyanide	57-12-5	2.15E-02	9.44E-02
Dichlorobenzene	25321-22-6	4.70E-04	2.06E-03
2,4-Dinitrotoluene	121-14-2	2.41E-06	1.06E-05
Dimethyl sulfate	77-78-1	4.14E-04	1.81E-03
Ethylbenzene	100-41-4	8.10E-04	3.55E-03
Ethyl chloride	75-00-3	3.62E-04	1.59E-03
Ethylene dichloride	107-06-2	3.45E-04	1.51E-03
Ethylene dibromide	106-93-4	1.03E-05	4.53E-05
Formaldehyde	50-00-0	3.14E-02	1.38E-01
Hexane	110-54-3	7.05E-01	3.09E+00
Isophorone	78-59-1	5.00E-03	2.19E-02
Methyl bromide	74-83-9	1.38E-03	6.04E-03
Methyl chloride	74-87-3	4.57E-03	2.00E-02
Methyl hydrazine	60-34-4	1.46E-03	6.42E-03
Methyl methacrylate	80-62-6	1.72E-04	7.55E-04
Methyl tert butyl ether	1634-04-4	3.02E-04	1.32E-03
Methylene chloride	75-09-2	2.50E-03	1.09E-02
Phenol	108-95-2	1.38E-04	6.04E-04
Propionaldehyde	123-38-6	3.27E-03	1.43E-02
Tetrachlorethylene (Perc)	127-18-4	3.71E-04	1.62E-03
Toluene	108-88-3	3.40E-03	1.49E-02
1,1,1-Trichloroethane (methyl chloroform)	71-55-6	1.72E-04	7.55E-04
Styrene	100-42-5	2.15E-04	9.44E-04
Vinyl acetate	108-05-4	6.55E-05	2.87E-04
Xylenes	1330-20-7	3.19E-04	1.40E-03
POM/Dioxins/Furans:			
Benzo(a)anthracene	56-55-3	1.39E-06	6.11E-06
Benzo(a)pyrene	50-32-8	7.97E-07	3.49E-06

								10000 µg : 0g		
				Step 6	Step 7a	Step 7b	Step 8a	Ste	p 8b	Step 8c
Guid Concentra	eline tions (GC) 8-Hour	Unit Risk Factor for Carcinogens	PM or Acid	Total Off- Property 1- Hour Conc. (MC)	70-Year Average Conc.	MICR	Total Off- Property 8- Hour Conc. (MC)	1-Hour MC/GC	8-Hour MC/GC	Hazard Index
(ma/m ³)	(ma/m ³)	(m ^{3/} ug)		ma/m ³	(ua/m^3)	(ma/m^3)	ma/m ³			
(ing/in)	1.9	(µ9/		0.50E.04	7.60 - 02	(µg/m)	6.655.04		3 70E 04	3 70E 04
	1.0			9.302-04	1.00L-02		0.032-04		3.70L-04	3.70L-04
	0.004			8.23E-05	6.58E-03		5.76E-05		1.44E-02	1.44E-02
0.901		2.20E-06		2.31E-06	1.85E-04	4.07E-10	1.62E-06	2.56E-06	1005 00	2.56E-06
0.00450	0.983			6.08E-08	4.86E-06		4.26E-08		4.33E-08	4.33E-08
0.00459	0.0040	7.005.00		1.18E-06	9.41E-05	0 705 00	8.23E-07	2.56E-04		2.56E-04
0.16	0.0319	7.80E-06		6.02E-06	4.82E-04	3.76E-09	4.22E-06	3.76E-05	1.32E-04	1.32E-04
0.0575		4.90E-05		2.84E-06	2.27E-04	1.11E-08	1.99E-06	4.94E-05		4.94E-05
	0.102	2.40E-06		2.96E-07	2.37E-05	3.06E-11	2.07E-07		1.075.00	1.075.00
0.062	0.103	1.10E-06		1.36E-07	1.20E-05	1.39E-11	1.11E-07	9 EOE 06	1.07E-06	1.07E-06
0.002	0.00622			3.27E-07	4.22E-03	-	3.09E-07	0.30E-00	2 14E 06	0.50E-00
	0.00032			2.04E-00	Z.27E-00		1.99E-00		5.14E-00	5.14E-00
	0.921	2 30E-05		2 39E-07	1.01E-05	4.40E-10	1.67E-07		0.762-00	0.702-00
	4 916	2.002-00		2.55E-07	1.31E-05	4.402-10	1.07E-07		3.06E-09	3.06E-09
	0.1			1.01E-05	8 11E-04		7.09E-06		7.09E-05	7.09E=05
6.01E+00	3.01E+00			4.08E-07	3 26E-05		2.85E-07	6 78E-08	9.49E-08	9.49E-08
0.012.00	0.012.00	8 90E-05		1 14E-09	9.08E-08	8 08E-12	7.95E-10	0.70E 00	1 99E-07	1 99E-07
	0.0103	0.002 00		1.14E 00	1.56E-05	0.002 12	1.36E-07		1.32E-05	1.32E-05
10.855	8.684	2.50E-06		3.81E-07	3.05E-05	7.62E-11	2.67E-07	3.51E-08	3.07E-08	3.51E-08
	5.278			1.70E-07	1.36E-05		1.19E-07		2.26E-08	2.26E-08
	0.809	2.60E-05		1.62E-07	1.30E-05	3.37E-10	1.14E-07		1.40E-07	1.40E-07
		6.00E-04		4.86E-09	3.89E-07	2.34E-10	3.41E-09			
0.00737		1.30E-05		2.78E-05	2.23E-03	2.90E-08	1.95E-05	3.78E-03		3.78E-03
	3.525			6.45E-04	5.16E-02		4.52E-04		1.28E-04	1.28E-04
0.565		2.70E-07		2.35E-06	1.88E-04	5.08E-11	1.65E-06	4.16E-06		4.16E-06
	0.0777			6.49E-07	5.19E-05		4.54E-07		5.84E-06	5.84E-06
4.13	2.065			2.15E-06	1.72E-04		1.50E-06	5.20E-07	7.28E-07	7.28E-07
	0.00038	3.10E-04		6.89E-07	5.51E-05	1.71E-08	4.82E-07		1.27E-03	1.27E-03
8.191	4.095			8.11E-08	6.49E-06		5.68E-08	9.90E-09	1.39E-08	1.39E-08
	3.606	2.60E-07		1.42E-07	1.14E-05	2.95E-12	9.93E-08		2.75E-08	2.75E-08
		4.70E-07		1.18E-06	9.41E-05	4.42E-11	8.23E-07			
	0.385			6.49E-08	5.19E-06		4.54E-08		1.18E-07	1.18E-07
	0.951			1.54E-06	1.23E-04		1.08E-06		1.13E-06	1.13E-06
13.562	3.391			1.74E-07	1.39E-05		1.22E-07	1.29E-08	3.60E-08	3.60E-08
	1.507			2.19E-06	1.75E-04		1.53E-06		1.02E-06	1.02E-06
49.112	38.198			8.11E-08	6.49E-06		5.68E-08	1.65E-09	1.49E-09	1.65E-09
3.408	1.704			1.01E-07	8.11E-06		7.09E-08	2.97E-08	4.16E-08	4.16E-08
1.056	0.704			3.08E-08	2.46E-06		2.16E-08	2.92E-08	3.06E-08	3.06E-08
13.026	8.684			1.50E-07	1.20E-05		1.05E-07	1.15E-08	1.21E-08	1.21E-08
(mg/m ³)	(mg/m ³)	(m³′µg)		mg/m ³	(µg/m°)	(µg/m³)	mg/m ³			
		1.10E-04		9.69E-10	7.75E-08	8.53E-12	6.78E-10			
		1.10E-03		5.84E-10	4.67E-08	5.14E-11	4.09E-10			

Job No. 10352890

Computed GJR Checked MKD Sheets NA

Constants L	lsed in Calcu	Iating MICR	and HI	
Multipliers (Hour Cond	Converting 1- centrations		Co	nversion Factors
70-year	8-hour		3600	Seconds Per Hour
0.08	0.7		453.59 1000	Grams Per Pound μg Per mg

		Total HARe -	5 607	
Selenium	7782-49-2	1.12E-02	4.91E-02	
Nickel	7440-02-0	3.23E-03	1.42E-02	
Mercury	7439-97-6	8.17E-04	3.58E-03	
Manganese	7439-96-5	4.37E-03	1.91E-02	
Lead	7439-92-1	3.81E-03	1.67E-02	
Cobalt	7440-48-4	8.95E-04	3.92E-03	
Chromium	7440-47-3	2.79E-03	1.22E-02	
Cadmium	7440-43-9	8.70E-04	3.81E-03	
Beryllium	7440-41-7	1.86E-04	8.13E-04	
Arsenic	7440-38-2	3.61E-03	1.58E-02	
Antimony	7440-36-0	1.55E-04	6.79E-04	
Metals:				(m
HF (Hydrofluoric acid)	7664-39-3	2.29E-01	1.00E+00	0.
HCI (Hydrochloric acid)	7647-01-0	2.07E-01	9.06E-01	0.
Acid Gases:				(m
Total HxCDD	NA	2.59E-08	1.13E-07	
Total TCDD	NA	3.39E-09	1.48E-08	
Naphthalene	91-20-3	3.27E-04	1.43E-03	1
3-Methylcholanthrene	56-49-5	6.34E-07	2.78E-06	
5-Methyl chrysene	3697-24-3	1.90E-07	8.30E-07	
Indeno(1,2,3-cd)pyrene	193-39-5	1.23E-06	5.39E-06	
7,12-Dimethylbenzene(a)anthracene	NA	5.64E-06	2.47E-05	
Dibenzo(a,h)anthracene	53-70-3	4.23E-07	1.85E-06	
Chrysene	218-01-9	1.57E-06	6.86E-06	
Biphenyl	92-52-4	1.46E-05	6.42E-05	
Benzo(k)fluoranthene	207-08-9	6.34E-07	2.78E-06	
Benzo(b,j,k)fluoranthene	205-99-2	1.65E-06	7.24E-06	

		1.10E-04		1.09E-09	8.73E-08	9.60E-12	7.63E-10			
		1.10E-04		6.12E-10	4.89E-08	5.38E-12	4.28E-10			
	0.025			6.89E-09	5.51E-07		4.82E-09		1.93E-07	1.93E-07
		1.10E-05		1.05E-09	8.40E-08	9.24E-13	7.35E-10			
		1.20E-03		4.08E-10	3.26E-08	3.91E-11	2.85E-10			
		7.10E-02		5.44E-09	4.35E-07	3.09E-08	3.81E-09			
		1.10E-04		8.92E-10	7.14E-08	7.85E-12	6.24E-10			
		1.10E-03		8.92E-11	7.14E-09	7.85E-12	6.24E-11			
		6.30E-03		6.12E-10	4.89E-08	3.08E-10	4.28E-10			
1.573	1.0486	3.40E-05		2.60E-07	2.08E-05	7.07E-10	1.82E-07	1.65E-07	1.74E-07	1.74E-07
		3.30E+01		1.59E-12	1.27E-10	4.21E-09	1.12E-12			
		1.30E+00		1.22E-11	9.73E-10	1.26E-09	8.51E-12			
(mg/m ³)	(mg/m ³)	(m ^{3/} µg)		mg/m ³	(µg/m³)	(µg/m ³)	mg/m ³			
0.0597			Acid	3.89E-05	3.11E-03		2.72E-05	6.52E-04		6.52E-04
0.0327	0.00818		Acid	4.30E-05	3.44E-03		3.01E-05	1.32E-03	3.68E-03	3.68E-03
0.0327 (mg/m ³)	0.00818 (mg/m ³)	(m³/µg)	Acid	4.30E-05 mg/m ³	3.44E-03 (µg/m ³)	(µg/m³)	3.01E-05 mg/m ³	1.32E-03	3.68E-03	3.68E-03
0.0327 (mg/m ³)	0.00818 (mg/m ³) 0.01	(m ^{3/} µg)	Acid PM	4.30E-05 mg/m ³ 7.30E-08	3.44E-03 (µg/m ³) 5.84E-06	(µg/m³)	3.01E-05 mg/m ³ 5.11E-08	1.32E-03	3.68E-03 5.11E-06	3.68E-03 5.11E-06
0.0327 (mg/m ³)	0.00818 (mg/m ³) 0.01 0.0002	(m ^{3/} µg) 4.30E-03	Acid PM PM	4.30E-05 mg/m ³ 7.30E-08 1.73E-06	3.44E-03 (µg/m ³) 5.84E-06 1.39E-04	(μg/m ³) 5.96E-07	3.01E-05 mg/m ³ 5.11E-08 1.21E-06	1.32E-03	3.68E-03 5.11E-06 6.07E-03	3.68E-03 5.11E-06 6.07E-03
0.0327 (mg/m ³)	0.00818 (mg/m ³) 0.01 0.0002 0.000001	(m ^{3/} µg) 4.30E-03 2.40E-03	Acid PM PM PM	4.30E-05 mg/m ³ 7.30E-08 1.73E-06 8.94E-08	3.44E-03 (µg/m ³) 5.84E-06 1.39E-04 7.15E-06	(μg/m ³) 5.96E-07 1.72E-08	3.01E-05 mg/m ³ 5.11E-08 1.21E-06 6.26E-08	1.32E-03	3.68E-03 5.11E-06 6.07E-03 6.26E-02	3.68E-03 5.11E-06 6.07E-03 6.26E-02
0.0327 (mg/m ³)	0.00818 (mg/m ³) 0.01 0.0002 0.000001 0.0002	(m ³ /µg) 4.30E-03 2.40E-03 1.80E-03	Acid PM PM PM PM	4.30E-05 mg/m ³ 7.30E-08 1.73E-06 8.94E-08 6.01E-07	3.44E-03 (µg/m ³) 5.84E-06 1.39E-04 7.15E-06 4.81E-05	(μg/m ³) 5.96E-07 1.72E-08 8.65E-08	3.01E-05 mg/m ³ 5.11E-08 1.21E-06 6.26E-08 4.21E-07	1.32E-03	3.68E-03 5.11E-06 6.07E-03 6.26E-02 2.10E-03	3.68E-03 5.11E-06 6.07E-03 6.26E-02 2.10E-03
0.0327 (mg/m ³)	0.00818 (mg/m ³) 0.01 0.0002 0.000001 0.0002 0.01	(m ³ /µg) 4.30E-03 2.40E-03 1.80E-03	Acid PM PM PM PM PM	4.30E-05 mg/m ³ 7.30E-08 1.73E-06 8.94E-08 6.01E-07 1.56E-06	3.44E-03 (µg/m ³) 5.84E-06 1.39E-04 7.15E-06 4.81E-05 1.24E-04	(μg/m ³) 5.96E-07 1.72E-08 8.65E-08	3.01E-05 mg/m ³ 5.11E-08 1.21E-06 6.26E-08 4.21E-07 1.09E-06	1.32E-03	3.68E-03 5.11E-06 6.07E-03 6.26E-02 2.10E-03 1.09E-04	3.68E-03 5.11E-06 6.07E-03 6.26E-02 2.10E-03 1.09E-04
0.0327 (mg/m ³)	0.00818 (mg/m ³) 0.01 0.0002 0.000001 0.0002 0.01 0.0004	(m ^{3/} µg) 4.30E-03 2.40E-03 1.80E-03	Acid PM PM PM PM PM PM	4.30E-05 mg/m ³ 7.30E-08 1.73E-06 8.94E-08 6.01E-07 1.56E-06 4.35E-07	3.44E-03 (µg/m ³) 5.84E-06 1.39E-04 7.15E-06 4.81E-05 1.24E-04 3.48E-05	(μg/m ³) 5.96E-07 1.72E-08 8.65E-08	3.01E-05 mg/m ³ 5.11E-08 1.21E-06 6.26E-08 4.21E-07 1.09E-06 3.05E-07	1.32E-03	3.68E-03 5.11E-06 6.07E-03 6.26E-02 2.10E-03 1.09E-04 7.62E-04	3.68E-03 5.11E-06 6.07E-03 6.26E-02 2.10E-03 1.09E-04 7.62E-04
0.0327 (mg/m³)	0.00818 (mg/m ³) 0.01 0.0002 0.000001 0.0002 0.01 0.0004 0.001	(m ^{3/} µg) 4.30E-03 2.40E-03 1.80E-03	Acid PM PM PM PM PM PM PM	4.30E-05 mg/m ³ 7.30E-08 1.73E-06 8.94E-08 6.01E-07 1.56E-06 4.35E-07 1.88E-06	3.44E-03 (µg/m ³) 5.84E-06 1.39E-04 7.15E-06 4.81E-05 1.24E-04 3.48E-05 1.51E-04	(μg/m ³) 5.96E-07 1.72E-08 8.65E-08	3.01E-05 mg/m ³ 5.11E-08 1.21E-06 6.26E-08 4.21E-07 1.09E-06 3.05E-07 1.32E-06	1.32E-03	3.68E-03 5.11E-06 6.07E-03 6.26E-02 2.10E-03 1.09E-04 7.62E-04 1.32E-03	3.68E-03 5.11E-06 6.07E-03 6.26E-02 2.10E-03 1.09E-04 7.62E-04 1.32E-03
0.0327 (mg/m ³)	0.00818 (mg/m ³) 0.01 0.0002 0.00001 0.0002 0.01 0.0004 0.001 0.004	(m ³ /µg) 4.30E-03 2.40E-03 1.80E-03	Acid PM PM PM PM PM PM PM PM	4.30E-05 mg/m ³ 7.30E-08 1.73E-06 8.94E-08 6.01E-07 1.56E-06 4.35E-07 1.88E-06 2.12E-06	3.44E-03 (µg/m ³) 5.84E-06 1.39E-04 7.15E-06 4.81E-05 1.24E-04 3.48E-05 1.51E-04 1.70E-04	(μg/m ³) 5.96E-07 1.72E-08 8.65E-08	3.01E-05 mg/m ³ 5.11E-08 1.21E-06 6.26E-08 4.21E-07 1.09E-06 3.05E-07 1.32E-06 1.49E-06	1.32E-03	3.68E-03 5.11E-06 6.07E-03 6.26E-02 2.10E-03 1.09E-04 7.62E-04 1.32E-03 3.71E-04	3.68E-03 5.11E-06 6.07E-03 6.26E-02 2.10E-03 1.09E-04 7.62E-04 1.32E-03 3.71E-04
0.0327 (mg/m ³)	0.00818 (mg/m ³) 0.01 0.0002 0.000001 0.0002 0.01 0.0004 0.001 0.004 0.0005	(m ³ ′µg) 4.30E-03 2.40E-03 1.80E-03	Acid PM PM PM PM PM PM PM PM PM PM	4.30E-05 mg/m ³ 7.30E-08 1.73E-06 8.94E-08 6.01E-07 1.56E-06 4.35E-07 1.88E-06 2.12E-06 4.30E-07	3.44E-03 (µg/m ³) 5.84E-06 1.39E-04 7.15E-06 4.81E-05 1.24E-04 3.48E-05 1.51E-04 1.70E-04 3.44E-05	(μg/m ³) 5.96E-07 1.72E-08 8.65E-08	3.01E-05 mg/m ³ 5.11E-08 1.21E-06 6.26E-08 4.21E-07 1.09E-06 3.05E-07 1.32E-06 1.49E-06 3.01E-07	1.32E-03	3.68E-03 5.11E-06 6.07E-03 6.26E-02 2.10E-03 1.09E-04 7.62E-04 1.32E-03 3.71E-04 6.01E-04	3.68E-03 5.11E-06 6.07E-03 6.26E-02 2.10E-03 1.09E-04 7.62E-04 1.32E-03 3.71E-04 6.01E-04
0.0327 (mg/m ³)	0.00818 (mg/m ³) 0.01 0.0002 0.000001 0.0002 0.01 0.0004 0.001 0.004 0.0005 0.03	(m ³ /µg) 4.30E-03 2.40E-03 1.80E-03	Acid PM PM PM PM PM PM PM PM PM PM	4.30E-05 mg/m ³ 7.30E-08 1.73E-06 8.94E-08 6.01E-07 1.56E-06 4.35E-07 1.88E-06 2.12E-06 4.30E-07 1.89E-06	3.44E-03 (µg/m ³) 5.84E-06 1.39E-04 7.15E-06 4.81E-05 1.24E-04 3.48E-05 1.51E-04 1.70E-04 3.44E-05 1.51E-04	(μg/m ³) 5.96E-07 1.72E-08 8.65E-08	3.01E-05 mg/m ³ 5.11E-08 1.21E-06 6.26E-08 4.21E-07 1.09E-06 3.05E-07 1.32E-06 1.49E-06 3.01E-07 1.32E-06	1.32E-03	3.68E-03 5.11E-06 6.07E-03 6.26E-02 2.10E-03 1.09E-04 7.62E-04 1.32E-03 3.71E-04 6.01E-04 4.40E-05	3.68E-03 5.11E-06 6.07E-03 6.26E-02 2.10E-03 1.09E-04 7.62E-04 1.32E-03 3.71E-04 6.01E-04 4.40E-05
0.0327 (mg/m ³)	0.00818 (mg/m ³) 0.01 0.0002 0.00001 0.0002 0.01 0.0004 0.001 0.004 0.004 0.005 0.03 0.004	(m ³ /µg) 4.30E-03 2.40E-03 1.80E-03	Acid PM PM PM PM PM PM PM PM PM PM PM	4.30E-05 mg/m ³ 7.30E-08 1.73E-06 8.94E-08 6.01E-07 1.56E-06 4.35E-07 1.88E-06 2.12E-06 4.30E-07 1.89E-06 5.28E-06	3.44E-03 (µg/m ³) 5.84E-06 1.39E-04 7.15E-06 4.81E-05 1.24E-04 3.48E-05 1.51E-04 1.51E-04 4.22E-04	(µg/m ³) 5.96E-07 1.72E-08 8.65E-08	3.01E-05 mg/m ³ 5.11E-08 1.21E-06 6.26E-08 4.21E-07 1.09E-06 3.05E-07 1.32E-06 3.01E-07 1.32E-06 3.70E-06	1.32E-03	3.68E-03 5.11E-06 6.07E-03 6.26E-02 2.10E-03 1.09E-04 7.62E-04 1.32E-03 3.71E-04 6.01E-04 4.40E-05 9.24E-04	3.68E-03 5.11E-06 6.07E-03 6.26E-02 2.10E-03 1.09E-04 7.62E-04 1.32E-03 3.71E-04 6.01E-04 4.40E-05 9.24E-04

*** SCREEN3 MODEL RUN *** *** VERSION DATED 13043 *** ACS Drayton Phase II Boiler SIMPLE TERRAIN INPUTS: SOURCE TYPE POINT = EMISSION RATE (G/S) = 1.000000 STACK HEIGHT (M) 36.5760 = STK INSIDE DIAM (M) = 1.3720 STK EXIT VELOCITY (M/S)= 33.5380 STK GAS EXIT TEMP (K) = 449.8200 AMBIENT AIR TEMP (K) = 293.0000 RECEPTOR HEIGHT (M) = 0.0000 URBAN/RURAL OPTION = RURAL BUILDING HEIGHT (M) = 25.3000 MIN HORIZ BLDG DIM (M) = 69.0000 MAX HORIZ BLDG DIM (M) = 320.0000 THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED. THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED.

BUOY. FLUX = 53.957 M**4/S**3; MOM. FLUX = 344.787 M**4/S**2.

*** FULL METEOROLOGY ***

*** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES ***

DIST	CONC		U10M	USTK	MIX HT	PLUME	SIGMA	SIGMA	D. I. C. I.
(M)	(UG/M**3)	STAB	(M/S)	(M/S)	(M)	HT (M)	Y (M)	Z (M)	DWASH
205.	6.405	4	15.0	18.2	4800.0	37.25	15.94	17.43	SS
225.	6.832	4	15.0	18.2	4800.0	37.38	17.35	18.30	SS
250.	7.235	4	15.0	18.2	4800.0	37.56	19.12	19.40	SS
275.	7.655	4	15.0	18.2	4800.0	37.76	20.87	20.69	SS
300.	7.488	4	15.0	18.2	4800.0	37.97	22.61	21.41	SS
350.	7.115	4	15.0	18.2	4800.0	38.44	26.05	22.83	SS
400.	6.715	4	15.0	18.2	4800.0	38.97	29.45	24.23	SS
450.	6.309	4	15.0	18.2	4800.0	39.54	32.82	25.61	SS
500.	5.913	4	15.0	18.2	4800.0	40.16	36.15	26.97	SS
550.	5.534	4	15.0	18.2	4800.0	40.82	39.45	28.32	SS
600.	5.203	4	15.0	18.2	4800.0	41.40	42.72	29.65	SS

DWASH= MEANS NO CALC MADE (CONC = 0.0) DWASH=NO MEANS NO BUILDING DOWNWASH USED DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB ****** *** REGULATORY (Default) *** PERFORMING CAVITY CALCULATIONS WITH ORIGINAL SCREEN CAVITY MODEL (BRODE, 1988) ******* *** CAVITY CALCULATION - 1 *** *** CAVITY CALCULATION - 2 *** CONC (UG/M**3) CONC (UG/M**3) 0.000 0.000 = = CRIT WS @10M (M/S) = CRIT WS @10M (M/S) = 99.99 99.99 CRIT WS @ HS (M/S) = 99.99 CRIT WS @ HS (M/S) = 99.99 DILUTION WS (M/S) =DILUTION WS (M/S) = 99.9999.99 CAVITY HT (M) 26.47 CAVITY HT (M) 25.30 = = CAVITY LENGTH (M) = 134.55 CAVITY LENGTH (M) = 71.80 ALONGWIND DIM (M) = 69.00ALONGWIND DIM (M) = 320.00 CAVITY CONC NOT CALCULATED FOR CRIT WS > 20.0 M/S. CONC SET = 0.0 END OF CAVITY CALCULATIONS *** SUMMARY OF SCREEN MODEL RESULTS *** CALCULATION MAX CONC DIST TO TERRAIN PROCEDURE (UG/M**3) MAX (M) HT (M) _ ----SIMPLE TERRAIN 275. 7.655 0. ** REMEMBER TO INCLUDE BACKGROUND CONCENTRATIONS **

*** SCREEN3 MODEL RUN *** *** VERSION DATED 13043 *** ACS Drayton Phase II Pulp Dryer SIMPLE TERRAIN INPUTS: SOURCE TYPE POINT = EMISSION RATE (G/S) 1.000000 = STACK HEIGHT (M) = 54.8680 STK INSIDE DIAM (M) 1.6760 = STK EXIT VELOCITY (M/S)= 21.3820 STK GAS EXIT TEMP (K) =398.7100 AMBIENT AIR TEMP (K) = 293.0000 RECEPTOR HEIGHT (M) 0.0000 = URBAN/RURAL OPTION = RURAL BUILDING HEIGHT (M) 25.3000 = MIN HORIZ BLDG DIM (M) = 69.0000 MAX HORIZ BLDG DIM (M) =320.0000 THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED. THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED. BUOY. FLUX = 39.039 M**4/S**3; MOM. FLUX = 235.937 M**4/S**2. *** FULL METEOROLOGY *** ************************************ *** SCREEN DISCRETE DISTANCES *** *** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES *** DIST CONC U10M USTK MIX HT PLUME SIGMA SIGMA (M) (UG/M**3) STAB (M/S) (M/S)(M) HT(M)Y (M) Z (M) DWASH _ _ _ _ _ _ _ _ ----_ _ _ _ --------_ _ _ _ _ _ ------------_ _ _ _ _ 4.0 10.2 10000.0 69.93 7.34 23.13 151. 1.898 6 HS 175. 2.372 4.0 10.2 10000.0 71.51 8.32 24.81 HS 6 200. 2.853 6 4.0 10.2 10000.0 73.06 9.31 26.54 HS 74.55 225. 3.311 6 4.0 10.2 10000.0 10.29 28.26 HS 250. 3.733 6 4.0 10.2 10000.0 75.98 11.25 29.99 HS 6 275. 3.734 4.0 10.2 10000.0 77.37 12.20 31.11 HS 31.28 300. 6 4.0 10.2 10000.0 78.71 13.14 HS 3.203 4.0 10.2 10000.0 81.29 14.99 HS 350. 2.420 6 31.63 4 15.0 19.4 4800.0 68.76 29.77 400. 2.042 33.69 HS

450.

500.

550.

2.343

2.723

2.858

1

1

1

3.0

3.0

3.0

3.4

3.4

3.4

960.0 153.88 106.41

960.0 153.88 116.52 108.41

960.0 153.88 126.22 131.13

91.30

NO

NO

NO

12/22/22 12:57:20

600. 2.849 1 2.5 2.8 800.0 173.68 137.14 157.64 NO

DWASH= MEANS NO CALC MADE (CONC = 0.0) DWASH=NO MEANS NO BUILDING DOWNWASH USED DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB

*** CAVITY CALCULATIO	N - 1 ***	*** CAVITY CALCULATION	- 2 ***
CONC (UG/M**3) =	0.000	CONC (UG/M**3) =	0.000
CRIT WS @10M (M/S) =	99.99	CRIT WS @10M (M/S) =	99.99
CRIT WS @ HS (M/S) =	99.99	CRIT WS @ HS (M/S) =	99.99
DILUTION WS (M/S) =	99.99	DILUTION WS (M/S) =	99.99
CAVITY HT (M) =	26.47	CAVITY HT (M) =	25.30
CAVITY LENGTH (M) =	134.55	CAVITY LENGTH (M) =	71.80
ALONGWIND DIM (M) =	69.00	ALONGWIND DIM (M) =	320.00

CAVITY CONC NOT CALCULATED FOR CRIT WS > 20.0 M/S. CONC SET = 0.0

CALCULATION	MAX CONC	DIST TO	TERRAIN
PROCEDURE	(UG/M**3)	MAX (M)	HT (M)
SIMPLE TERRAIN	3.734	275.	0.

 Appendix E

Model Parameter Data

American Crystal Sugar Company Drayton, ND Modeling Source Parameters - Phase II Expansion

Fug 4

Emission	Description	UTM Cod	ordinates	Elev.	Height	Temp	Flow	Velocity	Dia.	Orient.	Notes
Point		x (m)	y (m)	(m)	(m)	(K)	(acfm)	(m/s)	(m)	(vert/horz)	
EP1	B&W Boiler	634,538.2	5,383,772.1	243.8	45.72	533.2	207,000	22.5	2.35	Vertical	
EP1a	Coal Handling Equipment	634,518.7	5,383,766.2	243.8	25.91	294.3	1,700	0.001	0.001	Horizontal	
EP3	Pulp Dryer No. 2	634,468.5	5,383,839.7	243.8	64.01	398.7	50,000	20.2	1.22	Vertical	Removed from service as part of current project.
EP4	Pulp Dryer No. 1	634,464.9	5,383,839.7	243.8	54.87	384.8	127,000	33.0	1.52	Vertical	Modified as part of 2016 expansion.
EP5	Lime Mixing Tank & Kiln Cooler	634,519.2	5,383,802.3	243.8	9.45	399.8	8,500	0.001	0.001	Horizontal	Removed from service as part of 2016 expansion.
EP6	Pellet Mill No. 1	634,476.4	5,383,941.2	243.8	23.77	310.9	7,952	3.21	1.22	Vertical	Removed from service as part of 2016 expansion.
EP30	Pulp Pellet Mills/Cooler	634,495.0	5,383,941.4	243.8	7.01	294.3	35,000	36.22	0.76	Vertical	New emission unit.
EP7	Pellet Mill No. 2	634,476.1	5,383,943.9	243.8	23.77	310.9	11,000	4.45	1.22	Vertical	Removed from service as part of 2016 expansion.
EP8	Pellet Mill No. 3	634,481.4	5,383,943.8	243.8	23.77	310.9	11,000	4.45	1.22	Vertical	Removed from service as part of 2016 expansion.
EP9	Dry Pulp Belt Conveyor	634,518.0	5,383,849.8	243.8	6.71	310.9	6,000	0.001	0.001	Horizontal	
EP10	Dry Pulp Reclaim System	634,473.3	5,383,946.8	243.8	7.31	310.9	3,500	0.001	0.001	Horizontal	
EP11	Dry Pulp Bucket Elevator	634,518.6	5,383,844.1	243.8	17.37	310.9	3,500	0.001	0.001	Horizontal	Emissions routed to EP9 as part of 2016 expansion.
<u>EP12</u>	Sugar Dryer	634,478.4	5,383,733.8	<u>243.8</u>	27.43	312.0	18,000	0.001	0.76	Horizontal	Removed from service as part of 2016 expansion.
EP28	Sugar Dryer	634,478.4	5,383,733.8	243.8	27.43	329.2	38,000	15.38	1.22	Vertical	Added as part of 2016 expansion.
EP13	Belgian Lime Kiln	634,514.1	5,383,784.2	243.8	38.71	376.5	3,242	21.0	0.30	Vertical	Removed from service as part of 2016 expansion.
EP27a	Kiln Balance Vent	634,565.9	5,383,761.9	243.8	53.34	317.0	4,531	16.2	0.41	Vertical	Added as part of 2016 expansion.
EP27b	Kiln Carbonation Vent	634,512.6	5,383,797.1	243.8	33.53	358.1	8,662	6.3	0.91	Vertical	Added as part of 2016 expansion. No particulate emissions.
EP27c	Kiln CO2 Pressure Vent	634,515.9	5,383,797.1	243.8	33.53	313.2	492	4.6	0.25	Vertical	Added as part of 2016 expansion. Intermittent operation - not modeled.
EP27d	Kiln Startup Bypass	634,570,9	5.383.761.9	243.8	65.84	448.2	11.734	19.0	0.61	Vertical	Added as part of 2016 expansion. Intermittent operation - not modeled.
EP14a	MAC2 Flow Headhouse	634,494,1	5.383.726.9	243.8	26.22	302.6	20.000	0.001	0.001	Horizontal	······
EP14b	Old Hummer Room Pulsaire	634,488,6	5.383.726.9	243.8	22.25	302.6	19.000	0.001	0.001	Horizontal	
EP14c	Hummer Room MAC	-	-	-	_	_	-	-	-	_	Emission unit vents Internally - no external stack.
EP15	Pulp Pellet Bin No. 1	634.426.9	5.383.932.8	243.8	18.90	294.3	NA	0.001	0.001	Horizontal	Only one emission unit operated at any time.
EP16	Pulp Pellet Bin No. 2	634,440,2	5.383,949,1	243.8	18,90	294.3	NA	0.001	0.001	Horizontal	Only one emission unit operated at any time.
EP17	Pulp Pellet Bin No. 3	634,440,2	5.383.949.1	243.8	18.90	294.3	NA	0.001	0.001	Horizontal	Only one emission unit operated at any time.
EP18	Sugar Warehouse (Hi-Vac)	-	-	-	_	_	-	-	-	_	Emission unit vents Internally - no external stack.
EP19a	Bulk Loading Pulsaire	634,436,9	5.383.673.3	243.8	4.72	294.3	NA	0.001	0.001	Horizontal	
EP19b	North Bulk Sugar Loadout	-	-	-	-	-	-	-	-	-	Emission unit vents Internally - no external stack.
EP19c	South Bulk Sugar Loadout	-	-	-	-	-	-	-	-	-	Emission unit vents Internally - no external stack.
EP20	Main Sugar Warehouse Pulsaire	634,469,5	5.383.641.9	243.8	12.19	294.3	10.500	0.001	0.001	Horizontal	,
EP21	Diesel Fire Suppression Pump	-	-	-	-	_	-	-	-	-	Intermittent/emergency operation - not modeled.
EP22	Pulp Pellet Mill & Cooler	634,478.8	5,383,945.3	243.8	24.99	294.3	9,998	28.7	0.46	Vertical	Removed from service as part of 2016 expansion.
EP23	Pulp Drver Coal Hopper	634,497.6	5.383.847.8	243.8	23.16	294.3	5.200	0.001	0.001	Horizontal	
EP24	Flume Lime Slaker	634,519,2	5.383.801.5	243.8	6.10	294.3	NA	0.001	0.001	Horizontal	
EP25	Lime Slaker	634,519,4	5.383.800.4	243.8	15.24	294.3	4.500	0.001	0.001	Horizontal	Removed from service as part of 2016 expansion.
EP29	New Lime Slaker	634.574.4	5.383.753.0	243.8	24.38	337.6	3.000	2.75	0.81	Vertical	Added as part of 2016 expansion.
EP31	Pulp Pellet Loadout	634,444,4	5.383.949.7	243.8	7.62	294.3	1.000	10.11	0.24	Vertical	
EP32	Package Boiler	634,524,1	5.383.784.2	243.8	36.58	449.8	105.000	33.54	1.37	Vertical	New emission unit.
EP33	New Pulp Drver No. 2	634,468,5	5.383.839.7	243.8	54.86	398.7	100.000	21.38	1.68	Vertical	New emission unit.
		,	-,,				,				
Emission	Description	UTM Cod	ordinates	Elev.	Rel. Ht.	E. Length	N. Length	Angle	Init. Vert.		Note
Point		x (m)	y (m)	(m)	(m)	(m)	(m)	(°)	(m)		
Fug 1	Pellet Loadout Emissions	634,446.8	5,383,938.7	243.8	3.66	5.0	20.0	-2.0	11.77		Replaced with pellet loadout baghouse.
Fug 2	Coal Handling Emissions	634,518.2	5,383,428.4	243.8	3.05	18.5	115.0	-2.0	1.52		Fugitive source.
Fug 3	Lime Rock Handling Emissions	634,582.6	5,383,680.6	243.8	1.83	45.0	60.0	-2.0	0.91		Fugitive source.
Fug 4	Spent Lime Wind Erosion	635,097.1	5,384,717.2	243.8	1.83	70.0	125.0	-2.0	0.91		Fugitive source.

Drayton, ND

PM/PM₁₀/PM_{2.5} Modeling Parameters - Phase II Expansion

Emission	Description	UTM Co	ordinates	Elev.	Height	Temp	Flow	Velocity	Dia.	Orient.	PM	PM ₁₀	PM ₁₀	PM _{2.5}	PM _{2.5}
Point		x (m)	y (m)	(m)	(m)	(K)	(acfm)	(m/s)	(m)	(vert/horz)	(lb/hr)	(lb/hr)	(g/sec)	(lb/hr)	(g/sec)
EP1	B&W Boiler	634,538.2	5,383,772.1	243.8	45.72	559.3	207,000	22.5	2.35	Vertical	15.60	29.80	3.75	25.20	3.18
EP1a	Coal Handling Equipment	634,518.7	5,383,766.2	243.8	25.91	294.3	1,700	0.001	0.001	Horizontal	0.29	0.29	0.04	0.07	0.01
EP4	Pulp Dryer No. 1	634,464.9	5,383,839.7	243.8	54.86	384.8	127,000	33.0	1.52	Vertical	48.00	88.80	11.19	81.60	10.28
EP30	New Pulp Pellet Mills & Cooler	634,495.0	5,383,941.4	243.8	7.01	294.3	35,000	36.2	0.76	Vertical	1.50	1.50	0.19	0.35	0.04
EP9	Dry Pulp Belt Conveyor & Bucket	634,518.0	5,383,849.8	243.8	6.71	310.9	6,000	0.001	0.001	Horizontal	0.30	0.30	0.04	0.06	0.01
EP10	Dry Pulp Reclaim System	634,473.3	5,383,946.8	243.8	7.31	310.9	3,500	0.001	0.001	Horizontal	0.60	0.60	0.08	0.10	0.01
EP28	Sugar Dryer	634,478.4	5,383,733.8	243.8	27.43	329.2	38,000	15.4	1.22	Vertical	2.20	2.20	0.28	0.50	0.06
EP27a	Kiln Balance Vent	634,565.9	5,383,761.9	243.8	53.34	317.0	4,531	16.2	0.41	Vertical	10.97	10.97	1.38	6.63	0.84
EP14a	MAC2 Flow Headhouse	634,494.1	5,383,726.9	243.8	26.22	302.6	20,000	0.001	0.001	Horizontal	3.43	3.43	0.43	0.79	0.10
EP14b	Old Hummer Room Pulsaire	634,488.6	5,383,726.9	243.8	22.25	302.6	19,000	0.001	0.001	Horizontal	3.26	3.26	0.41	0.75	0.09
EP15	Pulp Pellet Bin No. 1	634,426.9	5,383,932.8	243.8	18.90	294.3	2,140	0.001	0.001	Horizontal	0.37	0.37	0.05	0.06	0.01
EP19a	Bulk Loading Pulsaire	634,436.9	5,383,673.3	243.8	4.72	294.3	2,560	0.001	0.001	Horizontal	0.11	0.11	0.01	0.03	0.004
EP20	Main Sugar Warehouse Pulsaire	634,469.5	5,383,641.9	243.8	12.19	294.3	10,500	0.001	0.001	Horizontal	0.45	0.45	0.06	0.10	0.01
EP23	Pulp Dryer Coal Hopper	634,497.6	5,383,847.8	243.8	23.16	294.3	5,200	0.001	0.001	Horizontal	0.89	0.89	0.11	0.21	0.03
EP24	Flume Lime Slaker	634,519.2	5,383,801.5	243.8	6.10	294.3	NA	0.001	0.001	Horizontal	0.04	0.04	0.01	0.01	0.001
EP29	New Lime Slaker	634,574.4	5,383,753.0	243.8	24.38	337.6	3,000	2.7	0.81	Vertical	3.33	3.33	0.42	1.24	0.16
EP31	Pulp Pellet Loadout	634,444.4	5,383,949.7	243.8	7.62	294.3	1,000	10.11	0.24	Vertical	0.04	0.04	0.01	0.01	0.001
EP32	Package Boiler	634,524.1	5,383,784.2	243.8	36.58	449.8	105,000	33.54	1.37	Vertical	2.68	2.68	0.34	2.68	0.34
EP33	New Pulp Dryer No. 2	634,468.5	5,383,839.7	243.8	54.86	398.7	100,000	21.38	1.68	Vertical	31.90	59.00	7.43	36.70	4.62
Emission	Description	UTM Co	ordinates	Elev.	Rel. Ht.	E. Length	N. Length	Angle	Init. Vert	. Orient.	PM	PM ₁₀	PM ₁₀	PM _{2.5}	PM _{2.5}
Point		x (m)	y (m)	(m)	(m)	(m)	(m)	(°)	(m)		(lb/hr)	(lb/hr)	(g/sec)	(lb/hr)	(g/sec)
Fug 2	Coal Handling Emissions	634,518.2	5,383,428.4	243.8	3.05	18.5	115.0	-2.0	1.52	Fugitive	0.64	0.64	0.08	0.09	0.01
Fug 3	Lime Rock Handling Emissions	634,582.6	5,383,680.6	243.8	1.83	45.0	60.0	-2.0	0.91	Fugitive	0.10	0.10	0.01	3.41E-05	4.30E-06
Fug 4	Spent Lime Wind Erosion	635,097.1	5,384,717.2	243.8	1.83	70.0	125.0	-2.0	0.91	Fugitive	0.25	0.25	0.03	0.04	0.01
Emission	Description	UTM Co	ordinates	Elev.	Height	Temp	Flow	Velocity	Dia.	Orient.	РМ	PM ₁₀	PM ₁₀	PM _{2.5}	PM _{2.5}
Point		x (m)	y (m)	(m)	(m)	(K)	(acfm)	(m/s)	(m)	(vert/horz)	(lb/hr)	(lb/hr)	(g/sec)	(lb/hr)	(g/sec)
ETH1	Background - DDG Dryer 1	617538.1	5364872.0	251.2	24.38	399.8	30000	21.56	0.91	Vertical	2.20	2.20	0.28	2.20	0.28
ETH2	Background - Biomass Boiler 1	617538.1	5364872.0	251.2	24.38	505.4	17550	12.61	0.91	Vertical	0.20	0.20	0.03	0.20	0.03
ETH3	Background - Biomass Boiler 2	617538.1	5364872.0	251.2	24.38	505.4	17550	12.61	0.91	Vertical	0.20	0.20	0.03	0.20	0.03
ETH4	Background - DDG Dryer 2	617506.8	5364866.6	251.2	10.67	410.9	13000	21.02	0.61	Vertical	1.11	1.11	0.14	1.11	0.14
ETH5	Background - Grain Handling	617566.0	5364904.7	251.2	12.19	293.0	NA	0.01	0.30	Horizontal	6.25	6.25	0.79	6.25	0.79
DEVP	Background - Boiler	516654.0	5363730.0	254.5	45.72	433.0	26552	2.68	2.44	Vertical	33.12	33.12	4.17	33.12	4.17

American Crystal Sugar Company Drayton, ND NO_x Modeling Parameters - Phase II Expansion

Emission	Description	UTM Coordinates		Elev.	Height	Temp	Flow	Velocity	Dia.	Orient.	NOx	NOx
Point		x (m)	y (m)	(m)	(m)	(К)	(acfm)	(m/s)	(m)	(vert/horz)	(lb/hr)	(g/sec)
EP1	B&W Boiler	634,538.2	5,383,772.1	243.8	45.72	559.3	207,000	22.5	2.35	Vertical	198.5	25.01
EP4	Pulp Dryer No. 1	634,464.9	5,383,839.7	243.8	54.86	384.8	127,000	33.0	1.52	Vertical	54.3	6.84
EP27a	Kiln Balance Vent	634,565.9	5,383,761.9	243.8	53.34	317.0	4,531	16.2	0.41	Vertical	8.04	1.01
EU28b	Kiln Carbonation Vent	634,512.6	5,383,797.1	243.8	33.53	358.1	8,662	6.3	0.91	Vertical	18.76	2.36
EP32	Package Boiler	634,524.1	5,383,784.2	243.8	36.58	449.8	105,000	33.54	1.37	Vertical	7.2	0.91
EP33	New Pulp Dryer No. 2	634,468.5	5,383,839.7	243.8	54.86	398.7	100,000	21.38	1.68	Vertical	46.8	5.90
Emission	Description	UTM Co	ordinates	Elev.	Height	Temp	Flow	Velocity	Dia.	Orient.	NO _x	NO _x
Point		x (m)	y (m)	(m)	(m)	(К)	(acfm)	(m/s)	(m)	(vert/horz)	(lb/hr)	(g/sec)
ETH1	Background - DDG Dryer 1	617538.1	5364872.0	251.2	24.38	399.8	30000	21.56	0.91	Vertical	10.40	1.31
ETH2	Background - Biomass Boiler 1	617538.1	5364872.0	251.2	24.38	505.4	17550	12.61	0.91	Vertical	7.80	0.98
ETH3	Background - Biomass Boiler 2	617538.1	5364872.0	251.2	24.38	505.4	17550	12.61	0.91	Vertical	7.80	0.98
DEVP	Background - Boiler	516654.0	5363730.0	254.5	45.72	433.0	26552	2.68	2.44	Vertical	32.12	4.05
SDC	Background - Boiler	616553.4	5364016.7	254.5	45.72	533.0	18428	1.86	2.44	Vertical	5.00	0.63

American Crystal Sugar Company Drayton, ND SO₂ Modeling Parameters - Phase II Expansion

Emission	Description	UTM Coordinates		Elev.	Height	Temp	Flow	Velocity	Dia.	Orient.	SO2	SO2
Point		x (m)	y (m)	(m)	(m)	(K)	(acfm)	(m/s)	(m)	(vert/horz)	(lb/hr)	(g/sec)
EP1	B&W Boiler	634,538.2	5,383,772.1	243.8	45.72	559.3	207,000	22.5	2.35	Vertical	364.9	45.98
EP4	Pulp Dryer No. 1	634,464.9	5,383,839.7	243.8	54.86	384.8	127,000	33.0	1.52	Vertical	46.6	5.87
EP27a	Kiln Balance Vent	634,565.9	5,383,761.9	243.8	53.34	317.0	4,531	16.2	0.41	Vertical	3.34	0.42
EU28b	Kiln Carbonation Vent	634,512.6	5,383,797.1	243.8	33.53	358.1	8,662	6.3	0.91	Vertical	0.39	0.05
EP32	Package Boiler	634,524.1	5,383,784.2	243.8	36.58	449.8	105,000	33.54	1.37	Vertical	0.21	0.03
EP33	New Pulp Dryer No. 2	634,468.5	5,383,839.7	243.8	54.86	398.7	100,000	21.38	1.68	Vertical	60.30	7.60
Emission	Description	UTM Cod	ordinates	Elev.	Height	Temp	Flow	Velocity	Dia.	Orient.	SO2	SO2
Point		x (m)	y (m)	(m)	(m)	(К)	(acfm)	(m/s)	(m)	(vert/horz)	(lb/hr)	(g/sec)
ETH1	Background - DDG Dryer 1	617538.1	5364872.0	251.2	24.38	399.8	30000	21.56	0.91	Vertical	18.20	2.29
ETH2	Background - Biomass Boiler 1	617538.1	5364872.0	251.2	24.38	505.4	17550	12.61	0.91	Vertical	8.30	1.05
ETH3	Background - Biomass Boiler 2	617538.1	5364872.0	251.2	24.38	505.4	17550	12.61	0.91	Vertical	8.30	1.05
DEVP	Background - Boiler	516654.0	5363730.0	254.5	45.72	433.0	26552	2.68	2.44	Vertical	99.68	12.56

American Crystal Sugar Company Drayton, ND CO Modeling Parameters - Phase II Expansion

Emission	Description	UTM Coordinates		UTM Coordinates		Elev.	Height	Temp	Flow	Velocity	Dia.	Orient.	со	со
Point		x (m)	y (m)	(m)	(m)	(К)	(acfm)	(m/s)	(m)	(vert/horz)	(lb/hr)	(g/sec)		
EP1	B&W Boiler	634,538.2	5,383,772.1	243.8	45.72	559.3	207,000	22.5	2.35	Vertical	52.1	6.56		
EP4	Pulp Dryer No. 1	634,464.9	5,383,839.7	243.8	54.86	384.8	127,000	33.0	1.52	Vertical	455.0	57.33		
EP27a	Kiln Balance Vent	634,565.9	5,383,761.9	243.8	53.34	317.0	4,531	16.2	0.41	Vertical	156.2	19.68		
EU28b	Kiln Carbonation Vent	634,512.6	5,383,797.1	243.8	33.53	358.1	8,662	6.3	0.91	Vertical	364.4	45.92		
EP32	Package Boiler	634,524.1	5,383,784.2	243.8	36.58	449.8	105,000	33.54	1.37	Vertical	13.3	1.67		
EP33	New Pulp Dryer No. 2	634,468.5	5,383,839.7	243.8	54.86	398.7	100,000	21.38	1.68	Vertical	458.3	57.74		

Drayton, ND

PM₁₀ Baseline Increment Modeling Parameters (Minor Source Baseline Date Jan 13, 1978)

											24-1	Hour	Anı	nual
Emission	Description	UTM Co	ordinates	Elev.	Height	Temp	Flow	Velocity	Dia.	Orient.	PM ₁₀	PM ₁₀	PM ₁₀	PM ₁₀
Point		x (m)	y (m)	(m)	(m)	(K)	(acfm)	(m/s)	(m)	(vert/horz)	(lb/hr)	(g/sec)	(lb/hr)	(g/sec)
PEP1	B&W Boiler	634,538.2	5,383,772.1	243.8	36.57	490.2	172,306	18.6	2.36	Vertical	-37.52	-4.73	-26.34	-3.32
PEP1a	Coal Handling Equipment	634,518.7	5,383,766.2	243.8	25.91	294.3	1,700	0.001	0.001	Horizontal	-0.29	-0.04	-0.16	-0.02
PEP2	Startup Boiler	634,504.0	5,383,770.4	243.8	30.50	566.1	19,431	14.1	0.91	Vertical	-1.62	-0.20	0.00	0.00
PEP3A	Pulp Dryer No. 2 Stack 1	634,488.9	5,383,845.1	243.8	24.69	373.3	14,539	5.87	1.22	Vertical	-18.70	-2.36	-10.14	-1.28
PEP3B	Pulp Dryer No. 2 Stack 2	634,485.4	5,383,845.0	243.8	24.69	373.3	14,539	5.87	1.22	Vertical	-18.70	-2.36	-10.14	-1.28
PEP3C	Pulp Dryer No. 2 Stack 3	634,481.7	5,383,844.8	243.8	24.69	373.3	14,539	5.87	1.22	Vertical	-18.70	-2.36	-10.14	-1.28
PEP3D	Pulp Dryer No. 2 Stack 4	634,478.2	5,383,844.8	243.8	24.69	373.3	14,539	5.87	1.22	Vertical	-18.70	-2.36	-10.14	-1.28
PEP4A	Pulp Dryer No. 1 Stack 1	634,489.0	5,383,841.9	243.8	24.69	380.4	19,691	7.95	1.22	Vertical	-25.39	-3.20	-13.76	-1.73
PEP4B	Pulp Dryer No. 1 Stack 2	634,485.5	5,383,841.7	243.8	24.69	380.4	19,691	7.95	1.22	Vertical	-25.39	-3.20	-13.76	-1.73
PEP4C	Pulp Dryer No. 1 Stack 3	634,481.8	5,383,841.5	243.8	24.69	380.4	19,691	7.95	1.22	Vertical	-25.39	-3.20	-13.76	-1.73
PEP4D	Pulp Dryer No. 1 Stack 4	634,478.2	5,383,841.5	243.8	24.69	380.4	19,691	7.95	1.22	Vertical	-25.39	-3.20	-13.76	-1.73
PEP4E	Pulp Dryer No. 1 Stack 5	634,474.7	5,383,841.5	243.8	24.69	380.4	19,691	7.95	1.22	Vertical	-25.39	-3.20	-13.76	-1.73
PEP5	Lime Mixing Tank	634,519.2	5,383,802.3	243.8	9.45	399.8	8,500	0.001	0.001	Horizontal	-0.65	-0.08	-0.54	-0.07
PEP6	Pellet Mill No. 1	634,476.4	5,383,941.2	243.8	23.77	310.9	11,007	4.45	1.22	Vertical	-3.7	-0.47	-2.01	-0.25
PEP7	Pellet Mill No. 2	634,476.1	5,383,943.9	243.8	23.77	310.9	11,007	4.45	1.22	Vertical	-3.7	-0.47	-2.01	-0.25
PEP8	Pellet Mill No. 3	634,481.4	5,383,943.8	243.8	23.77	310.9	11,007	4.45	1.22	Vertical	-3.7	-0.47	-2.01	-0.25
PEP9	Dry Pulp Belt Conveyor	634,518.0	5,383,849.8	243.8	20.42	310.9	3,500	0.001	0.001	Horizontal	-0.60	-0.08	-0.33	-0.04
PEP10	Dry Pulp Reclaim System	634,473.3	5,383,946.8	243.8	7.31	310.9	3,500	0.001	0.001	Horizontal	-0.60	-0.08	-0.33	-0.04
PEP11	Dry Pulp Bucket Elevator	634,518.6	5,383,844.1	243.8	17.37	310.9	3,500	0.001	0.001	Horizontal	-0.60	-0.08	-0.33	-0.04
PEP12	Sugar Dryer	634,478.4	5,383,733.8	243.8	27.43	312.0	18,000	0.001	0.76	Horizontal	-1.58	-0.20	-0.85	-0.11
PEP13	Belgian Lime Kiln	634,514.1	5,383,784.2	243.8	38.71	376.5	3,242	21.0	0.30	Vertical	-2.97	-0.37	-1.61	-0.20
PEP14	Weibull Bin	634,441.5	5,383,675.5	243.8	6.10	302.6	NA	0.001	0.001	Horizontal	-3.40	-0.43	-1.84	-0.23
PEP15	Pulp Pellet Bin No. 1, 2, 3	634,440.2	5,383,949.1	243.8	18.90	294.3	NA	0.001	0.001	Horizontal	-0.37	-0.05	-0.20	-0.03
PEP18	Sugar Warehouse	634,474.2	5,383,675.5	243.8	10.1	294.3	6,900	17.9	0.5	Vertical	-0.11	-0.014	-0.06	-0.008
Emission	Description	UTM Co	ordinates	Elev.	Rel. Ht.	Sigma Y	Sigma Z				PM ₁₀	PM ₁₀	PM ₁₀	PM ₁₀
Point		x (m)	y (m)	(m)	(m)	(m)	(m)				(lb/hr)	(g/sec)	(lb/hr)	(g/sec)
PEP19	Sugar Loadout	634,436.9	5,383,673.3	243.8	4.72	0.23	2.20				-0.11	-0.01	-0.06	-0.01
PEP20	Sugar Screening	634,458.6	5,383,667.2	243.8	18.29	0.23	8.51				-0.45	-0.06	-0.24	-0.03
Emission	Description	UTM Co	ordinates	Elev.	Rel. Ht.	E. Length	N. Length	Angle	Init. Vert		PM ₁₀	PM ₁₀	PM ₁₀	PM ₁₀
Point		x (m)	y (m)	(m)	(m)	(m)	(m)	(°)	(m)		(lb/hr)	(g/sec)	(lb/hr)	(g/sec)
PFug 1	Pellet Loadout Emissions	634,446.8	5,383,938.7	243.8	3.66	5.0	20.0	-2.0	1.86		-0.45	-0.06	-0.24	-0.03

Drayton, ND

PM_{2.5} Baseline Increment Modeling Parameters (Minor Source Baseline Date Aug 23, 2012)

											24-1	Hour	Anı	nual
Emission	Description	UTM Cod	ordinates	Elev.	Height	Temp	Flow	Velocity	Dia.	Orient.	PM _{2.5}	PM _{2.5}	PM _{2.5}	PM _{2.5}
Point		x (m)	y (m)	(m)	(m)	(К)	(acfm)	(m/s)	(m)	(vert/horz)	(lb/hr)	(g/sec)	(lb/hr)	(g/sec)
PEP1	B&W Boiler	634,538.2	5,383,772.1	243.8	36.57	490.2	172,306	18.6	2.36	Vertical	-20.92	-2.64	-15.31	-1.93
PEP1a	Coal Handling Equipment	634,518.7	5,383,766.2	243.8	25.91	294.3	1,700	0.001	0.001	Horizontal	-0.07	-0.01	-0.05	-0.01
PEP2	Startup Boiler	634,504.0	5,383,770.4	243.8	30.50	566.1	19,431	14.1	0.91	Vertical	-1.18	-0.15	-0.01	-0.001
PEP3	Pulp Dryer No. 2	634,468.5	5,383,839.7	243.8	51.82	398.7	50,000	20.2	1.22	Vertical	-25.39	-3.20	-18.33	-2.31
PEP4	Pulp Dryer No. 1	634,464.9	5,383,839.7	243.8	51.82	388.7	85,000	22.0	1.52	Vertical	-37.03	-4.67	-26.73	-3.37
PEP5	Lime Mixing Tank & Kiln Cooler	634,519.2	5,383,802.3	243.8	9.45	399.8	8,500	0.001	0.001	Horizontal	-1.33	-0.17	-0.95	-0.12
PEP6	Pellet Mill No. 1	634,476.4	5,383,941.2	243.8	23.77	310.9	7,952	3.21	1.22	Vertical	-0.57	-0.07	-0.41	-0.05
PEP7	Pellet Mill No. 2	634,476.1	5,383,943.9	243.8	23.77	310.9	4,943	2.00	1.22	Vertical	-0.57	-0.07	-0.41	-0.05
PEP8	Pellet Mill No. 3	634,481.4	5,383,943.8	243.8	23.77	310.9	5,881	2.38	1.22	Vertical	-0.57	-0.07	-0.41	-0.05
PEP9	Dry Pulp Belt Conveyor	634,518.0	5,383,849.8	243.8	17.37	310.9	3,500	0.001	0.001	Horizontal	-0.14	-0.02	-0.10	-0.01
PEP10	Dry Pulp Reclaim System	634,473.3	5,383,946.8	243.8	7.31	310.9	3,500	0.001	0.001	Horizontal	-0.14	-0.02	-0.10	-0.01
PEP11	Dry Pulp Bucket Elevator	634,518.6	5,383,844.1	243.8	17.37	310.9	3,500	0.001	0.001	Horizontal	-0.14	-0.02	-0.10	-0.01
PEP12	Sugar Dryer	634,478.4	5,383,733.8	243.8	27.43	312.0	18,000	0.001	0.76	Horizontal	-0.41	-0.05	-0.30	-0.04
PEP13	Belgian Lime Kiln	634,514.1	5,383,784.2	243.8	38.71	376.5	3,242	21.0	0.30	Vertical	-0.31	-0.04	-0.22	-0.03
PEP14a	MAC2 Flow Headhouse	634,494.1	5,383,726.9	243.8	26.22	302.6	20,000	0.001	0.001	Horizontal	-0.79	-0.10	-0.79	-0.10
PEP14b	Old Hummer Room Pulsaire	634,488.6	5,383,726.9	243.8	22.25	302.6	19,000	0.001	0.001	Horizontal	-0.77	-0.10	-0.77	-0.10
PEP15	Pulp Pellet Bin No. 1	634,440.2	5,383,949.1	243.8	18.90	294.3	NA	0.001	0.001	Horizontal	-0.06	-0.01	-0.06	-0.01
PEP19a	Bulk Loading Pulsaire	634,436.9	5,383,673.3	243.8	4.72	294.3	NA	0.001	0.001	Horizontal	-0.03	0.00	-0.03	-0.004
PEP20	Main Sugar Warehouse Pulsaire	634,469.5	5,383,641.9	243.8	12.19	294.3	10,500	0.001	0.001	Horizontal	-0.1	-0.01	-0.10	-0.01
PEP22	Pulp Pellet Mill & Cooler	634,478.8	5,383,945.3	243.8	24.99	294.3	9,998	28.7	0.46	Vertical	-0.04	-0.01	-0.03	-0.004
PEP23	Pulp Dryer Coal Hopper	634,497.6	5,383,847.8	243.8	23.16	294.3	5,200	0.001	0.001	Horizontal	-0.21	-0.03	-0.15	-0.02
PEP25	Lime Slaker	634,519.4	5,383,800.4	243.8	15.24	294.3	4,500	0.001	0.001	Horizontal	-0.28	-0.04	-0.20	-0.03
Emission	Description	UTM Cod	ordinates	Elev.	Rel. Ht.	E. Length	N. Length	Angle	Init. Vert		PM _{2.5}	PM _{2.5}	PM _{2.5}	PM _{2.5}
Point		x (m)	y (m)	(m)	(m)	(m)	(m)	(°)	(m)		(lb/hr)	(g/sec)	(lb/hr)	(g/sec)
PFug 1	Pellet Loadout Emissions	634,446.8	5,383,938.7	243.8	3.66	5.0	20.0	-2.0	1.86		-0.014	-0.002	-0.010	-0.001

Drayton, ND

SO₂ Baseline Increment Modeling Parameters (Minor Source Baseline Date Dec 19, 1977)

Emission	Description	UTM Coo	rdinates	Elev.	Height	Temp	Flow	Velocity	Dia.	Orient.	SO2	SO ₂
Point		x (m)	y (m)	(m)	(m)	(К)	(acfm)	(m/s)	(m)	(vert/horz)	(lb/hr)	(g/sec)
PEP1	B&W Boiler	634,538.2	5,383,772.1	243.8	36.57	490.2	172,306	18.6	2.36	Vertical	-358.7	-45.20
PEP3A	Pulp Dryer No. 2 Stack 1	634,488.9	5,383,845.1	243.8	24.69	373.3	14,539	5.87	1.22	Vertical	-5.45	-0.69
PEP3B	Pulp Dryer No. 2 Stack 2	634,485.4	5,383,845.0	243.8	24.69	373.3	14,539	5.87	1.22	Vertical	-5.45	-0.69
PEP3C	Pulp Dryer No. 2 Stack 3	634,481.7	5,383,844.8	243.8	24.69	373.3	14,539	5.87	1.22	Vertical	-5.45	-0.69
PEP3D	Pulp Dryer No. 2 Stack 4	634,478.2	5,383,844.8	243.8	24.69	373.3	14,539	5.87	1.22	Vertical	-5.45	-0.69
PEP4A	Pulp Dryer No. 1 Stack 1	634,489.0	5,383,841.9	243.8	24.69	380.4	19,691	7.95	1.22	Vertical	-5.44	-0.69
PEP4B	Pulp Dryer No. 1 Stack 2	634,485.5	5,383,841.7	243.8	24.69	380.4	19,691	7.95	1.22	Vertical	-5.44	-0.69
PEP4C	Pulp Dryer No. 1 Stack 3	634,481.8	5,383,841.5	243.8	24.69	380.4	19,691	7.95	1.22	Vertical	-5.44	-0.69
PEP4D	Pulp Dryer No. 1 Stack 4	634,478.2	5,383,841.5	243.8	24.69	380.4	19,691	7.95	1.22	Vertical	-5.44	-0.69
PEP4E	Pulp Dryer No. 1 Stack 5	634,474.7	5,383,841.5	243.8	24.69	380.4	19,691	7.95	1.22	Vertical	-5.44	-0.69
PEP13	Belgian Lime Kiln	634,514.1	5,383,784.2	243.8	38.71	376.5	3,242	21.0	0.30	Vertical	-14.50	-1.83

Drayton, ND

NO_x Baseline Increment Modeling Parameters (Minor Source Baseline Date Oct 1, 1989)

Emission	Description	UTM Coo	rdinates	Elev.	Height	Temp	Flow	Velocity	Dia.	Orient.	NOx	NO _x
Point		x (m)	y (m)	(m)	(m)	(К)	(acfm)	(m/s)	(m)	(vert/horz)	(lb/hr)	(g/sec)
PEP1	B&W Boiler	634,538.2	5,383,772.1	243.8	36.57	490.2	172,306	18.6	2.36	Vertical	-85.50	-10.77
PEP3A	Pulp Dryer No. 2 Stack 1	634,488.9	5,383,845.1	243.8	24.69	373.3	14,539	5.87	1.22	Vertical	-1.58	-0.20
PEP3B	Pulp Dryer No. 2 Stack 2	634,485.4	5,383,845.0	243.8	24.69	373.3	14,539	5.87	1.22	Vertical	-1.58	-0.20
PEP3C	Pulp Dryer No. 2 Stack 3	634,481.7	5,383,844.8	243.8	24.69	373.3	14,539	5.87	1.22	Vertical	-1.58	-0.20
PEP3D	Pulp Dryer No. 2 Stack 4	634,478.2	5,383,844.8	243.8	24.69	373.3	14,539	5.87	1.22	Vertical	-1.58	-0.20
PEP4A	Pulp Dryer No. 1 Stack 1	634,489.0	5,383,841.9	243.8	24.69	380.4	19,691	7.95	1.22	Vertical	-1.50	-0.19
PEP4B	Pulp Dryer No. 1 Stack 2	634,485.5	5,383,841.7	243.8	24.69	380.4	19,691	7.95	1.22	Vertical	-1.50	-0.19
PEP4C	Pulp Dryer No. 1 Stack 3	634,481.8	5,383,841.5	243.8	24.69	380.4	19,691	7.95	1.22	Vertical	-1.50	-0.19
PEP4D	Pulp Dryer No. 1 Stack 4	634,478.2	5,383,841.5	243.8	24.69	380.4	19,691	7.95	1.22	Vertical	-1.50	-0.19
PEP4E	Pulp Dryer No. 1 Stack 5	634,474.7	5,383,841.5	243.8	24.69	380.4	19,691	7.95	1.22	Vertical	-1.50	-0.19
PEP13	Belgian Lime Kiln	634,514.1	5,383,784.2	243.8	38.71	376.5	3,242	21.0	0.30	Vertical	-4.60	-0.58

American Crystal Sugar Company Drayton Expansion Phase II Air Quality Construction Permit Application Modeled Emission Rates of Precursors (MERP) Analysis

Project P	ГЕ (tpy)
VOC	646.0
NOx	826
SO2	1665

			Hypothetical	Site Information	а			Calculated PLC Integrated	Cumulative PLC Integrated
				Emissions	Stack Height		Concentration	Site Impact	Site Impact
State	County	Metric	Precursor	(tpy)	(m)	MERP	(ppb)	(ppb)	(ppb) ^b
North Dakota	Stutsman	8-hr Ozone	NOx	1000	10	551	1.82	1.50	
North Dakota	Stutsman	8-hr Ozone	NOx	1000	90	544	1.84	1.52	1.75
North Dakota	Stutsman	8-hr Ozone	VOC	500	10	2,858	0.17	0.226	
			Hypothetical	Site Information	а			Calculated PLC Integrated	Cumulative PLC Integrated
				Emissions	Stack Height		Concentration	Site Impact	Site Impact
State	County	Metric	Precursor	(tpy)	(m)	MERP	(µg/m³)	(µg/m ³)	(µg/m³) ^c
North Dakota	Stutsman	Daily PM2.5	NOx	1000	10	8,006	0.15	0.12	
North Dakota	Stutsman	Daily PM2.5	NOx	1000	90	11,034	0.11	0.09	2 16
North Dakota	Stutsman	Daily PM2.5	SO2	1000	10	980	1.22	2.04	2.10
North Dakota	Stutsman	Daily PM2.5	SO2	1000	90	2,056	0.58	0.97	
			Hypothetical	Site Information	а			Calculated PLC Integrated	Cumulative PLC Integrated
				Emissions	Stack Height		Concentration	Site Impact	Site Impact
State	County	Metric	Precursor	(tpy)	(m)	MERP	(µg/m³)	(µg/m ³)	(µg/m ³) ^c
North Dakota	Stutsman	Annual PM2.5	NOx	1000	10	20,318	0.010	0.008	
North Dakota	Stutsman	Annual PM2.5	NOx	1000	90	42,447	0.005	0.004	0.061
North Dakota	Stutsman	Annual PM2.5	SO2	1000	10	6,355	0.031	0.052	0.001
North Dakota	Stutsman	Annual PM2.5	SO2	1000	90	14,824	0.013	0.022	

^a Refined hypothetical modeling results for the nearst site, obtained from EPA's SCRAM (https://www.epa.gov/scram/merps-view-qlik), accessed 12/13/2022. ^b Sum of the maximum NO_x impact plus the VOC impact.

^c Sum of the maximum NO_x impact plus the maximum SO_2 impact.

Appendix F

Modeling File Summary Data

American Crystal Sugar Company – Drayton PM₁₀ and PM_{2.5} NAAQS

		***	* THE SUMMARY OF ** CONC OF F	HIGHEST 24-HR RES M-10 IN MICROGR	ults *** AMS/M**3		**	
GROUP I	D 		AVERAGE CONC	DATE (YYMMDDHH)	RECEPTOR	(XR, YR, ZEL	EV, ZHILL, ZFLAG)	NETWORK OF TYPE GRID-ID
ALL	HIGH	6TH HIGH VALUE IS	5 111.49699	ON 10090524: AT (634318.00, 5383	3829.70, 24	3.59, 243.59,	0.00) DC

*** THE SUMMARY OF MAXIMUM 8TH-HIGHEST 24-HR RESULTS AVERAGED OVER 5 YEARS *** ** CONC OF PM-2.5 IN MICROGRAMS/M**3 **

									NETWORK
GROUP ID	AVERAGE CONC	RECEPTOR	(XR,	YR,	ZELEV,	ZHILL,	ZFLAG)	OF TYPE	GRID-ID

ALL 1ST HIGHEST VALUE IS 18.63039 AT (634686.10, 5383058.50, 243.50, 243.50, 0.00) DC

*** THE SUMMARY OF MAXIMUM ANNUAL RESULTS AVERAGED OVER 1 YEARS *** ** CONC OF PM-2.5 IN MICROGRAMS/M**3 **

NETWORK

GROUP ID			AVERAGE CONC	REC	CEPTOR (XR,	YR, ZELEV,	ZHILL, ZFLAG	OF TYPE	GRID-ID
2009	1ST HIGHEST	VALUE IS	3.79903 AT (634751.00,	5383060.00	, 243.76,	243.76,	0.00) DC	
2010	1ST HIGHEST	VALUE IS	3.17667 AT (634315.20,	5383969.60	, 243.48,	243.48,	0.00) DC	
2011	1ST HIGHEST	VALUE IS	2.92562 AT (634751.00,	5383060.00	, 243.76,	243.76,	0.00) DC	
2012	1ST HIGHEST	VALUE IS	3.11249 AT (634751.00,	5383060.00	, 243.76,	243.76,	0.00) DC	
2013	1ST HIGHEST	VALUE IS	4.14996 AT (634686.10,	5383058.50	, 243.50,	243.50,	0.00) DC	

American Crystal Sugar Company – Drayton SO₂ NAAQS

*	** THE SUMMARY (F MAXIMUM	4TH-HIGHE	ST MAX DA	ILY 1-	-HR RESULTS	AVERAGI	ED OVER	5 YEAR	S ***
	* *	CONC OF SO	2 IN 1	MICROGRAM	S/M**3				* *	
										NETWORK
GROUP ID	AVERAGE	CONC	:	RECEPTOR	(XR, Y	R, ZELEV,	ZHILL, 2	ZFLAG)	OF TYPE	GRID-ID
							· ·			

ALL 1ST HIGHEST VALUE IS 151.27750 AT (634050.00, 5384150.00, 243.80, 243.80, 0.00) DC

	*** THE SUMMARY ** CONC OF SO	OF MAXIMUM ANNUAL RESULTS 2 IN MICROGRAMS/M**3	AVERAGED OVER 1 YEA	RS *** **
GROUP ID	AVERAGE CONC	RECEPTOR (XR, Y	R, ZELEV, ZHILL, ZFLA	NETWORK G) OF TYPE GRID-ID
2009 1ST HIGHEST VALU	IS 4.70032 AT (634676.30, 5383058.20,	243.64, 243.64,	0.00) DC
2010 1ST HIGHEST VALU	IS 3.59279 AT (634686.10, 5383058.50,	243.50, 243.50,	0.00) DC
2011 1ST HIGHEST VALU	IS 3.55726 AT (634695.90, 5383058.70,	243.32, 243.32,	0.00) DC
2012 1ST HIGHEST VALU	IS 3.88971 AT (634751.00, 5383060.00,	243.76, 243.76,	0.00) DC
2013 1ST HIGHEST VALU	IS 5.30734 AT (634686.10, 5383058.50,	243.50, 243.50,	0.00) DC

*** THE SUMMARY OF HIGHEST 3-HR RESULTS *** ** CONC OF SO2 IN MICROGRAMS/M**3

* *

* *

GROUP II	D					AVERAGE CONC		DATE (YYMMDDHH)		RECEP	TOR (XR, YR,	ZELEV, ZH	HILL, ZFLAG)	OF T	YPE	NETWORK GRID-ID
2009	HIGH	2ND	HIGH	VALUE	IS	198.79346	ON	09032218:	AT (634200.00,	5384050.00,	244.00,	244.00,	0.00)	DC	
2010	HIGH	2ND	HIGH	VALUE	IS	205.54562	ON	10041318:	AT (634150.00,	5384050.00,	243.12,	243.12,	0.00)	DC	
2011	HIGH	2ND	HIGH	VALUE	IS	112.99196	ON	11061718:	AT (634000.00,	5384100.00,	243.74,	243.74,	0.00)	DC	
2012	HIGH	2ND	HIGH	VALUE	IS	135.01224	ON	12071518:	AT (634050.00,	5384150.00,	243.80,	243.80,	0.00)	DC	
2013	HIGH	2ND	HIGH	VALUE	IS	146.06627	ON	13030412:	AT (634150.00,	5384050.00,	243.12,	243.12,	0.00)	DC	

*** THE SUMMARY OF HIGHEST 24-HR RESULTS *** ** CONC OF SO2 IN MICROGRAMS/M**3

GROUP ID						AVERAGE CONC		DATE (YYMMDDHH)		RECE	PTOR (XR, YR,	ZELEV,	ZHILL, ZFLAG)	OF T	YPE 	NETWORK GRID-ID
2009	HIGH	2ND 2N D	HIGH	VALUE	IS	55.75224 71 47240	ON	09093024:	AT (AT (634100.00,	5384150.00,	243.82	, 243.82,	(0.00)	DC	
2010	HIGH	2ND	HIGH	VALUE	TS	51.34286	ON	11052324:	AT (634656.70.	5383057.80.	243.75	<u>, 243.75,</u>	0.00)	DC	
2012	HIGH	2ND	HIGH	VALUE	IS	43.69395	c ON	12101924:	AT (634686.10,	5383058.50,	243.50	, 243.50,	0.00)	DC	
2013	HIGH	2ND	HIGH	VALUE	IS	50.11500	ON	13033124:	AT (634715.50,	5383059.10,	243.01	, 243.01,	0.00)	DC	

American Crystal Sugar Company – Drayton NO_x NAAQS

*** THE SUMMARY OF MAXIMUM 8TH-HIGHEST MAX DAILY 1-HR RESULTS AVERAGED OVER 5 YEARS *** ** CONC OF NO2 IN MICROGRAMS/M**3 **

NETWORK

GROUP ID AVERAGE CONC RECEPTOR (XR, YR, ZELEV, ZHILL, ZFLAG) OF TYPE GRID-ID

ALL 1ST HIGHEST VALUE IS 123.45170 AT (634311.90, 5384129.50, 243.37, 243.37, 0.00) DC

*** THE SUMMARY OF MAXIMUM ANNUAL RESULTS AVERAGED OVER 1 YEARS *** ** CONC OF NO2 IN MICROGRAMS/M**3 **

GROUP ID			AVERAGE CONC	REC	CEPTOR (XR,	YR, ZELEV,	ZHILL, ZFLAG) OF TYPE	NETWORK GRID-ID
2009	1ST HIGHEST	VALUE IS	5.94309 AT (634310.70,	5384189.50,	243.31,	243.31,	0.00) DC	
2010	1ST HIGHEST	VALUE IS	6.33237 AT (634313.30,	5384059.60,	243.44,	243.44,	0.00) DC	
2011	1ST HIGHEST	VALUE IS	5.75027 AT (634309.10,	5384269.50,	243.28,	243.28,	0.00) DC	
2012	1ST HIGHEST	VALUE IS	6.49745 AT (634312.50,	5384099.60,	243.43,	243.43,	0.00) DC	
2013	1ST HIGHEST	VALUE IS	6.52257 AT (634695.90,	5383058.70,	243.32,	243.32,	0.00) DC	

American Crystal Sugar Company – Drayton **CO NAAQS**

*** THE SUMMARY OF HIGHEST 1-HR RESULTS ***

** CONC OF CO IN MICROGRAMS/M**3

* *

GROUP II	D 					AVERAGE 	CONC		DATE (YYMMDDHH) 		RECE 1	PTOR	(XR, YR,	ZELEV,	ZHILL,	ZFLAG) 	OF 7	ГҮРЕ 	NETWORK GRID-ID
2009	HIGH	2ND	HIGH	VALUE	IS	3966	.49863	ON	09102221:	AT (634250.00,	5383	900.00,	244.13	3, 244	.13,	0.00)	DC	
2010	HTCH	2ND	HTCH	VALUE	тc	1733	50799	ON	10042122.	እጥ (634050 00	5384	050 00	2/3 7/	2/3	74	0 001	DC	

2010	HIGH	ZND HIGH VALUE IS	4733.30799		10042122.	AI		034030.00,	5584050.00,	243.74,	243.74,	0.00)	DC
2011	HIGH	2ND HIGH VALUE IS	3394.94590	01	J 11072924:	ΑT	(634311.90,	5384129.50,	243.37,	243.37,	0.00)	DC
2012	HIGH	2ND HIGH VALUE IS	3458.23465	01	J 12082221:	AT	(634300.00,	5384150.00,	244.30,	244.30,	0.00)	DC
2013	HIGH	2ND HIGH VALUE IS	3801.76483	OI	N 13010607:	AT	(634100.00,	5383950.00,	243.91,	243.91,	0.00)	DC

*** THE SUMMARY OF HIGHEST 8-HR RESULTS ***

** CONC OF CO I	N MICROGRAMS/M**3	* *
-----------------	-------------------	-----

		DATE							NETWORK
GROUP ID	AVERAGE CONC	(YYMMDDHH)	RECEPTOR	(XR, YR,	ZELEV,	ZHILL,	ZFLAG)	OF TYPE	GRID-ID

2009	HIGH	2ND HIGH	VALUE	IS 18	94.45177m	ON	09041608:	AT ((634313.70,	5384039.60,	243.46,	243.46,	0.00)	DC
2010	HIGH	2ND HIGH	VALUE	IS 18	43.65824	ON	10022608:	AT	(634312.70,	5384089.60,	243.43,	243.43,	0.00)	DC
2011	HIGH	2ND HIGH	VALUE	IS 18	37.21577	ON	11051708:	AT	(634300.00,	5384050.00,	244.57,	244.57,	0.00)	DC
2012	HIGH	2ND HIGH	VALUE	IS 17	86.31047	ON	12040524:	AT	(634300.00,	5384050.00,	244.57,	244.57,	0.00)	DC
2013	HIGH	2ND HIGH	VALUE	IS 17	53.33753	ON	13052408:	AT	(634313.50,	5384049.60,	243.45,	243.45,	0.00)	DC

American Crystal Sugar Company – Drayton PM₁₀ Increment

		*** ** CONC OF PM_	THE SUMMARY OF I 10 IN MICROGRA	HIGHEST 24-HR RESULTS ** AMS/M**3	* *	
GROUP ID		AVERAGE CONC	DATE (YYMMDDHH) 	RECEPTOR (XR, Y	YR, ZELEV, ZHILL, ZFLAG)	NETWORK OF TYPE GRID-ID
2009 HIGH 2010 HIGH	2ND HIGH VALUE IS 2ND HIGH VALUE IS	17.65801 ON 24.87948 ON	1 09122324: AT (1 10041924: AT (634319.60, 5383749.80, 634318.20, 5383819.70	243.71, 243.71, 243.60, 243.60,	0.00) DC 0.00) DC
2011 HIGH 2012 HIGH 2013 HIGH	2ND HIGH VALUE IS 2ND HIGH VALUE IS 2ND HIGH VALUE IS	13.14751 ON 14.22323 ON 11.41567c ON	I 11122724: AT (I 12013024: AT (I 13030724: AT (634320.40, 5383709.80, 634316.00, 5383929.70, 634316.40, 5383909.70,	243.73, 243.73, 243.51, 243.51, 243.59, 243.59,	0.00) DC 0.00) DC 0.00) DC
2010 HIGH 2011 HIGH 2012 HIGH 2013 HIGH	2NDHIGHVALUEIS2NDHIGHVALUEIS2NDHIGHVALUEIS2NDHIGHVALUEIS	24.87948 ON 13.14751 ON 14.22323 ON 11.41567c ON	10041924: AT (111122724: AT (12013024: AT (13030724: AT (634318.20, 5383819.70 634320.40, 5383709.80 634316.00, 5383929.70 634316.40, 5383909.70	243.60, 243.60, 243.73, 243.73, 243.51, 243.51, 243.59, 243.59,	0.00) DC 0.00) DC 0.00) DC 0.00) DC

*** THE SUMMARY OF MAXIMUM ANNUAL RESULTS AVERAGED OVER 1 YEARS *** ** CONC OF PM_10 IN MICROGRAMS/M**3 * *

GROUP I	D			AVERAGE	CONC		RE	CEPTOR	(XR,	YR, 	ZELEV,	ZHILL,	ZFLAG) 	OF	TYPE 	NETWORK GRID-ID
2009 2010	1ST 1ST	HIGHEST HIGHEST	VALUE VALUE	IS 0 IS 0	.07529 2	AT (AT (624000.00, 625500.00,	53730 53730	00.00	,	246.41, 247.10.	246. 247 .	41, 10.	0.00) 0.00)	DC DC	

2010	1ST HIGHEST VALUE IS	0.07628 AT (625500.00,	5373000.00,	247.10,	247.10,	0.00)	DC
2011	1ST HIGHEST VALUE IS	0.07054 AT (624500.00,	5373000.00,	247.82,	247.82,	0.00)	DC
2012	1ST HIGHEST VALUE IS	0.06562 AT (624000.00,	5373000.00,	246.41,	246.41,	0.00)	DC
2013	1ST HIGHEST VALUE IS	0.07023 AT (624000.00,	5373000.00,	246.41,	246.41,	0.00)	DC

- -

American Crystal Sugar Company – Drayton PM_{2.5} Increment

 **** THE SUMMARY OF MAXIMUM ANNUAL RESULTS AVERAGED OVER
 1 YEARS ***

 *** CONC OF PM_2.5
 IN MICROGRAMS/M**3
 **

 GROUP ID
 AVERAGE CONC
 RECEPTOR (XR, YR, ZELEV, ZHILL, ZFLAG)
 OF TYPE
 GRID-ID

 2009
 1ST HIGHEST VALUE IS
 0.49640 AT (634850.00, 5382800.00, 243.30, 243.30, 0.00) DC
 OF TYPE
 GRID-ID

 2010
 1ST HIGHEST VALUE IS
 0.49640 AT (634850.00, 5384500.00, 243.82, 243.82, 0.00) DC
 OD DC

 2011
 1ST HIGHEST VALUE IS
 0.48467 AT (634250.00, 5384500.00, 243.86, 243.86, 0.00) DC
 OD DC

 2012
 1ST HIGHEST VALUE IS
 0.54879 AT (634788.90, 5383060.80, 243.58, 243.58, 0.00) DC
 OD DC

 2013
 1ST HIGHEST VALUE IS
 0.57983 AT (634800.00, 5383000.00, 243.55, 243.55, 0.00) DC
 OD DC

*** THE SUMMARY OF HIGHEST 24-HR RESULTS *** ** CONC OF PM 2.5 IN MICROGRAMS/M**3 **

GROUP	ID		AVERAGE CONC	DATE (YYMMDDHH)	RECEPTOR	XR, YR, ZELEV,	ZHILL, ZFLAG)	OF TYPE	NETWORK GRID-ID
2009	HIGH	2ND HIGH VALUE IS	3.19458	ON 09082124: AT (635050.00, 538275	0.00, 243.34	, 243.34,	0.00) DC	
2010	HIGH	2ND HIGH VALUE IS	4.02571	ON 10090924: AT (633750.00, 538435	0.00, 243.67	, 243.67,	0.00) DC	
2011	HIGH	2ND HIGH VALUE IS	3.66914c	ON 11060824: AT (634700.00, 538275	0.00, 243.54	, 243.54,	0.00) DC	
2012	HIGH	2ND HIGH VALUE IS	3.28441	ON 12090124: AT (634100.00, 538465	0.00, 243.60	, 243.60,	0.00) DC	
2013	HIGH	2ND HIGH VALUE IS	2.98486	ON 13050124: AT (635128.50, 538306	7.60, 246.13	, 246.13,	0.00) DC	

American Crystal Sugar Company – Drayton NO_x Increment

*** THE SUMMARY OF MAXIMUM ANNUAL RESULTS AVERAGED OVER 1 YEARS ***

			* *	CONC C	DF N	OX	IN MIC	CROGRAM	S/M**3	3				* *			
GROUP ID			AVERAGE	CONC			REC	CEPTOR	(XR,	YR, 	ZELEV,	ZHILL,	ZFLAG) 	OF 1 	YPE 	NETWORK GRID-ID	_
2009 2010 2011	1ST HIGHEST 1ST HIGHEST 1ST HIGHEST	VALUE J VALUE J	S 2 S 3 S 2	.89490 .22945 .71383	AT AT AT	((634313.10, 634313.30 , 634313.30,	53840 53840 53840	69.60, 59.60 , 59.60,	, : , :	243.43, 243.44, 243.44,	243. 243 . 243.	43, 44 , 44,	0.00) 0.00) 0.00)	DC DC DC		
2012 2013	1ST HIGHEST 1ST HIGHEST	VALUE I VALUE I	s 3 s 2	.15182 .68889	AT AT	(634313.30, 634686.10,	53840 53830	59.60, 58.50,		243.44, 243.50,	243. 243.	44, 50,	0.00) 0.00)	DC DC		

American Crystal Sugar Company – Drayton SO₂ Increment

	*** THE SUMMARY OF MAXIMUM ANNUAL RESULTS AVERAGED OVER 1 YEARS *** ** CONC OF SO2 IN MICROGRAMS/M**3 **															
GROUP ID				AV.	ERAGE CONC 		RE(CEPTOR (XR,	YR, ZI	ELEV, 2	ZHILL, ZF 	LAG) OF '	IYPE 	NETWORK GRID-ID		
2009 2010 2011	1ST 1ST 1ST	HIGHEST HIGHEST HIGHEST	VALUE] VALUE] VALUE]	s s	0.06309 AT 0.07564 AT 0.08360 AT	((624000.00, 626000.00, 624000.00 ,	5373500.00 5373000.00 5373000.00	, 24 , 24 , 24	8.92, 7.14, 6. 41 ,	248.92, 247.14, 246.41 ,	0.00) 0.00) 0.00)	DC DC DC			
2012 2013	1ST 1ST	HIGHEST HIGHEST	VALUE I VALUE I	IS IS	0.07433 AT 0.07132 AT	(624000.00, 624000.00,	5376000.00 5385500.00	, 25 , 24	1.37, 6.40,	251.37, 246.40,	0.00) 0.00)	DC DC			
					** CONC OF S	*** 502	THE SUMMAN	RY OF HIGHES CROGRAMS/M**	т 3-ні З	R RESUI	LTS ***	* *				
GROUP ID 					AVERAGE CONC		DATE (YYMMDDHH)		RECEP'	IOR () 	XR, YR, Z 	ELEV, ZHI: 	LL, ZF 	"LAG) OF	TYPE 	NETWORK GRID-ID
2009 2010 2011	HIGH HIGH HIGH	2ND H 2ND H 2ND H	IGH VALU IGH VALU IGH VALU	JE IS JE IS JE IS	8.58731 8.91066 8.66945	ON ON ON	09112209: 10021712: 11042406:	AT (62400 AT (62650 AT (62450	0.00, 0.00, 0.00,	537350 537300 537300	00.00, 00.00, 00.00,	248.92, 246.76, 247.82,	248.9 246.7 247.8	02, 0.00 76, 0.00 82, 0.00) DC) DC) DC	

 2012
 HIGH
 2ND
 HIGH
 VALUE
 IS
 11.76170
 ON
 12100703: AT
 (624000.00, 5376000.00, 251.37, 251.37, 0.00)
 DC

 2013
 HIGH
 2ND
 HIGH
 VALUE
 IS
 8.88838
 ON
 13032912: AT
 (624000.00, 5375000.00, 249.93, 249.93, 0.00)
 DC

*** THE SUMMARY OF HIGHEST 24-HR RESULTS *** ** CONC OF SO2 IN MICROGRAMS/M**3

* *

GROUP ID			AVERAGE CONC	DATE (YYMMDDHH)	RECEPTO	DR (XR, YR,	ZELEV, ZHILI	, ZFLAG)	OF TYPE	NETWORK GRID-ID
2009	HIGH	2ND HIGH VALUE	IS 1.84055	5 ON 09111524: AT (624500.00, 5	5373500.00 ,	248.20, 2	.48.20, ().00) DC	
2010	HIGH	2ND HIGH VALUE	IS 1.64711	ON 10051424: AT (624000.00, 5	5373000.00,	246.41, 2	246.41, 0).00) DC	
2011	HIGH	2ND HIGH VALUE	IS 1.70166	5 ON 11020324: AT (624000.00, 5	5373000.00,	246.41, 2	246.41, 0).00) DC	
2012	HIGH	2ND HIGH VALUE	IS 1.86379	ON 12100624: AT (624000.00, 5	5377000.00,	250.69, 2	250.69, 0	0.00) DC	
2013	HIGH	2ND HIGH VALUE	IS 1.69471	ON 13111224: AT (624000.00, 5	384500.00,	246.97, 2	246.97, (0.00) DC	