

5151 E. Broadway, Suite 1680, Tucson, Arizona 85711

December 29, 2022

Mr. Craig Thorstenson North Dakota Department of Environmental Quality Division of Air Quality 4201 Normandy Street, 2nd floor Bismarck, ND 58503-1324

Re: Modification Application for Air Quality Permit to Operate Hiland Partners Holdings LLC Edgewater Compressor Station Permit to Operate PTO 018007 and PTC 20034 Permit to Operate ACP-17987 v1.0 and ACP-28033 v1.0 Mountrail County, North Dakota

Dear Mr. Thorstenson:

Hiland Partners Holdings LLC (Hiland) owns and operates the Edgewater Compressor Station.

In 2021, an application was submitted to install two new 1900 hp engines (new EU1 and new EU2) and remove two engines, EU8 and EU9. Currently, there are (3) engines operating at the station. Engines EU8 and EU9 were removed.

Attached is an application to install one Caterpillar engine, increase dehydrator throughput from 25 MMSCFD to 27 MMSCFD , and update PTE for the station. The Project Engineer is anticipating installation of the new Caterpillar unit in early April 2023 upon permit issuance.

Please contact me at 520-663-4249 or by email at anu_pundari@kindermorgan.com if you have any questions or need additional information.

Sincerely,

Ann Punda:

Anu Pundari Sr. Engineer

AIR QUALITY PERMIT TO CONSTRUCT APPLICATION FOR NATURAL GAS COMPRESSOR STATION

Hiland Partners Holdings LLC Edgewater Compressor Station Mountrail County, North Dakota

TABLE OF CONTENTS

1.0 INTRODUCTION	1
2.0 PROJECT SUMMARY	2
3.0 EMISSION SOURCES	4
4.0 REGULATORY ANALYSIS	9

LIST OF TABLES

Table 2.1	Natural Gas Driven Engine Specifications	4
Table 4.2	Potentially Applicable Rules	9

APPENDICES

- APPENDIX A State Permit Application Forms
- APPENDIX B Emissions Calculations
- APPENDIX C GRI-GLYCalc Reports
- APPENDIX D ProMax Reports
- APPENDIX E Representative Gas/Liquid Analysis
- APPENDIX F Engine Specifications APPENDIX G Facility Plot Plan

1.0 INTRODUCTION

1.1 Introduction

Hiland Partners Holdings LLC (Hiland) is submitting this permit to construct application for the Edgewater Compressor Station located approximately 11 miles northwest of New Town, North Dakota, in Mountrail County. The station will be used to compress natural gas from nearby wells for pipeline transmission.

Detailed information for the proposed equipment can be found in Section 2.0.

1.2 Application

In accordance with North Dakota Division of Air Quality requirements, permit application forms have been completed and are included in Appendix A.

1.3 Public Notice

Per North Dakota Administrative Code (NDAC) Section 33-15-14-02.6 - Public participation - Final action on application, this facility does qualify as a source category not subject to public participation procedures. The following discussion substantiates this claim:

NDAC Section	
33-15-14-02-6.a.(1)	This facility is not an affected facility per 40 CFR 61 - National Emission Standards For Hazardous Air Pollutants as incorporated by NDAC Chapter 33-15-13.
33-15-14-02-6.a.(2)	Since the Four Runner Compressor Station does not have the potential to emit more than 100 tons per year of any criteria pollutant, the facility will not be subject to the Title V operating permit program.
33-15-14-02-6.a.(3)	This application is for a new facility, not a modification to an existing facility.
33-15-14-02-6.a.(4)	Potential emissions as reported in Appendix B are not expected to have a "major impact on air quality."
33-15-14-02-6.a.(5) & (6)	As of the application date, no request for a public comment period has been received.
33-15-14-02-6.a.(7)	Hiland is not requesting a federally enforceable permit which limits their potential to emit.

1.4 Site Location

The Edgewater Compressor Station is located approximately 11 miles northwest of New Town, North Dakota, in the SE ¼ SE ¼ of Section 4, Township 153 North, Range 93 West, in Mountrail County, North Dakota. The coordinates for the facility are Latitude: 48° 5'48.83" North and Longitude: 102°38'8.11" West. The site elevation is approximately 2,100 feet above sea level. A facility plot plan is presented in Appendix G.

1.5 Site Description

The terrain surrounding the facility is characterized as flat to rolling hills. The surrounding area is mainly used for agriculture and livestock grazing. The air quality classification for the area is "Better than National Standards" or unclassifiable/ attainment for the National Ambient Air Quality Standards for criteria pollutants (40 CFR 81.335). There are no non-attainment areas within a reasonable distance of the site.

2.0 PROJECT SUMMARY

2.1 Process Description

The Edgewater Compressor Station compresses natural gas from nearby wells for pipeline transmission to a local gas plant. The field gas is dehydrated and compressed into the pipeline.

Minor Permit PTC 17008 was issued in 2017 for construction of Edgewater Compressor Station with (2) Waukesha engines.

Minor Permit Revision PTC17030 was issued in 2017 to increase dehydrator throughput from 20 MMCFD to 25 MMCFD and add (3) Waukesha Units to the station.

Minor Source Permit to Operate O18007 was issued in 2019 for operation (5) Waukesha engines . The facility consisted of five natural gas-fired compressor engines, two 400-barrel (bbl) atmospheric tanks storing produced water, one TEG dehydration unit rated at 25 million standard cubic feet per day (MMscfd), one 0.5 million British Thermal Units per hour (MMBtu/hr) reboiler, and one 30,000-gallon pressurized storage tank storing natural gas liquids (NGL).

Minor Permit Revision PTC 20034 in 2021 was issued to replace two existing 1380 hp compressor engines with two new 1900 hp compressor engines and remove two engines.

Currently, gas compression is achieved by (3) existing compressors driven by (3) natural gas fired Waukesha engines.

This application is to add (1) new natural gas fired Caterpillar engine and increase the dehydrator throughput from 25 MMSCFD to 27 MMSCFD. The Waukesha engines are equipped with Non-Selective Catalytic Reduction (NSCR) catalysts for control of emissions. The Caterpillar engine will be equipped with oxidation catalysts.

The gas is dehydrated using a 27 MMcf/day TEG dehydration unit and associated 0.5 MMBTU/hr TEG reboiler. Emissions from the dehydrator flash tank are recycled back into the process. Emissions from the regenerator still column are routed to a BTEX condenser system, with non-condensable vapors exiting the condenser combusted in the TEG reboiler firebox. Condensed vapors (liquids) are routed to the Produced Water Tanks. The reboiler also uses natural gas as fuel in addition to the uncondensed vapors. The two existing 400 barrel atmospheric tanks are used to store produced water for eventual shipment offsite via tank truck loading. All combustion equipment at the site is fired with a portion of natural gas after it has been processed at the station.

Emission sources with minor emissions include three 500 gallon methanol tanks, one 60,000 gallon natural gas liquid (NGL) pressurized bullet tank, pig launchers and receivers, compressor blowdowns required for maintenance, and NGL unloading. The majority of compressor blowdowns will be routed to the suction header with a few blowdowns vented to atmosphere.

A representative plot plan is provided in Appendix G showing the general layout of the site.

2.2 Proposed Construction

Hiland is proposing to authorize an Edgewater CS minor permit revision under Air Pollution Control Permit to Construct 33.1-15-14-02. A 4th unit, a Caterpillar unit, will be brought onsite approximately April 8, 2023 upon air permit issuance, Table 2.1 summarizes Caterpillar engine information.

Table 2.1: Natural Gas-Driven Engine Specifications

Emitting Unit Description	Engine Type	Design Horsepower Rating	Max. Fuel Consumption (HHV)	Pollution Control Device
Compressor Engine #4	4-Stroke Lean-Burn	1,380	8,103 Btu/bhp-hr	Oxidation Catalyst

3.0 EMISSION SOURCES

3.1 Criteria Pollutant Emission Inventory

The criteria air pollutants that will be emitted from Edgewater Compressor Station are as follows: nitrogen oxides (NOx), particulate matter with an aerodynamic diameter less than 10 microns (PM_{10}), sulfur dioxide (SO_2), volatile organic compounds (VOCs), and carbon monoxide (CO).

Appendix B provides tables which summarizes the potential emissions from the proposed sources.

3.2 Compressor Engine Emissions

The existing site consists of the following:

- Two Waukesha L7044 GSI rich-burn engines for compression of natural gas. These engines are rated 1,900 bhp and are equipped with Non-Selective Catalytic Reduction (NSCR).
- One Waukesha L5794 GSI rich-burn engine for compression of natural gas. The engine is rated at 1380 bhp and is equipped with Non-Selective Catalytic Reduction (NSCR).

This application is for installation of a new Caterpillar G3516 lean burn engines for compression of natural gas. The engine will be rated at 1380 bhp at 1400 rpm and will be equipped with an oxidation catalyst.

There are no changes to the existing Waukesha compressor engines NO_x and CO emissions estimates and permit limits.

The Caterpillar compressor engine NO_x emissions are based on the NSPS Lean Burn limit of 1.0 g/hp-hr. The CO emissions are based on the NSPS Lean Burn limit of permit limit of 2.0 g/hp-hr although the manufacturer estimates 1.0 g/hp-hr after controls. The VOC

emissions are based on the NSPS Subpart JJJJ limit of 0.7 g/hp-hr. Formaldehyde emissions are based on information from the vendor. PM/PM_{10} and SO_2 emissions were based on AP-42 Table 3.2-3 emission factors. Per AP-42, all particulate emissions from natural gas combustion are considered to be less than 1.0 micrometer in diameter.

Emission calculations are provided in Appendix B. The engine specifications including information of controlled and uncontrolled emission rates are provided in Appendix F.

3.3 Glycol Reboiler Emissions

For the TEG reboiler, AP-42, Section 1.4 emission factors were used to calculate the NO_x , CO, VOC, PM/PM₁₀ and SO₂ emissions. Per AP-42, all particulate emissions from natural gas combustion are considered to be less than 1.0 micrometer in diameter. Emission calculations are provided on Appendix B.

3.4 Glycol Dehydrator Emissions

The gas is dehydrated using a 27 MMcf/day TEG dehydration unit and associated 0.5 MMBTU/hr TEG reboiler. VOC emissions from the dehydrator still vent were calculated using GRI-GLYCalc Version 4.0. The flash tank off-gas will be recycled back into the process. A condenser system will be used to reduce the VOC emissions in the overhead stream from the reboiler. Emissions from the regenerator still column are routed to a BTEX condenser system, with non-condensable vapors exiting the condenser combusted in the TEG reboiler firebox. Condensed vapors (liquids) are routed to the Produced Water Tanks. Non-condensable gas from the condenser will be routed to the reboiler firebox with an assumed destruction efficiency of 95%. A wet gas analysis for Edgewater Station utilized in the GRI-GLYCalc model is found in Appendix E. The GRI-GLYCalc input and output reports are found in Appendix C. Emission calculations are provided in Appendix B.

3.5 Produced Water Storage Tank Emissions

The station receives an oil/water mixture which is routed to a slug catcher. The slug catcher separates the oil fraction and water fraction. The oil fraction routes to one pressurized Natural Gas Liquids (NGL) tank. The water fraction routes to two atmospheric produced water storage tanks. As part of the 2021 audit, Hiland obtained pressurized liquid samples from the slug catcher drain that routes to the produced water storage tanks. A liquid sample was obtained from Sacramento Compressor Station as a representative site.

Using ProMax estimation software, working, breathing, and flashing losses were calculated for a tank with 15,000 bbls/year throughput. ProMax is a chemical process simulator that uses thermodynamic flash algorithms to determine flashing losses and follows AP-42 regulation to calculate working and breathing losses. Historical throughput has been less than 15,000 bbls/year.

Condensed vapors (liquids) from the BETX condenser are routed to the Produced Water Tanks. The Condenser Produced Water Stream flowrate/composition and Condenser Recovered Oil Stream flowrate/composition from GLYCALC aggregate report was inputted into the ProMax model. The ProMax output assume (3) streams into the produced water tanks; a) water fraction from slug catcher b) oil fraction from dehydrator condenser and c) water fraction from dehydrator condenser.

The ProMax simulation reports are found in Appendix D and the analyses are found in Appendix E. The Sacramento Compressor Station (representative of Edgewater Compressor Station) analytical results show that Produced Water tanks contain primarily water (>99 % water).

3.6 Produced Water Truck Loading Emissions

The VOC emissions from tank truck loading were estimated using the equation from EPA's AP-42 Section 2, 5th Edition, June 2008, Equation 1:

where:

- L = Loading Losses, lb/1000 gallons
- S = Saturation Factor, see Table 5.2-1 in AP-42, Section 5.2.
- P = True vapor pressure, psia
- M = Molecular weight of vapors, lb/lb-mol
- T = Temperature of bulk liquid loaded, R (F + 460)

The contents being transported from the tanks will be mainly produced water. To be conservative, a 90% water content reduction has been taken on the total emissions. Emission calculations are provided in Appendix B.

3.7 Pigging Emissions

Gas lines are pigged to perform various maintenance activities on a pipeline. Emissions associated with pigging result from gaseous releases when the "pig" is loaded into a pig launcher or removed from a pig receiver.

The estimated MCF per event was calculated considering pig receiver/pig launcher volume, pressure, temperature, gas quality parameters, and gas compressibility. The estimated MCF per event was multiplied by lb/scf based on site specific gas analysis to calculate VOC emissions. To be conservative, pigging emissions are assumed to be 1.0 tpy of VOC. Emission calculations are provided in Appendix B.

3.8 Compressor Blowdown Emissions

At Hiland stations, compressor blowdowns are controlled manually. During the recycle process a pressure reduction valve is used to route compressor blowdowns directly into the suction header. Technicians manually open the valve during a blowdown event to route compressor discharge back to the suction header to be recycled back into the system. The discharge pressures range from 700 psig to 1250 psig. Technicians monitor a pressure gauge and when pressures reach 100 psig or lower the blowdown is vented to atmosphere. Emission calculations for compressor blowdowns assume the majority of compressor blowdowns occur at approximately 100 psig using this recycle design.

In certain instances the compressor blowdown must be vented directly to atmosphere. In these cases, there is a second compressor blowdown valve that a technician manually opens allowing the blowdown to vent directly to atmosphere.

Technicians monitor and document the number of blowdowns, discharge pressure and temperatures of each blowdown event.

The estimated MCF per event was calculated considering compressor volume, pressure, temperature, gas quality parameters, and gas compressibility. The estimated MCF per event was multiplied by lb/scf based on site specific gas analysis to calculate VOC emissions. To be conservative, the number of blowdowns at 100 psig was assumed to be the same as noted in the 2021 PTE updates. Emission calculations are provided in Appendix B.

3.9 NGL Truck Loading Emissions

There is one 60,000 gallon NGL tank at Edgewater Station. NGL truck loading emissions calculations are provided in Appendix B.

3.10 Fugitives Estimate

Fugitive emissions are based on emission factors are from EPA's "Protocol for Equipment Leak Emission Estimates" EPA-453/R-95-017, 11/1995, Table 2-4. The total component count is based on estimated number of components for each compressor, tank, and TEG glycol dehydrator unit at the station. Emission calculations are provided in Appendix B.

3.11 HAP Emissions

HAP emissions from natural gas combustion in the Waukesha compressor engines (except formaldehyde) and glycol reboiler were estimated using data from the following AP-42 tables: Table 3.2-3, Uncontrolled Emission Factors for 4-Stroke Rich-Burn Engines, dated July 2000; Table 1.4-3, Emission Factors for Speciated Organic Compounds from Natural Gas Combustion; and Table 1.4-4, Emission Factors for Metals from Natural Gas Combustion, dated July 1998.

HAP emissions from natural gas combustion in the Caterpillar engines were estimated using emission factors based on AP-42 Section 3.2, Table 3.2-2 (07/00) for 4 stroke lean burn engines.

Manufacturer's information was used for the compressor engine formaldehyde emissions.

HAP emissions from the TEG dehydrator still vent were calculated using GRI GlyCalc Version 4.0.

Vendor information was used for the compressor engine formaldehyde emissions. HAP emissions from the TEG dehydrator still vent were calculated using GRI GlyCalc Version 4.0. The flash tank off-gas will be recycled. A condenser system will be used to reduce the VOC emissions in the overhead stream from the reboiler; non-condensable gas from the condenser will be routed to the reboiler firebox. A condenser system is used to reduce the VOC emissions in the overhead stream from the reboiler. Non-condensable gas from the

condenser will be routed to the reboiler firebox with an assumed destruction efficiency of 95%.

Potential HAP emissions at the Edgewater Compressor Station will not exceed the major source thresholds of 10 tpy of any individual HAP or 25 tpy of any combination of HAPs. The total HAP emission rate from the facility is approximately 4.71 tons per year. Emission calculations are provided in Appendix B.

4.0 REGULATORY ANALYSIS

4.1 Permit Requirements

Hiland is required to obtain an air quality preconstruction permit for the proposed construction at the Edgewater Compressor Station per NDAC 33-15-14-02: Permit to Construct.

4.2 Regulatory Requirements

Table 4.1 lists the rules potentially applicable to the Four Runner Compressor Station. The rules are addressed individually in the following sections as they pertain to the facility.

Rule Citation	Subject of the Rule
NDAC 33-15-01	General Provisions
NDAC 33-15-02	Ambient Air Quality Standards
NDAC 33-15-03	Restriction of Emission of Visible Air Contaminants
NDAC 33-15-04	Open Burning Restrictions
NDAC 33-15-05	Emissions of Particulate Matter Restricted
NDAC 33-15-06	Emissions of Sulfur Compounds Restricted
NDAC 33-15-07	Control of Organic Compounds Emissions
NDAC 33-15-08	Control of Air Pollution From Vehicles and Other Internal Combustion Engines
NDAC 33-15-10	Control of Pesticides

Table 4.2	Potentially Applicable Rules
-----------	------------------------------

a	-
NDAC 33-15-11	Prevention of Air Pollution Emergency Episodes
NDAC 33-15-12	Standards of Performance for New Stationary Sources
NDAC 33-15-13	Emission Standards for Hazardous Air Pollutants
NDAC 33-15-14	Designated Air Contaminant Sources, Permit to Construct, Minor Source Permit to Operate, Title V Permit to Operate
NDAC 33-15-15	Prevention of Significant Deterioration of Air Quality
NDAC 33-15-16	Restriction of Odorous Air Contaminants
NDAC 33-15-17	Restriction of Fugitive Emissions
NDAC 33-15-18	Stack Heights
NDAC 33-15-19	Visibility Protection
NDAC 33-15-20	Control of Emissions From Oil and Gas Well Production Facilities
NDAC 33-15-21	Acid Rain Program
NDAC 33-15-22	Emissions Standards for Hazardous Air Pollutants for Source Categories
NDAC 33-15-23	Fees
NDAC 33-15-24	Standards for Lead-Based Paint Activities
NDAC 33-15-25	Regional Haze Requirements
	Policy for the Control of Hazardous Air Pollutant Emissions In North Dakota
	(Air Toxics Policy)

4.2.1 General Provisions (NDAC 33-15-01)

This facility is subject to all general requirements of this section (i.e., inspection, circumvention, shutdown/malfunction, compliance, enforcement, confidentiality of records, etc.).

4.2.2 Ambient Air Quality Standards (NDAC 33-15-02)

The air quality of the area is classified as "Better than National Standards" or unclassifiable/attainment of the National Ambient Air Quality Standards (NAAQS) for criteria pollutants (40 CFR 81.335). There are no nonattainment areas within a reasonable distance of the site.

Per the Criteria Pollutant Modeling Requirements for a Permit to Construct modeling policy memo, modeling is required when:

- The emissions vent from a stack with a height greater than or equal to 1.5 times the height of any nearby building, and potential emissions exceed 100 tons per year of NOx or SO₂ or 40 tons per year of PM₁₀.
- The emissions vent from a stack with a height less than 1.5 times the height of any nearby building, and potential emissions exceed 40 tons per year of NOx or SO₂ or 15 tons per year of PM_{10} .

The emissions at Edgewater Compressor Station will vent from stacks with a height greater than or equal to 1.5 times the height of any nearby building. Because the facility's potential emissions will be lower than the modeling thresholds, modeling for criteria pollutants is not required for this application.

Hiland will abide by all standards set forth in these regulations.

4.2.3 Restriction of Emission of Visible Air Contaminants (NDAC 33-15-03)

NDAC 33-15-03 contains regulations governing particulate matter and opacity limits from new and existing sources. Hiland will comply with all applicable standards.

4.2.4 Open Burning Restrictions (NDAC 33-15-04)

Hiland will comply with all open burning regulations at the Four Runner Compressor Station.

4.2.6 Emissions of Particulate Matter Restricted (NDAC 33-15-05)

This facility will operate four natural gas-fired stationary combustion engines and will comply with the provisions of Sections 33-15-05-01 and 33-15-05-04. Fuel is also consumed for the purposes of indirect heating; therefore, Section 33-15-05-02 does apply.

4.2.6 Emissions of Sulfur Compounds Restricted (NDAC 33-15-06)

This facility combusts pipeline quality natural gas and, per Section 33-15-06-01.1.e, is not subject to the regulations of this Chapter.

4.2.7 Control of Organic Compounds Emissions (NDAC 33-15-07)

There is no water-oil separator or flare at this facility. The produced water tanks will be equipped with submerged fill pipes. Hiland will comply with the provisions of Section 33-15-07-02.

4.2.8 Control of Air Pollution From Vehicles and Other Internal Combustion Engines (NDAC 33-15-08)

This facility is proposing to operate four natural gas-fired stationary combustion engines, and Hiland will comply with the restricted emissions regulation of Section 33-15-08-01. Hiland will also comply with Section 33-15-08-02.

4.2.9 Control of Pesticides (NDAC 33-15-10)

Hiland will comply with the provisions of NDAC 33-15-10 should pesticides be used at this facility.

4.2.10 Prevention of Air Pollution Emergency Episodes (NDAC 33-15-11)

Hiland will comply with any applicable source curtailment regulations when notified by the Department of an Air Pollution Emergency Episode.

4.2.11 Standards of Performance for New Stationary Sources (NDAC 33-15-12)

The Edgewater Compressor Station does qualify as a designated source for NSPS per certain subparts of 40 CFR 60, as incorporated by Section 33-15-12-01.1.

New Source Performance Standards (NSPS) apply to certain source categories. Five subparts were reviewed for applicability in regards to the proposed construction.

NSPS Subpart Dc

Subpart Dc is applicable to steam generating units for which construction, modification, or reconstruction is commenced after June 9, 1989, and which have a maximum design heat input capacity greater than or equal to 10 MMBtu/hr but less than 100 MMBtu/hr. The TEG reboiler has a maximum design heat input capacity of less than 10 MMBtu/hr; therefore, the reboiler will not be subject to Subpart Dc.

NSPS Subpart Kb

NSPS Kb applies to each storage vessel with a capacity greater than or equal to 75 cubic meters (m3) (17,027 gal or 648.6 bbl) that is used to store volatile organic liquids for which construction, reconstruction, or modification is commenced after July 23, 1984. The capacity of the produced water/condensate tanks is below the NSPS Kb applicability threshold. The pressurized NGL tank will have a capacity above the applicability threshold. However, the tank is exempt from this regulation per 60.110b(d)(4) which exempts vessels with a design capacity less than or equal to 1,589.874 m3 (360,934,388 gal) used for petroleum or condensate stored, processed, or treated prior to custody transfer.

NSPS Subpart JJJJ

Owners and operators are subject to Subpart JJJJ if construction, reconstruction, or modification of the spark ignition internal combustion engine (SI ICE) commenced after June 12, 2006, and if the engine was manufactured:

- On or after July 1, 2007, for engines with a maximum engine power greater than or equal to 500 HP (except lean-burn engines with a maximum engine power greater than or equal to 500 HP and less than 1,350 HP);
- On or after January 1, 2008, for lean-burn engines with a maximum engine power greater than or equal to 500 HP and less than 1,350 HP;
- On or after July 1, 2008, for engines with a maximum engine power less than 500 HP; or
- On or after January 1, 2009, for emergency engines with a maximum engine power greater than 19 KW (25 HP).

NSPS JJJJ is applicable to the existing engines and to the proposed Caterpillar engine. Hiland will comply with the requirements of Subpart JJJJ.

NSPS Subpart OOOOa

Owners and operators are subject to Subpart OOOOa if they commence construction, modification or reconstruction after September 18, 2015, of one or more affected facilities. For a natural gas compressor station, an affected facility could include centrifugal compressors, reciprocating compressors, storage vessels, certain pneumatic pumps/controllers, and equipment leaks.

There will be no centrifugal compressors at the Edgewater Compressor Station.

Since none of the produced water storage vessels will have potential VOC emissions greater than six tons per year, the vessels are not subject to the requirements in Subpart OOOOa.

The facility will include reciprocating compressors subject to this regulation. Hiland will comply with the requirements for reciprocating compressors as applicable.

The facility will not be designed with continuous bleed natural gas driven pneumatic controllers.

The existing facility is subject to requirements for performing surveys with the purpose of identifying fugitive emissions using optical gas imaging (OGI). The existing facility is subject to the recordkeeping and reporting requirements associated with this regulation.

4.2.12 Emission Standards for Hazardous Air Pollutants (NDAC 33-15-13)

The process fluids at this facility (field gas) will not contain 10% or greater of Volatile Hazardous Air Pollutant (VHAP) as defined by §61.241 of 40 CFR 61; therefore, this facility is not subject to Subpart V, as incorporated by Section 33-15-13-01.1.

4.2.13 Designated Air Contaminant Sources, Permit to Construct, Minor Source Permit to Operate, Title V Permit to Operate (NDAC 33-15-14)

Since Edgewater Compressor Station is not a major listed source, i.e., its PTE for all criteria pollutants and HAPS is below the major source thresholds, the facility is subject to the requirements of Section 33-15-14-03 - Minor Source Permit to Operate.

Edgewater Compressor Station will not have the potential to emit more than 100 tons per year of any criteria pollutant and will not be a major source of HAPs, the facility will not be subject to the Title V operating permit program per NDAC 33-15-14-06.

Per the Criteria Pollutant Modeling Requirements for a Permit to Construct modeling policy memo, modeling is required when:

- The emissions vent from a stack with a height greater than or equal to 1.5 times the height of any nearby building, and potential emissions exceed 100 tons per year of NOx or SO₂ or 40 tons per year of PM₁₀.
- The emissions vent from a stack with a height less than 1.5 times the height of any nearby building, and potential emissions exceed 40 tons per year of NOx or SO₂ or 15 tons per year of PM_{10} .

The emissions will vent from stacks with a height greater than or equal to 1.5 times the height of any nearby building. Because the facility's potential emissions will be lower than the modeling thresholds, modeling for criteria pollutants is not required for this application.

In North Dakota, Best Available Control Technology (BACT) is not required for any source unless it is a PSD major source for criteria pollutants or HAPs, regardless if a construction permit is required.

4.2.14 Prevention of Significant Deterioration of Air Quality (NDAC 33-15-15)

PSD permitting regulations apply to major PSD stationary sources. A major PSD stationary source is defined as a listed facility with the potential to emit 100 tons per year or more of any regulated pollutant or a non-listed facility with the potential to emit 250 tons per year or more of any regulated pollutant.

Since Edgewater Compressor Station is not a listed facility and does not have the potential to emit greater than 250 tons per year of any regulated pollutant, PSD is not applicable.

4.2.15 Restriction of Odorous Air Contaminants (NDAC 33-15-16)

Hiland will comply with all requirements concerning odorous air contaminants at Edgewater Compressor Station as applicable to sources outside a city or outside the area over which a city has exercised extraterritorial zoning as defined in North Dakota Century Code Section 40-47-01.1.

4.2.16 Restriction of Fugitive Emissions (NDAC 33-15-17) and Stack Heights (NDAC 33-15-18)

This facility is subject to the requirements of these chapters.

4.2.17 Visibility Protection (NDAC 33-15-19)

The Edgewater Compressor Station is not a major PSD stationary source as defined by Section 33-15-15-01; therefore, these regulations do not apply per Section 33-15-19-01.

4.2.18 Control of Emissions From Oil and Gas Well Production Facilities (NDAC 33-15-20)

This facility does not meet the definition of an oil and gas production facility. Therefore, the requirements of this chapter do not apply to the compressor station.

4.2.19 Acid Rain Program (NDAC 33-15-21)

This facility is not a listed source per 40 CFR 72 and 73, as incorporated by Section 33-15-21-08.1; therefore, these rules do not apply.

4.2.20 Emissions Standards for Hazardous Air Pollutants for Source Categories (NDAC 33-15-22)

Title 40 CFR Part 63, National Emission Standards for Hazardous Air Pollutants (NESHAPs) for Source Categories, is incorporated into the North Dakota rules at NDAC 33-15-22-01.

Two NESHAP subparts were reviewed for applicability in regard to the facility: Subpart ZZZZ (National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines) and Subpart HH (National Emission Standards for Hazardous Air Pollutants from Oil and Natural Gas Production Facilities).

NESHAP Subpart HH

Subpart HH sets standards for reducing HAPs from TEG dehydration units, fugitives and storage vessels at major source or area sources of HAP emissions. This facility is an area source of HAPs; therefore, is subject to the certain requirements applicable to TEG dehydrators. If the TEG dehydrator throughput is less than 85 MCFD or emissions are less than 0.9 megagrames/yr (1.0 tpy), the dehydrator is exempt from Subpart HH.

The TEG dehydrator at Edgewater Compressor Station will process up to 27 MMcfd of gas which is higher than exemption threshold of 85 Mcfd. The TEG dehydration unit includes emission controls to limit annual potential benzene emissions to less than 0.9 megagrams/yr (1.0 tpy), an exemption threshold. Therefore, the facility is exempt from the standards listed in Subpart HH.

NESHAP Subpart ZZZZ

Owners and operators are subject to Subpart ZZZZ if they own or operate a stationary RICE at an area or major source of HAP emissions. Edgewater Compressor Station is an area source of HAPs. The engines are considered to be new stationary RICE because construction will commence after June 12, 2006. Therefore, Subpart ZZZZ is applicable to the compressor engines.

The engines were manufactured after July 1, 2007; therefore, they must meet the requirements in Subpart ZZZZ by meeting the requirements in NSPS Subpart JJJJ. There are no further requirements for any of the engines under Subpart ZZZZ. If any of the proposed engines will have a manufacture date before July 1, 2007, the applicability of NESHAP Subpart ZZZZ will be revisited.

4.2.21 Fees (NDAC 33-15-23)

NDAC 33-15-23 sets out applicable fees that will apply to the Edgewater Compressor Station. Hiland submitted \$325 for the associated permit application fee. Hiland will pay the required annual operating fees based on the specifications in Section 33-15-23-03.

4.2.22 Standards for Lead-Based Paint Activities (NDAC 33-15-24)

This facility is not involved in lead-based paint activities as defined in 40 CFR 745 Subpart 745.223 as incorporated in NDAC 33-15-24-01; therefore, the requirements of this chapter do not apply.

4.2.23 Regional Haze Requirements (NDAC 33-15-25)

This facility is not located in a Class I Federal Area per 40 CFR Part 81 as incorporated in NDAC 33-15-25-02; therefore, the requirements of this chapter do not apply.

4.2.24 Policy for the Control of Hazardous Air Pollutant Emissions In North Dakota (Air Toxics Policy)

The compressor engines at Edgewater Compressor Station are listed sources in NDAC 33-15-14-01. Therefore, per the applicability section of the North Dakota Air Toxics Policy, this facility is subject to these regulations. However, per the *Dispersion Modeling Requirements, Compressor Engines and Glycol Dehydration Memorandum,* dispersion modeling for air toxics is not required to be submitted with a permit application if all of the conditions in the memorandum are met.

1. Emissions from all compressor engines at the facility are controlled with catalytic emissions control systems (or an equivalent control technology) which is designed to reduce non-methane hydrocarbons by at least 50%.

As described in Section 3.0, all of the Waukesha compressor engines are controlled by NSCRs. The NSCRs will reduce non-methane hydrocarbons (NMHC) emissions by over 80% and VOC emissions by over 80%.

As described in Section 3.0, the Caterpillar compressor engine is controlled by an oxidation catalyst. Although the oxidation catalysts will reduce VOC emissions (non methane, non ethane) by approximately 17 %, the post catalyst concentration will meet NSPS JJJJ emissions limit of 0.7 g/hp-hr. The vendor has not provided percent reduction information regarding non-methane hydrocarbons (NMHC) emissions but it is assumed NMHC emissions will be reduced by a similar percentage. The Caterpillar vendor estimated a 50 % percent reduction of formaldehyde emissions with oxidation catalysts. Formaldehyde is the predominant hazardous air pollutant of concern from engines.

2. Emissions from all compressor engines at the facility are vented from a stack height which is greater than or equal to 1.5 times the nearest building height.

The emissions from the compressor engines at the facility will be vented from a stack height greater than or equal to 1.5 times the nearest building height.

- 3. For glycol dehydration unit(s):
 - a. Emissions from all glycol dehydration units(s) at the facility are controlled by combustion in the flare, process heater, boiler or other combustion device; or
 - b. Emissions from all glycol dehydration unit(s) at the facility are controlled by a control technology with a VOC destruction and removal efficiency of at least 90%; or
 - c.Combined air toxics emissions from all glycol dehydration units at the facility are less than 5.0 tons/year.

As specified in Section 3.0, the emissions from the glycol dehydration units are controlled by a condenser and the non-condensable gas from the condenser will be routed to the reboiler firebox. Combined air toxics emissions from the glycol dehydration unit is approximately 0.18 tpy, which is well below 5.0 tons/year.

4. If the facility is less than ¼ mile from a residence: combined air toxics emissions from the entire facility are less than 10.0 tons/year, benzene emissions are less than 2.0 tons/year, and formaldehyde emissions are less than 2.0 tons/year.

The facility is located approximately 1.31 miles from a residence; therefore, this section is not applicable.

5. If the facility is at least ¼ mile from a residence: combined air toxics emissions from the entire facility are less than 10.0 tons/year, benzene emissions are less than 3.0 tons/year, and formaldehyde emissions are less than 3.0 tons/year.

The facility is located approximately 1.31 mile from a residence. The combined toxic emissions from the entire facility are well below 10.0 tons per year (approximately 47 % of 10 tpy) and benzene emissions are less than 3.0 tons per year (less than 1 % of 3 tpy) and formaldehyde emissions are less than 3.0 tons per year .

Since the facility meets conditions 2, 3, 4 and 5 and VOC emission rates from the engines will meet NSPS JJJJ requirements, dispersion modeling for air toxics is not being submitted with this application. A dispersion modeling for air toxics will be submitted if requested by the Department.

PERMIT APPLICATION FOR AIR CONTAMINANT SOURCES

NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF AIR QUALITY SFN 8516 (3-2019)

SECTION A - FACILITY INFORMATION

Name of Firm or Organization Hiland Partners Holdings LLC								
Applicant's Name Anu Pundari								
Title Sr. Engineer	Telephone Number 520-663-4249		E-mail Address anu_pundari@kindermorgan.com					
Contact Person for A Anu Pundari	Air Pollution Ma	itters						
Title Sr. Engineer				Telephor 520-663-42		mber	E-mail Add anu_pundari	lress @kindermorgan.com
Mailing Address (Str 5151 E. Broadway, Suite								
City Tucson	State ZIP Code AZ 85711							
Facility Name Edgewater Compressor	Station							
Facility Address (Stre 47th Street NW (approx		northwe	est of N	lew Town, N	ID)			
CityStateZIP CodeNew TownND58763						_		
			Latitude (Nearest Seco 48° 5' 48.83" N			cond) Longitude (Nearest \$ 103° 38' 8.11" W		
Legal Description of Facility Site								
Quarter SE								
Land Area at Facility SiteMSL Elevation at Facility10Acres (or)Sg. Ft.2100								

SECTION B – GENERAL NATURE OF BUSINESS

Describe Nature of Business	North American Industry Classification System Number	Standard Industrial Classification Number (SIC)
Natural gas compressor station	213112	1311

SECTION C – GENERAL PERMIT INFORMATION

Type of Permit? I Permit to Construct (PTC)	Permit to Operate (PTO)				
If application is for a Permit to Construct, please prov	ide the following data:				
Planned Start Construction Date Planned End Construction Date					
Installation of new Caterpillar unit upon permit issuance 4/8/23	July 2023				

SECTION D – SOURCE IDENTIFICATION AND CATEGORY OF EACH SOURCE INCLUDED ON THIS PERMIT APPLICATION

	Permit to Construct Minor Source Permit to Operate											
			uul			Source		t to Op				
Your Source ID Number	Source or Unit (Equipment, Machines, Devices, Boilers, Processes, Incinerators, Etc.)	New Source	Existing Source Modification	Existing Source Expansion	Existing Source Change of Location	New Source	Existing Source Initial Application	Existing Source After Modification	Existing Source After Expansion	Existing Source After Change of Location	Existing Source After Change of Ownership	Other
8	Compressor Engine	\checkmark										
4	TEG Still Vent (27 MMscfd)											\checkmark
5	Produced Water Tank											\checkmark
6	Produced Water Tank											\checkmark
BD	Compressor Blowdowns											\checkmark
FUG	Fugitives											\checkmark
	* Other means updated PTE											
	tional pages if pece											

Add additional pages if necessary

SECTION D2 – APPLICABLE REGULATIONS

Source ID No.	Applicable Regulations (NSPS/MACT/NESHAP/etc.)
Facility-wide	NSPS OOOOa - Fugitive Emissions at a Compressor Station
1 and 2	NSPS OOOOa - Reciprocating Compressors
1,2,7,8	NSPS JJJJ - Compressor Engines
4	MACT HH - TEG Still Vent
1,2,7,8	MACT ZZZZ - Compressor Engines

SECTION E – TOTAL POTENTIAL EMISSIONS

Pollutant	Amount (Tons Per Year)
NOx	63.56
СО	76.85
PM	4.68

Pollutant	Amount (Tons Per Year)
PM ₁₀ (filterable and condensable)	4.68
PM _{2.5} (filterable and condensable)	4.68
SO ₂	0.14
VOC	75.73
GHG (as CO ₂ e)	26658
Largest Single HAP	2.84
Total HAPS	4.71

^{*}If performance test results are available for the unit, submit a copy of test with this application. If manufacturer guarantee is used provide spec sheet.

SECTION F1 – ADDITIONAL FORMS

Indicate which of the following forms are attached and made part of the application				
Air Pollution Control Equipment		Fuel Burning Equipment Used for Indirect		
(SFN 8532)		Heating (SFN 8518)		
Construct/Operate Incinerators		Hazardous Air Pollutant (HAP) Sources		
(SFN 8522)		(SFN 8329)		
Natural Gas Processing Plants		Manufacturing or Processing Equipment		
(SFN 11408)		(SFN 8520)		
Glycol Dehydration Units		Volatile Organic Compounds Storage Tank		
(SFN 58923)		(SFN 8535)		
Flares		Internal Combustion Engines and Turbines		
(SFN 59652)		(SFN 8891)		
Grain, Feed, and Fertilizer Operations		Oil/Gas Production Facility Registration		
(SFN 8524)		(SFN 14334)		

SECTION F2 – OTHER ATTACHMENTS INCLUDED AS PART OF THIS APPLICATION

	1.	Application	4.	Gas Analysis
	2.	Emission Calculations	5.	GRI-GLY Calc Reports
,	3.	Caterpillar Engine Specifications	6.	Area Map, Plot Plan

I, the undersigned applicant, am fully aware that statements made in this application and the attached exhibits and statements constitute the application for Permit(s) to Construct and/or Operate Air Contaminant sources from the North Dakota Department of Environmental Quality and certify that the information in this application is true, correct and complete to the best of my knowledge and belief. Further, I agree to comply with the provisions of Chapter 23.1-06 of the North Dakota Century Code and all rules and regulations of the Department, or revisions thereof. I also understand the permit is nontransferable and, if granted a permit, I will promptly notify the Department upon sale or legal transfer of this permitted establishment.

Signature	0	P ,	Date
	ann	Pundan	12/22/22
			12/22/22

PERMIT APPLICATION FOR INTERNAL COMBUSTION ENGINES AND TURBINES

NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF AIR QUALITY SFN 8891 (3-2019)

NOTE: READ INSTRUCTIONS BEFORE COMPLETING THIS FORM. - Must include SFN 8516 or SFN 52858

SECTION A – GENERAL INFORMATION

Name of Firm or Organization	Facility Name
Hiland Partners Holdings LLC	Edgewater Compressor Station

SECTION B – FACILITY AND UNIT INFORMATION

Source ID Nur EU8	nber (From form SFN 8516)	
Type of Unit	Stationary Natural Gas-Fired Engine	Emergency Use Only
(check all	Stationary Diesel and Dual Fuel Engine	Non-Emergency Use
that apply)	Stationary Gasoline Engine	Peaking
	Stationary Natural Gas-Fired Turbine	Demand Response
	Other – Specify:	

SECTION C – MANUFACTURER DATA

Make Caterpillar	Model G3516J		Date of Manufacture Post July 2010		
Reciprocating Internal Col	mbustion Engine				
	Spark Ignition	Compression Ignit	tion		
4 Stroke	2 Stroke	🗌 Rich Burn	🔳 Lean Burn		
Maximum Rating (BHP @	rpm)	Operating Capacity (BH	P @ rpm)		
1380 @ 1400 rpm		1380 @1400 rpm			
Engine Subject to:	Engine Subject to:				
40 CFR 60, Subp	part IIII 🛛 🔳 40 CFR 6	0, Subpart JJJJ 🛛 📃	40 CFR 63, Subpart ZZZZ		
40 CFR 60, Subr	oart OOOO 🛛 🗌 40 CFR 6	0, Subpart OOOOa			
Turbine Dry Low Emissions? 🗌 Yes 🗌 N					
Heat Input (MMBtu/hr)	Maximum Rating (HP)	75% Rating (HP)	Efficiency		
Turbine Subje	ect to: 🗌 40 CFR 60, Sub	part GG 🛛 40 CFR 60,	Subpart KKKK		

SECTION D – FUELS USED

Natural Gas (10 ⁶ cu ft/year) 114.747 MMscf/year	Percent Sulfur Neglible	Percent H ₂ S Negligible
Oil (gal/year)	Percent Sulfur	Grade No.
LP Gas (gal/year)	Other – Specify:	

SECTION E - NORMAL OPERATING SCHEDULE

Hours Per Day	Days Per Week	Weeks Per Year	Hours Per Year	Peak Production Season
24	7	52	8760	(if any)

SECTION F – STACK PARAMETERS

Emission Point ID Number EU8		Stack Height Above Ground Level (feet) 1.5 X Building Height (approximately 35 feet)	
Stack Diameter (feet at top)	Gas Discharged (SCFM)	Exit Temp (°F)	Gas Velocity (FPS)
16 inches	8038	824	96

SECTION G - EMISSION CONTROL EQUIPMENT

Is any emission control equipment installed on this unit?

No Yes – Complete and attach form SFN 8532

SECTION H - MAXIMUM AIR CONTAMINANTS EMITTED

	Maximum Pounds Per	Amount (Tons Per	
Pollutant	Hour	Year)	Basis of Estimate*
NOx	3.04	13.33	NSPS JJJJ Standard
со	6.08	26.65	NSPS JJJJ Standard
PM	0.22	0.95	AP-42 Table 3.2-3
PM ₁₀ (filterable and condensable)	0.22	0.95	AP-42 Table 3.2-3
PM _{2.5} (filterable and condensable)	0.22	0.95	AP-42 Table 3.2-3
SO ₂	0.01	0.03	AP-42 Table 3.2-3
VOC	2.74	11.99	NSPS JJJJ Standard
GHG (as CO₂e)	1299	5691	AP-42 Table 3.2-3
Largest Single HAP	0.61	2.67	Vendor Data
Total HAPS	0.61	2.67	Vendor Data/AP-42

* If performance test results are available for the unit, submit a copy of test with this application, if manufacture data used, submit manufacturers specification sheets.

IS THIS UNIT IN COMPLIANCE WITH ALL APPLICABLE AIR POLLUTION RULES AND REGULATIONS?				
YES NO				

If "NO" a Compliance Schedule (SFN 61008) must be completed and attached.

Attach and label separate sheet(s) if you need more space to explain any system or answers or to provide complete listings of Emissions, Contaminants, or other items.

SEND COMPLETED APPLICATION AND ALL ATTACHMENTS TO:

North Dakota Department of Environmental Quality Division of Air Quality 918 E Divide Avenue, 2nd Floor Bismarck, ND 58501-1947 (701) 328-5188

PERMIT APPLICATION FOR AIR POLLUTION CONTROL EQUIPMENT

NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF AIR QUALITY SFN 8532 (3-2019)

NOTE: READ INSTRUCTIONS BEFORE COMPLETING THIS FORM. - Must also include forms SFN 8516 or SFN 52858

SECTION A – GENERAL INFORMATION

Name of Firm or Organization	Facility Name
Hiland Partners Holdings LLC	Edgewater Compressor Station
Source ID No. of Equipment being Controlled EU8	

SECTION B – EQUIPMENT

Туре:	Cyclone		Multiclor	ne	Baghou	lse	Electro	static Precipitator
	Wet Scrubber		🗌 Spray D	ryer	yer 🗌 Flare/Combustor			
Other – Specify: Oxidation Catalyst								
	Name of ManufacturerModel NumberDate to Be InstalledCaterpillar G3516JCatalyst Combustion - Model Unknownupon startup							
Application	ı:	Kiln		Engine] Othe	er – Specify:	
Pollutants	Removed	CO		НСН	0			
Design Eff	iciency (%)	96 % c	onversion	85 % (conversior	า		
Operating Efficiency (%) TBD			TBD					
Describe method used to determine operating efficiency:								
Specification sheet from Catalyst vendor denoting performance.								

SECTION CD – GAS CONDITIONS

Gas Conditions			Inlet	Outlet
Gas Volume (SCFM; 68°F; 14.7 psia)				8038
Gas Temperature (°F)				828
Gas Pressure (in. H ₂ O)				
Gas Velocity (ft/sec	2)			96
Pollutant Concentration	Pollutant	Unit of Concentration		
(Specify Pollutant and Unit of	CO	g/bhp-hr	2.42	1.0 (permitting 2.0)
Concentration)	НСНО	g/bhp-hr	0.4	0.2
Pressure Drop Through Gas Cleaning Device (in. H ₂ O) TBD				

PERMIT APPLICATION FOR HAZARDOUS AIR POLLUTANT (HAP) SOURCES NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY

SECTION A1 - APPLICANT INFORMATION

Name of Firm or Organization Hiland Partners Holding LLC				
Applicant's Name Anu Pundari				
Title Sr. Engineer	Telephon 520-663-42	e Number 249	E-mail Add anu_pundari	lress @kindermorgan.com
Mailing Address (Street & No.) 5151 E. Broadway, Suite 1680				
City Tucson		State AZ		ZIP Code 85711

SECTION A2 - FACILITY INFORMATION

Contact Person for Air Pollution Matters Anu Pundari				
Title		e Number	E-mail Add	lress
Sr. Engineer	520-663-42	249	anu_pundari@kindermorgan.com	
Facility Address (Street & No. or Lat/Long to Nearest Second) 47th Street NW (approximately 11 miles northwet of New Town, ND)				
City New Town		State ND		ZIP Code 58763
County	Num	per of Emplo	oyees at Loo	cation
Mountrail	0		-	
Land Area at Plant Site		MSL El	evation at Pl	ant
<u>10</u> Acres (or)	Sq. Ft.	2100		

Describe Nature of Business/Process

Natural Gas Compressor Station

SECTION B – STACK DATA

Inside Diameter (ft) Unknown	Height Above Grade (ft) Unknown	
Gas Temperature at Exit (°F) 824	Gas Velocity at Exit (ft/sec) 96	Gas Volume (scfm) 8038
Basis of any Estimates (attach sep	arate sheet if necessary)	
Catalyst Vendor Data		
Are Emission Control Devices in Pl	ace? If YES – Complete SFN 8532	💽 Yes 🔘 No
Nearest Residences or Building	Distance (ft)	Direction
Farmyard	approx 1.31 miles	Southeast
Nearest Property Line	Distance (ft)	Direction

SECTION C – EMISSION STREAM DATA

Source ID No. From SFN 8516 EU8	Mean Particle Diameter (um) Unknown	
Flow Rate (scfm) 8038	Drift Velocity (ft/sec) Unknown	
Stream Temperature (°F) 824	Particulate Concentration (gr/dscf) Unknown	
Moisture Content (%) Unknown	Halogens or Metals Present? Unknown	
Pressure (in. Hg) Unknown	Organic Content (ppmv) Unknown	
Heat Content (Btu/scfm) Unknown	O ₂ Content (%) Unknown	

SECTION D – POLLUTANT SPECIFIC DATA (Complete One Box for Each Pollutant in Emission Stream)

Pollutant Emitted Formaldehyde	Chemical Abstract Services (CAS) Number 50-00-0
Proposed Emission Rate (lb/hr)	Emission Source (describe)
0.61	1380 hp Compressor Engine
Source Classification	Pollutant Class and Form
(process point, process fugitive, area fugitive)	(organic/inorganic - particulate/vapor)
process point	Organic-vapor
Concentration in Emission Stream (ppmv)	Vapor Pressure (in. Hg @ °F)
Unknown	3890 mm Hg at 25 degree Celius
Solubility	Molecular Weight (lb/lb-mole)
greater than 100g/100 ml (20 degree Celius)	30
Absorptive Properties Unknown	

Pollutant Emitted	Chemical Abstract Services (CAS) Number
Proposed Emission Rate (lb/hr)	Emission Source (describe)
Source Classification (process point, process fugitive, area fugitive)	Pollutant Class and Form (organic/inorganic - particulate/vapor)
Concentration in Emission Stream (ppmv)	Vapor Pressure (in. Hg @ °F)
Solubility	Molecular Weight (lb/lb-mole)
Absorptive Properties	

(Add additional pages if necessary)

Signature of Applicant Date 12/22/22

SEND COMPLETED APPLICATION AND ALL ATTACHMENTS TO:

North Dakota Department of Environmental Quality Division of Air Quality 918 E Divide Avenue, 2nd Floor Bismarck, ND 58501-1947 (701) 328-5188 PERMIT APPLICATION FOR GLYCOL DEHYDRATION UNITS

NORTH DAKOTA DEPARTMENT OF HEALTH DIVISION OF AIR QUALITY SFN 58923 (3-2019)

NOTE: READ INSTRUCTIONS BEFORE COMPLETING THIS FORM. - Must include SFN 8516 or SFN 52858

SECTION A – GENERAL INFORMATION

Name of Firm or Organization	Facility Name
Hiland Partners Holdings LLC	Edgewater Compressor Station

SECTION B - 40 CFR 63, SUBPART HH APPLICABILITY DETERMINATION

The facility is a (check one): \Box major, or \blacksquare area source of hazardous air pollutants (HAP) as defined in §63.761. Attach calculations showing expected HAP emissions in accordance with §63.760(a)(1).

The facility (check all that apply):

Processes, upgrades or stores hydrocarbon liquids prior to the point of custody transfer.

Processes, upgrades or stores natural gas prior to the point at which natural gas enters the transmission and storage source category or is delivered to a final end user.

Identify the 40 CFR 63 Subpart HH (MACT HH) affected source:

Glycol (ethylene, diethylene, or triethylene) dehydration unit & associated equipment (located at a major source), or

Tryiethylene glycol (TEG) dehydration unit (located at an area source)

The facility is exempt from MACT HH because it:

☐ Is a qualifying black oil facility, or

□ Is a major source facility, prior to the point of custody transfer, with a facility-wide actual annual average natural gas throughout less than 18.4 thousand standard cubic meters per day and a facility-wide actual annual average hydrocarbon liquid throughput less than 39,700 liters per day.

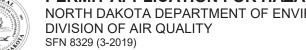
The facility is not exempt from MACT HH.

SECTION C - EMISSION UNIT INFORMATION

Emission Unit Description	Emission Unit Identifier	Emission Point Number	Pollutant*	Emission Rate		Air Pollution Control Equipment
	(EU)	(EP)		lb/hr	ton/yr	
TEG Still Vent	4	3	VOC	0.2	1.06	Condenser and reboiler firebox.
TEG Still Vent	4	3	HAPs	0.04	0.18	Condenser and reboiler firebox.
TEG Still Vent	4	3	BTEX	0.36	0.16	Condenser and reboiler firebox.

* Includes an estimate of greenhouse gas emissions (CO2e).

Complete the following for each glycol and triethylene glycol dehydration unit.								
EU	Design Capacity (MMSCFD)	Actual Throughput (MMSCFD)	Gas Pressure (psig)	Gas Temp (°F)	(lb/MN	Content /SCF) Dry Gas	Glycol Recirc. Rate (gal/min)	VOC Emissions (ton/yr)
4	27	27	1100	100	Saturated	4.0	3.5	1.06


SECTION D – STACK DATA

Inside Diameter (ft) NA	Height Above Grade (ft) NA	Gas Volume (scfm) unknown
Gas Temperature at Exit (°F) unknown	Gas Velocity at Exit (ft/sec) unknown	
Are Emission Control Devices in	Place? If YES – Complete SFN 8532	Yes No
Nearest Residence or Building Farmyard	Distance (ft) ~1.31 miles	Direction Southeast
Nearest Property Line	Distance (ft)	Direction

SEND COMPLETED APPLICATION AND ALL ATTACHMENTS TO:

North Dakota Department of Environmental Quality Division of Air Quality 918 E Divide Avenue, 2nd Floor Bismarck, ND 58501-1947 (701)328-5188

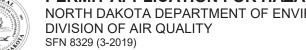
PERMIT APPLICATION FOR HAZARDOUS AIR POLLUTANT (HAP) SOURCES NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY

SECTION A1 - APPLICANT INFORMATION

Name of Firm or Organization Hiland Partners Holding LLC				
Applicant's Name Anu Pundari				
Title Sr. Engineer	Telephone N 520-663-4249		E-mail Address anu_pundari@kindermorgan.com	
Mailing Address (Street & No.) 5151 E. Broadway, Suite 1680				
City Tucson	Sta AZ	ate	ZIP Code 85711	

SECTION A2 - FACILITY INFORMATION

Contact Person for Air Pollution Matters Anu Pundari							
Title		e Number	E-mail Add				
Sr. Engineer	520-349-06	511	anu_pundari@kindermorgan.com				
Facility Address (Street & No. or Lat/Long to Nearest Second) 47th Street NW (approximately 11 miles northwet of New Town, ND)							
City New Town		State ND		ZIP Code 58763			
County	Num	per of Emplo	oyees at Loo	cation			
Mountrail	0						
Land Area at Plant Site		MSL El	evation at Pl	ant			
_10Acres (or)	Sq. Ft.	2100					


Describe Nature of Business/Process

Natural Gas Compressor Station

SECTION B – STACK DATA

Inside Diameter (ft) Unknown	Height Above Grade (ft) Unknown					
Gas Temperature at Exit (°F) Unknown	Gas Velocity at Exit (ft/sec) Unknown	Gas Volume (scfm) Unknown				
Basis of any Estimates (attach separate sheet if necessary)						
Are Emission Control Devices in Pl	lace? If YES – Complete SFN 8532	O Yes O No				
Nearest Residences or Building Farmyard	Distance (ft) approx 1.31 miles	Direction Southeast				
Nearest Property Line	Distance (ft)	Direction				

PERMIT APPLICATION FOR HAZARDOUS AIR POLLUTANT (HAP) SOURCES NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY

SECTION A1 - APPLICANT INFORMATION

Name of Firm or Organization Hiland Partners Holding LLC				
Applicant's Name Anu Pundari				
Title Sr. Engineer	Telephone N 520-663-4249		E-mail Address anu_pundari@kindermorgan.com	
Mailing Address (Street & No.) 5151 E. Broadway, Suite 1680				
City Tucson	Sta AZ	ate	ZIP Code 85711	

SECTION A2 - FACILITY INFORMATION

Contact Person for Air Pollution Matters Anu Pundari							
Title		e Number	E-mail Add				
Sr. Engineer	520-349-06	511	anu_pundari@kindermorgan.com				
Facility Address (Street & No. or Lat/Long to Nearest Second) 47th Street NW (approximately 11 miles northwet of New Town, ND)							
City New Town		State ND		ZIP Code 58763			
County	Num	per of Emplo	oyees at Loo	cation			
Mountrail	0						
Land Area at Plant Site		MSL El	evation at Pl	ant			
_10Acres (or)	Sq. Ft.	2100					

Describe Nature of Business/Process

Natural Gas Compressor Station

SECTION B – STACK DATA

Inside Diameter (ft) Unknown	Height Above Grade (ft) Unknown					
Gas Temperature at Exit (°F) Unknown	Gas Velocity at Exit (ft/sec) Unknown	Gas Volume (scfm) Unknown				
Basis of any Estimates (attach separate sheet if necessary)						
Are Emission Control Devices in Pl	lace? If YES – Complete SFN 8532	O Yes O No				
Nearest Residences or Building Farmyard	Distance (ft) approx 1.31 miles	Direction Southeast				
Nearest Property Line	Distance (ft)	Direction				

PERMIT APPLICATION FOR VOLATILE ORGANIC COMPOUNDS STORAGE TANK

NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF AIR QUALITY SFN 8535 (3-2019)

NOTE: READ INSTRUCTIONS BEFORE COMPLETING THIS FORM. - Must include SFN 8516 or SFN 52858

SECTION A – GENERAL INFORMATION

Name of Firm or Organization	Facility Name
Hiland Partners Holdings LLC	Edgewater Compressor Station

SECTION B – TANK DATA

Source ID Nur EU5 and EU6	mber (From SFN 8516)					
Capacity	Barrels 400			Gallons 16800		
Dimensions	Diameter 12	Height 20		Length		Width
Shape	Cylindrical		Spherical	[Other –	Specify:
Materials of Construction	(i.e., steel) Steel					
Construction	Riveted		Welded	[Other –	Specify:
Color Tan						
Condition	Good		🗌 Fair	[Poor	
Status	New Constru	uction	Alteration	(Existing Give Date Existing on	Constructed):
Type of	Fixed Roof			Exter	nal Floating	g
Tank	☐ Variable Va ☐ Pressure (lo				al Floating – Specify:	
Type of Roof	Pan [Double	Deck	Pontoon	Othe	er – Specify:
Type of Seal	Metallic Shoe Seal		Liquid Mounte Resilient Seal	d		Mounted ent Seal
	 Primary Seal Only With Rim Mounted With Shoe Mounte Secondary Seal 	Seal	 Primary Se With Rim M With Weath 	lounted Sea	I 🗌 Wit	mary Seal Only th Rim Mounted Seal th Weather Shield

SECTION C – TANK CONTENTS

Name all liquids, vapors, gases, or mixtures of such materials to be stored in the tank.
Give density (lbs per gal) or A.P.I.
Produced Water - RVP 13.0

SECTION D – VAPOR DISPOSAL

Atmosphere	Vapor Recovery Unit	Flare	Enclosed Combustor	Other – Specify:
------------	---------------------	-------	--------------------	------------------

SECTION E – VAPOR PRESSURE DATA

psia	
Maximum True Vapor Pressure	Maximum Reid Vapor Pressure
9.1036	13.0

SECTION F – OPERATIONAL DATA

Maximum Filling Rate	Vapor Space Outage
(barrels per hour or gallons per hour)	(See AP-42, 7.1-92, Equation 1-15)
48 bbls per hour	10 feet (assume tank half full)
Average Throughput (barrels per day or gallons per day) 41 bbls per day	Tank Turnovers per Year 37.5

SECTION G – SOLUTION STORAGE

If material stored is a solution, supply the following information:		
Name of Solvent Name of Material Dissolved		
Concentration of Material Dissolved (% by weight or % by volume or lbs/gal)		

SECTION H – AIR CONTAMINANATS EMITTED

Pollutant*	Maximum Pounds Per Hour	Tons Per Year	Basis and Calculations for Quantities (Attach separate sheet if needed)
VOC	0.30	1.31	Promax Calculations

* Include an estimate of greenhouse gas emissions (CO₂e)

SECTION I – STANDARDS OF PERFORMANCE

The capacity of the produced water/condensate tanks is below the NSPS Kb applicability threshold. The pressurized NGL tanks will have a capacity above the applicability threshold. However, these tanks are exempt from this regulation per 60.110b(d)(4) which exempts vessels with a design capacity less than or equal to 1,589.874 m3 (360,934,388 gal) used for petroleum or condensate stored, processed, or treated prior to custody transfer.			
	of performance for new stationa K, Ka, and Kb, OOOO, OOOOa o – Explain:		
	40 CFR 60, Subpart OOOC	0 🗌 40 CFR 60, Subpart	0000a
Tank subject to:	40 CFR 60, Subpart K] 40 CFR 60, Subpart Ka	☐ 40 CFR 60, Subpart Kb

SEND COMPLETED APPLICATION AND ALL ATTACHMENTS TO:

North Dakota Department of Environmental Quality Division of Air Quality 918 E Divide Avenue, 2nd Floor Bismarck, ND 58501-1947 (701) 328-5188

Site Emissions Summary Hiland Partners Holdings LLC Edgewater Compressor Station Mountrail County, North Dakota

Emission		Engine	PM ₁₀	NOx	CO	SO _x	VOC	HAPS	Formaldehyde	CO2e	GHG
Unit #	Emission Unit Description	Model	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)
Existing S											
C1 (EU1)	Compressor Engine #1 - 1,900 bhp w/NSCR	Waukesha L7044 GSI	1.34	18.35	18.35	0.04	12.86	0.43	0.02	7,999.24	7,589.21
C2 (EU2	Compressor Engine #2 - 1,900 bhp w/NSCR	Waukesha L7044 GSI	1.34	18.35	18.35	0.04	12.86	0.43	0.02	7,999.24	7,589.21
3	TEG Reboiler - 0.5 MMBtu/hr		0.02	0.21	0.18	0.00	0.01	0.00	0.00	176.24	175.21
4	TEG Still Vent - 27 MMscfd						1.06	0.18			
5	Produced Water Tank - 400 bbl - 15,000 bbl/year						1.31				
6	Produced Water Tank - 400 bbl - 15,000 bbl/year						1.31				
C3 (EU7)	Compressor Engine # 3 - 1,380 bhp w/NSCR	Waukesha 5794 GSI	1.04	13.33	13.33	0.03	9.46	0.45	0.13	6,225.02	5,905.93
BD	Compressor Blowdowns						18.33	0.54			
PW-TL	Produced Water Truck Loading						0.44				
PW-NGL	NGL Truck Loading						0.82				
FUG	Fugitives						4.24				
TK	Three Methanol Chemical Storage Tanks						0.03				
PIG	Pigging						1.00				
New Sou	New Source										
C4 (EU8	Compressor Engine # 4 - 1,380 bhp w/NSCR	Caterpillar G3516J	0.95	13.33	26.65	0.03	11.99	2.67	2.67	5,690.58	5,398.89
	тот	AL POTENTIAL TO EMIT	4.68	63.56	76.85	0.14	75.73	4.71	2.84	28090	26658

Notes:

1. Pigging emissions are conservatively assumed to be 1.00 tpy of VOC.

2. Methanol storage tank emissions are conservatively assumed to be 0.01 tpy of VOC for each tank.

EU1 and EU2 Engine Emissions **Hiland Partners Holdings LLC** Edgewater Compressor Station Mountrail County, North Dakota

Equipment Data:

Emission Unit (EU):	EU1	EU2
Emission Unit Name:	Waukesha L7044 GSI	Waukesha L7044 GSI
Engine Type:	4SRB	4SRB

Emissions Data:

Fuel Usage = Horsepower = . Speed = Hours of Operation = Max. Fuel Combustion Rate (HHV) = Fuel Heating Value (HHV) = Max. Heat Rate (HHV) =

91.797 MMscf/yr (Calculated value based on max fuel combustion rate) 1,900 bhp 1,200 rpm 8,760 hr/yr 8,273 Btu/bhp-hr 1,500 MMBtu/MMscf

15.72 MMBtu/hr

Pollutant	Emission	Units	Emission Factor Reference	Hourly Emissions	Annual Emissions
Pollutant	Factor	Units	Reference	(lb/hr)	(ton/yr)
PM ₁₀	0.01941	lb/MMBtu	AP-42 Table 3.2-3	0.31	1.34
NOx	1.0	g/bhp-hr	NSPS Subpart JJJJ	4.19	18.35
со	1.0	g/bhp-hr	Vendor Data	4.19	18.35
SOx	5.88E-04	lb/MMBtu	AP-42 Table 3.2-3	0.01	0.04
VOC	0.70	g/bhp-hr	NSPS Subpart JJJJ	2.94	12.86
Total HAPs			Engine Vendor/AP-42	0.10	0.43
Formaldehyde	0.001	g/bhp-hr	Vendor Data	0.004	0.02
	Emission		Emission Factor	Hourly Emissions	Annual Emissions
Pollutant	Factor	Units	Reference	(lb/hr)	(ton/yr)
CO ₂ e				1,826	7,999
GHG				1,733	7,589
CO ₂	110	lb/MMBtu	AP-42	1,729	7,573
CH ₄	0.23	lb/MMBtu	AP-42	3.62	15.84
N ₂ O	2.2	lb/MMscf	AP-42	0.02	0.10

Notes:

1. NOx and VOC emissions based on 40 CFR 60 Subpart JJJJ standards. CO emissions based on data from the catalyst vendor indicating a post-catalyst emission rate of 1.0 g/hp-hr. Formaldehyde emissions are based on manufacturer data. PM/PM₀ and SO₂ emissions based on AP-42 Table 3.2-3.

1. Per AP-42, all particulate is considered to be less than 1.0 micrometer in diameter.

2. VOC emissions include formaldehyde.

Sample Calculation:

PM ₁₀ Emissions (ton/yr) =	(Emission Factor, lb/MMBtu) x (Max Heat Input Rate (HHV), MMBtu/hr) x (Hours of Operation, hr/yr) / (2,000 lb/ton)
PM ₁₀ Emissions (ton/yr) =	(0.01941 lb/MMBtu) x (15.72 MMBtu/hr) x (8,760 hr/yr) / (2,000 lb/ton) = 1.34 ton/yr
VOC Emissions (ton/yr) =	(Emission Factor, g/bhp-hr) x (Horsepower, bhp) x (Hours of Operation, hr/yr) / (2,000 lb/ton) / (453.59 grams/1 lb)
VOC Emissions (ton/yr) =	(0.7 g/bhp-hr) x (1900 bhp) x (8,760 hr/yr) / (2,000 lb/ton) / (453.59 g/lb) = 12.86 ton/yr
CO ₂ e Emissions (ton/yr) =	$(CO_2 \text{ emissions x 1}) + (CH_4 \text{ emissions x 25}) + (N_2O \text{ emissions x 298})$
CO ₂ e Emissions (ton/yr) =	((7573.27 ton/yr x 1) + (15.84 ton/yr x 25) + (0.10 ton/yr x 298)) = 7999.24 ton/yr
GHG Emissions (ton/yr) =	(CO ₂ emissions) + (CH ₄ emissions) + (N ₂ O emissions)
GHG Emissions (ton/yr) =	(7573.27 ton/yr) + (15.84 ton/yr) + (0.10 ton/yr) = 7589.21 ton/yr

Engine EU1 and EU2 Emissions (HAPs) Hiland Partners Holdings LLC Edgewater Compressor Station Mountrail County, North Dakota

Engines	Horsepower (hp)	Hours per Year	Heat Input (MMBtu/yr)	Fuel Input (MMscf/yr)
EU1 and EU2			137,696	91.80
	1,900	8,760	137,090	91.60
	Fusianiau	Fraissian	Control	F urie sie ne
	Emission	Emission	Control	Emissions
НАР	Factor (Ib/MMBtu)	Factor (g/bhp-hr)	Efficiency (%)	(tpy) (Controlled)
1,1,2,2-Tetrachloroethane	2.53E-05	(g/bhp-hi) 	50%	8.71E-04
1,1,2,2-Trichloroethane	1.53E-05		50%	5.27E-04
1.1-Dichloroethane	1.13E-05		50%	3.89E-04
1.2-Dichloroethane	1.13E-05		50%	3.89E-04
1,2-Dichloropropane	1.30E-05		50%	4.48E-04
1,2-Dichloropiopane 1,3-Butadiene	6.63E-04		50%	2.28E-02
1,3-Dichloropropene	0.03E-04 1.27E-05		50%	4.37E-04
Acetaldehyde	2.79E-03		50%	9.60E-02
Accelaidenyde	2.79E-03 2.63E-03		50%	9.00E-02 9.05E-02
Benzene	1.58E-03		50%	9.03E-02 5.44E-02
Carbon Tetrachloride	1.58E-05		50%	6.09E-04
Chlorobenzene	1.29E-05		50%	4.44E-04
Chloroform	1.37E-05		50%	4.72E-04
Ethylbenzene	2.48E-05		50%	8.54E-04
Ethylene Dibromide	2.48E-05 2.13E-05		50%	7.33E-04
Formaldehyde	2.13E-05	 1.00E-03	NA	0.02
Methanol	3.06E-03	1.00E-03	50%	1.05E-01
Methylene Chloride	4.12E-05		50%	1.42E-03
Naphthalene	9.71E-05		50%	3.34E-03
РАН	9.71E-05		50%	4.85E-03
Styrene	1.19E-05		50%	4.05E-03 4.10E-04
Toluene	5.58E-04		50%	4.10E-04 1.92E-02
Vinyl Chloride	7.18E-06		50%	2.47E-02
Xylene	1.95E-04		50%	6.71E-04
/yiene	Emission		Control	Emissions
	Factor		Efficiency	
НАР	(lb/MMscf)		(%)	(tpy) (Uncontrolled)
Arsenic	2.04E-04		0%	9.36E-06
Beryllium	1.20E-05		0%	5.51E-07
Cadmium	1.10E-03		0%	5.05E-05
Chromium	1.40E-03		0%	6.43E-05
Cobalt	8.40E-05		0%	3.86E-06
Manganese	3.80E-04		0%	1.74E-05
Mercury	2.60E-04		0%	1.19E-05
Nickel	2.10E-03		0%	9.64E-05
Selenium	2.40E-05		0%	1.10E-06
Total HAP Emissions				0.43

Notes:

1. Emission factor from AP-42 Table 3.2-3, Uncontrolled Emission Factors for 4-Stroke Rich-Burn Engines (July 2000) and AP-42 Table 1.4-

4, Emission Factors for Metals from Natural Gas Combustion (July 1998).

2. Formaldehyde emission factor is from manufacturer data.

3. Control efficiency from the dual catalytic converter unit was conservatively assumed to be 50% per verbal guidance by NDDEQ on 4/29/10.

Glycol Reboiler Emissions Hiland Partners Holdings LLC Edgewater Compressor Station Mountrail County, North Dakota

Equipment Data:

Emission Unit (EU):	EU3		
Emission Unit Name:	TEG Reboiler		
Rating:	0.5 MMBtu/hr		
Emissions Data:			

Maximum Fuel Usage =	2.92 MMscf/yr
Maximum Fuel Usage =	0.0003 MMscf/hr
Hours of Operation =	8,760 hr/yr
Design Heat Input Rate =	0.50 MMBtu/hr
Fuel Heating Value (HHV) =	1,500 MMBtu/MMscf
CO ₂ GWP (100 year) =	1
CH ₄ GWP (100 year) =	25
N ₂ O GWP (100 year) =	298

(Calculated value based on max fuel combustion rate)

Pollutant	Emission Factor	Units	Emission Factor Reference	Hourly Emissions (Ib/hr)	Annual Emissions (ton/yr)
PM ₁₀	7.6	lb/MMscf	AP-42	0.004	0.02
NOx	100	lb/MMscf	AP-42	0.049	0.21
CO	84	lb/MMscf	AP-42	0.041	0.18
SOx	0.6	lb/MMscf	AP-42	0.0003	0.001
VOC	5.5	lb/MMscf	AP-42	0.003	0.01
Pollutant	Emission Factor	Units	Emission Factor Reference	Hourly Emissions (lb/hr)	Annual Emissions (tons/yr)
CO ₂ e				40.24	176.24
GHG				40.00	175.21
CO ₂	120,000	lb/MMscf	AP-42	40.00	175.20
CH ₄	2.3	lb/MMscf	AP-42	0.001	0.003
N ₂ O	2.2	lb/MMscf	AP-42	0.001	0.003

Notes:

1. Emission factors based on AP-42 Table 1.4-1 and Table 1.4-2. Per AP-42, all particulate is considered to be less than 1.0 micrometer in diameter.

Sample Calculation:

Fuel Usage (MMscf/yr) = (Design Heat Input Rate, MMBtu/hr) / (Fuel heating Value, MMBtu/MMscf) * (Hours of Operation, hr/yr) (0.5 MMBtu/hr) / (1500 MMBtu/MMscf) x (8,760 hr/yr) = 2.92 MMscf/yr

Fuel Usage (MMscf/yr) =

(Emission Factor, Ib/MMscf) x (Fuel Heating Value, MMBtu/MMscf) / (1,020 MMBtu/MMscf) x (Fuel Usage, MMscf/yr) / (Hours of Operation, hr/yr) PM₁₀ Emissions (lb/hr) = PM₁₀ Emissions (lb/hr) = (7.6 lb/MMscf) x (1500 MMBtu/scf) / (1,020 MMBtu/MMscf) x (7.6 MMscf/yr) / (8760 hr/yr) = 0.004 lb/hr

(Hourly Emissions, lb/hr) x (8,760 hrs/yr) / (2,000 lb/ton) PM₁₀ Emissions (ton/yr) =

PM₁₀ Emissions (ton/yr) = (0.004 lb/hr) x (8760 hr/yr) / (2000 lb/ton) = 0.02 ton/yr

Glycol Reboiler Emissions (HAPs) Hiland Partners Holdings LLC Edgewater Compressor Station Mountrail County, North Dakota

Equipment	Heat Input Rate (MMBtu/hr)	Fuel Consumption (MMscf/yr)
Emission Unit 3 - TEG Reboiler	0.5 MMBtu/hr	2.92

	Emission	Control	Emissions
	Factor ¹	Efficiency	(tpy)
НАР	(lb/MMscf)	(%)	(Uncontrolled)
2-Methylanpthalene	2.40E-05	0%	5.15E-08
3-Methylchloranthrene	1.80E-06	0%	3.86E-09
7,12-Dimethylben(a)anthracene	1.60E-05	0%	3.44E-08
Acenapthene	1.80E-06	0%	3.86E-09
Acenapthylene	1.80E-06	0%	3.86E-09
Anthracene	2.40E-06	0%	5.15E-09
Benz(a)anthracene	1.80E-06	0%	3.86E-09
Benzene	2.10E-03	0%	4.51E-06
Benzo(a)pyrene	1.20E-06	0%	2.58E-09
Benzo(b)fluorathene	1.80E-06	0%	3.86E-09
Benzo(g,h,i)perylene	1.20E-06	0%	2.58E-09
Benzo(k)fluorathene	1.80E-06	0%	3.86E-09
Chrysene	1.80E-06	0%	3.86E-09
Dibenzo(a,h)anthracene	1.20E-06	0%	2.58E-09
Dichlorobenzene	1.20E-03	0%	2.58E-06
Fluoranthene	3.00E-06	0%	6.44E-09
Fluorene	2.80E-06	0%	6.01E-09
Formaldehyde	7.50E-02	0%	1.61E-04
Hexane	1.80E+00	0%	3.86E-03
Indeno(1,2,3-cd)pyrene	1.80E-05	0%	3.86E-08
Napthalene	6.10E-04	0%	1.31E-06
Phenanathrene	1.70E-05	0%	3.65E-08
Pyrene	5.00E-06	0%	1.07E-08
Toluene	3.40E-03	0%	7.30E-06
	Emission	Control	Emissions
	Factor ²	Efficiency	(tpy)
НАР	(lb/MMscf)	(%)	(Uncontrolled)
Arsenic	2.04E-04	0%	2.98E-07
Beryllium	1.20E-05	0%	1.75E-08
Cadmium	1.10E-03	0%	1.61E-06
Chromium	1.40E-03	0%	2.04E-06
Cobalt	8.40E-05	0%	1.23E-07
Manganese	3.80E-04	0%	5.55E-07
Mercury	2.60E-04	0%	3.80E-07
Nickel	2.10E-03	0%	3.07E-06
Selenium	2.40E-05	0%	3.50E-08
Total HAP Emissions			0.004

Notes:

1. Emission factor from AP-42 Table 1.4-3, Emission Factors for Speciated Organic Compounds from Natural Gas Combustion (July 1998).

2. Emission factor from AP-42 Table 1.4-4, Emission Factors for Metals from Natural Gas Combustion (July 1998).

Edgewater Compressor Station Glycol Still Vent Emissions

Equipment Data:

Emission Unit (EU):	EU4
	TEG Dehydrator Still
Emission Unit Name:	Vent
Emissions Data:	Model
Wet Gas Pressure (psig)	1100
Wet Gas Temperature (°F)	100
Gas Throughput (mmscf/day)	27
Dry Gas Water Content (lb/H2O/mmscf)	4
Glycol Type =	TEG
Lean Glycol Water Content (wt% H20)	1.5
Lean Glycol Flow Rate (gpm)	3.5
Glycol Pump Type	Gas Injection
Gas Injection Pump Ratio (acfm gas/gpm glycol)	0.08
Flash Tank Pressure (psig)	55
Flash Tank Temperature (°F)	150
Flash Tank Control	Recycle/Recomp.
Regen Controls:	
Condenser Pressure (psig)	14.7
Condenser Temperature (°F)	100
Combustion Device:	
Destruction Efficiency:	95
Excess Oxygen:	5
Ambient Air Temperature (°F)	100
,	

Belludard	Controlled			
Pollutant	Hourly Emissions	Annual Emissions		
	lb/hr	tpy		
-Propane	0.0514	0.2251		
-Isobutane	0.0105	0.0460		
-n-Butane	0.0477	0.2088		
-Isopentane	0.0100	0.0438		
-n-Pentane	0.0183	0.0802		
-Cyclopentane	0.0020	0.0087		
-n-Hexane	0.0060	0.0261		
-Cyclohexane	0.0064	0.0281		
-Other Hexanes	0.0068	0.0296		
-Heptanes	0.0035	0.0154		
-Methylcyclohexane	0.0018	0.0078		
-2,2,4-Trimethylpentane	0.0001	0.0004		
-Benzene	0.0256	0.1123		
-Toluene	0.0073	0.0320		
-Ethylbenzene	0.0006	0.0025		
-Xylenes	0.0021	0.0093		
-C8+ Heavies	0.0001	0.0001		
Total VOC	0.2000	1.0612		
Total HAPs	0.0417	0.1825		
Total BTEX	0.0356	0.1560		

Notes:

1. The flash tank off-gas will be recycled.

2. There is a condenser controlling the BTEX emissions.

3. The non-condensable gas from the condenser will be routed to the reboiler firebox.

Hiland Partners Holdings LLC Edgewater Compressor Station Mountrail County, North Dakota Fugitive Emissions

Component Type	Service	Service Emission Factor ¹ (Ib/hr/comp) Component Count		Total Loss (lb/hr)	Total Loss (tpy)
Valves	Gas/Vapor	0.00992	73	0.72	3.17
Valves	Light Liquid	0.0055	29	0.16	0.70
Pumps	Gas Vapor	0.00529	0	0.00	0.00
Pumps	Light Liquid	0.02866	1	0.03	0.13
	Gas/Vapor	0.00086	1311	1.13	4.94
Flanges ²	Light Liquid	0.000243	60	0.01	0.06
Connectors	Gas/Vapor	0.00044	0	0.00	0.00
Connectors	Light Liquid	0.000463	0	0.00	0.00
Open Ended Lines	Gas/Vapor	0.00441	0	0.00	0.00
Open Ended Lines	Light Liquid	0.00309	0	0.00	0.00
Other ³	Gas/Vapor	0.0194	0	0.00	0.00
Other	Light Liquid	0.0165	0	0.00	0.00
Commencere	Gas/Vapor	0.0194	4	0.08	0.34
Compressors	Light Liquid	0.0165	0	0.00	0.00
	Component Emission Total Losses				
		Gas/\	apor Emissions	1.93	8.45
		Light L	iquid Emissions	0.20	0.89

Component	Gas	Gas/Vapor	Emissions	Total Em	issions ⁴
component	(wt%) (lb/hr) (tpy)		(lb/hr)	(tpy)	
CO ₂	1.5425	0.030	0.130	0.030	0.130
Nitrogen	3.1735	0.061	0.268	0.061	0.268
H₂S	0.0000	0.00E+00	0.00E+00	0.000	0.000
Methane	34.2319	0.660	2.893	0.660	2.893
Ethane	21.3305	0.412	1.802	0.412	1.802
Propane	18.0624	0.348	1.526	0.348	1.526
i-Butane	2.6945	0.052	0.228	0.052	0.228
n-Butane	9.5175	0.184	0.804	0.184	0.804
i-Pentane	2.2729	0.044	0.192	0.044	0.192
n-Pentane	3.5252	0.068	0.298	0.068	0.298
Benzene	0.0671	0.001	0.006	0.001	0.006
n-Hexane	1.0101	0.019	0.085	0.019	0.085
Hexanes	1.2578	0.024	0.106	0.024	0.106
Toluene	0.0413	0.001	0.003	0.001	0.003
Heptanes	0.6695	0.013	0.057	0.013	0.057
Ethylbenzene	0.0079	0.000	0.001	0.000	0.001
Xylenes	0.0277	0.001	0.002	0.001	0.002
Octanes	0.1236	0.002	0.010	0.002	0.010
Nonanes	0.0096	0.000	0.001	0.000	0.001
C10+	0.4340	0.008	0.037	0.008	0.037
Total	100.000	1.929	8.450	1.929	8.450
Total VOC	39.721	0.766	3.356	0.969	4.244
Total HAPs	1.154	0.022	0.098	0.022	0.098

Notes:

1. Emission factors are from EPA's "Protocol for Equipment Leak Emission Estimates" EPA-453/R-95-017, 11/1995, Table 2-4.

2. Maintenance Plugs & Blind Flanges are treated as screwed connectors. Per TCEQ's "Air Permit Technical Guidance for Chemical Sources: Equipment Leak Fugitives" dated October 2000, screwed fittings should be estimated as flanges.

3. For Oil and Gas Production Operations, "Other" includes compressors, diaphrams, drains, dump arms, hatches, instruments, meters, pressure relief valves, polished rods, relief valves, and vents.

4. The total emissions include the light liquid emissions assuming 100% VOC of light liquid.

5. Water/Oil emissions are assumed to be 100% VOC.

Produced Water Storage Tank Emissions Hiland Partners Holdings LLC Edgewater Compressor Station Mountrail County, North Dakota

Equipment Data:

Emission Unit (EU):	EU5	EU6	
	Produced Water	Produced Water	
Emission Unit Name:	Storage Tank	Storage Tank	

Emissions Data:

Tank Contents =	Produced Water	
Tank Type =	Vertical Fixed Roof	
Tank Capacity =	16,800	gallons
Annual Throughput =	15,000	bbl/year per tank
Annual Throughput =	630,000	gallons/year per tank

Emission Unit	Standing Losses (Ib/hr)	Working Losses (lb/hr)	Total Losses (Ib/hr)	Standing Losses (ton/yr)	Working Losses (ton/yr)	Total Losses (ton/yr)
Produced Water Storage Tank EU5	0.10	0.20	0.30	0.42	0.89	1.31
Produced Water Storage Tank EU6	0.10	0.20	0.30	0.42	0.89	1.31

Notes: 1. Emissions calculated using ProMax model 2. The liquid stored is essentially water.

Engine EU7 Emissions Hiland Partners Holdings LLC Edgewater Compressor Station Mountrail County, North Dakota

Equipment Data:

Emission Unit (EU):	EU7
Emission Unit Name:	Waukesha L5794 GSI
Engine Type:	4SRB

Emissions Data:

Fuel Usage = Horsepower =

71.437 MMscf/yr (Calculated value based on max fuel combustion rate) 1,380 bhp

Hours of Operation = Max. Fuel Combustion Rate (HHV) = Fuel Heating Value (HHV) = Max. Heat Rate (HHV) =

8,760 hr/yr 8,864 Btu/bhp-hr 1,500 MMBtu/MMscf 12.23 MMBtu/hr

Pollutant	Emission Factor	Units	Emission Factor Reference	Hourly Emissions (Ib/hr)	Annual Emissions (ton/yr)
PM ₁₀	0.01941	lb/MMBtu	AP-42 Table 3.2-3 (07/00)	0.24	1.04
NOx	1.0	g/bhp-hr	NSPS Subpart JJJJ	3.04	13.33
СО	1.0	g/bhp-hr	Vendor Data	3.04	13.33
SOx	5.88E-04	lb/MMBtu	AP-42	0.01	0.03
VOC	0.70	g/bhp-hr	NSPS Subpart JJJJ	2.16	9.46
Total HAPs			Vendor Data/AP-42 Table 3.2-3 (07/00)	0.10	0.45
Formaldehyde	0.010	g/bhp-hr	Vendor Data	0.030	0.13
Pollutant	Emission Factor	Units	Emission Factor Reference	Hourly Emissions (lb/hr)	Annual Emissions (ton/yr)
CO ₂ e				1,421	6,225
GHG				1,348	5,906
CO ₂	110	lb/MMBtu	AP-42	1,346	5,894
CH ₄	0.23	lb/MMBtu	AP-42	2.81	12.32
N ₂ O	2.2	lb/MMscf	AP-42	0.02	0.08

Notes: 1. NO_x and VOC emissions based on 40 CFR 60 Subpart JJJJ standards. CO emissions based on data from the catalyst vendor indicating a post-catalyst emission rate of 1.0 g/hp-hr. Formaldehyde emissions are based on manufacturer data. PM/PM₁₀ and SO₂ emissions based on AP-42 Table 3.2-3.

Per AP-42, all particulate is considered to be less than 1.0 micrometer in diameter.
 VOC emissions include formaldehyde.

Sample Calculation: PM ₁₀ Emissions (ton/yr) = PM ₁₀ Emissions (ton/yr) =	(Emission Factor, lb/MMBtu) x (Max Heat Input Rate (HHV), MMBtu/hr) x (Hours of Operation, hr/yr) / (2,000 lb/ton) (0.01941 lb/MMBtu) x (12.23 MMBtu/hr) x (8,760 hr/yr) / (2,000 lb/ton) = 1.04 ton/yr
VOC Emissions (ton/yr) = VOC Emissions (ton/yr) =	(Emission Factor, g/bhp-hr) x (Horsepower, bhp) x (Hours of Operation, hr/yr) / (2,000 lb/ton) / (453.59 grams/1 lb) (0.7 g/bhp-hr) x (1380 bhp) x (8,760 hr/yr) / (2,000 lb/ton) / (453.59 g/lb) = 9.46 ton/yr
CO ₂ e Emissions (ton/yr) =	(CO ₂ emissions x 1) + (CH ₄ emissions x 25) + (N ₂ O emissions x 298)
CO ₂ e Emissions (ton/yr) =	((5893.53 ton/yr x 1) + (12.32 ton/yr x 25) + (0.08 ton/yr x 298)) = 6225.02 ton/yr
GHG Emissions (ton/yr) =	(CO ₂ emissions) + (CH ₄ emissions) + (N ₂ O emissions)
GHG Emissions (ton/yr) =	(5893.53 ton/yr) + (12.32 ton/yr) + (0.08 ton/yr) = 5905.93 ton/yr

Hiland Partners Holdings LLC Edgewater Compressor Station Mountrail County, North Dakota Engine EU7 HAPs Emissions

1.1-Dichloroethane 1.13E-05 50% 3.03E-04 1,2-Dichloroethane 1.30E-05 50% 3.03E-04 1,3-Butadiene 6.63E-04 50% 3.48E-04 1,3-Butadiene 6.63E-04 50% 3.48E-04 1,3-Butadiene 6.63E-04 50% 7.47E-02 1,3-Dichloropropene 1.27E-05 50% 7.47E-02 Acorolein 2.63E-03 50% 7.47E-02 Acorolein 2.63E-03 50% 4.23E-02 Carbon Tetrachloride 1.77E-05 50% 3.46E-04 Chloroform 1.37E-05 50% 3.67E-04 Chloroform 1.37E-05 50% 5.71E-04 Formaldehyde 1.00E-02 0% 0.13 Methanol 3.06E-03 50% 8.20E-02 Methylene Chloride 4.12E-05 50% 3.78E-03 Styrene 1.19E-05			Hours per	Heat Input	Fuel Input
Emission Factor ¹ (b)/MMBtu) Emission Factor ² (g/hp-hr) Control Efficiency ⁴ (%) Emissions Controlled (tpy) 1,1,2-Tetrachloroethane 2.53E-05 50% 6.78E-04 1,1,2-Trichloroethane 1.13E-05 50% 6.78E-04 1,1-Dichloroethane 1.13E-05 50% 3.03E-04 1,2-Dichloroethane 1.31E-05 50% 3.03E-04 1,2-Dichloroptapane 6.63E-04 50% 3.48E-04 1,3-Butatiene 6.63E-04 50% 3.48E-04 1,3-Butatiene 1.58E-03 50% 7.47E-02 Acrolein 2.63E-03 50% 7.47E-02 Acrolein 1.77E-05 50% 3.46E-04 Chlorobenzene 1.39E-05 50% 3.67E-04 Ethylbenzene 2.48E-05 50% 3.67E-04 Ethylbenzene 2.48E-05 50% 5.71E-04 Ethylbenzene 1.09E-03 50% 3.67E-04<	Engines	Horsepower (hp)	Year	(MMBtu/yr)	(MMscf/yr)
Emission Factor ¹ (b)/MMBtu) Emission Factor ² (g/hp-hr) Control Efficiency ⁴ (%) Emissions Controlled (tpy) 1,1,2-Tetrachloroethane 2.53E-05 50% 6.78E-04 1,1,2-Trichloroethane 1.13E-05 50% 6.78E-04 1,1-Dichloroethane 1.13E-05 50% 3.03E-04 1,2-Dichloroethane 1.31E-05 50% 3.03E-04 1,2-Dichloroptapane 6.63E-04 50% 3.48E-04 1,3-Butatiene 6.63E-04 50% 3.48E-04 1,3-Butatiene 1.58E-03 50% 7.47E-02 Acrolein 2.63E-03 50% 7.47E-02 Acrolein 1.77E-05 50% 3.46E-04 Chlorobenzene 1.39E-05 50% 3.67E-04 Ethylbenzene 2.48E-05 50% 3.67E-04 Ethylbenzene 2.48E-05 50% 5.71E-04 Ethylbenzene 1.09E-03 50% 3.67E-04<	Waukesha 5794 GSI	1.380	8.760	107.155	77.931
HAP Factor ¹ (Ib/MMBtu) Factor ² (g/hp-hr) Efficiency ⁴ (%) Controlled (tpy) 1,1,2,-Trichloroethane 2.53E-05 50% 6.78E-04 1,12-Trichloroethane 1.13E-05 50% 3.03E-04 1,2-Dichloroptopane 1.13E-05 50% 3.03E-04 1,2-Dichloroptopane 1.30E-05 50% 3.03E-04 1,2-Dichloroptopane 1.27E-05 50% 3.48E-04 1,3-Dichloroptopane 1.27E-05 50% 3.48E-04 1,3-Dichloroptopane 1.27E-05 50% 7.47E-02 Acetaldehyde 2.79E-03 50% 7.47E-02 Acetaldehyde 1.77E-05 50% 4.23E-02 Chlorobenzene 1.29E-05 50% 3.46E-04 Chlorobenzene 2.48E-05 50% 3.67E-04 Ethylene Dibromide 2.13E-05 50% 6.64E-04 Ethylene Dibromide 2.13E-05 50% 8.20E-02 <td></td> <td></td> <td>-,</td> <td>- /</td> <td></td>			-,	- /	
HAP Factor ¹ (Ib/MMBtu) Factor ² (g/hp-hr) Efficiency ⁴ (%) Controlled (tpy) 1,1,2,-Trichloroethane 2.53E-05 50% 6.78E-04 1,12-Trichloroethane 1.13E-05 50% 3.03E-04 1,2-Dichloroptopane 1.13E-05 50% 3.03E-04 1,2-Dichloroptopane 1.30E-05 50% 3.03E-04 1,2-Dichloroptopane 1.27E-05 50% 3.48E-04 1,3-Dichloroptopane 1.27E-05 50% 3.48E-04 1,3-Dichloroptopane 1.27E-05 50% 7.47E-02 Acetaldehyde 2.79E-03 50% 7.47E-02 Acetaldehyde 1.77E-05 50% 4.23E-02 Chlorobenzene 1.29E-05 50% 3.46E-04 Chlorobenzene 2.48E-05 50% 3.67E-04 Ethylene Dibromide 2.13E-05 50% 6.64E-04 Ethylene Dibromide 2.13E-05 50% 8.20E-02 <td></td> <td>Emission</td> <td>Emission</td> <td>Control</td> <td>Emissions</td>		Emission	Emission	Control	Emissions
HAP (lb/MMBtu) (g/p-hr) (%) (tpy) 1,1,2,-Tetrachloroethane 2.53E-05 50% 6.78E-04 1,1,2-Trichloroethane 1.53E-05 50% 4.10E-04 1,1-Dichloroethane 1.13E-05 50% 3.03E-04 1,2-Dichloroethane 1.13E-05 50% 3.03E-04 1,2-Dichloroptpane 1.30E-05 50% 3.48E-04 1,3-Butadiene 6.63E-04 50% 3.40E-04 1,3-Butadiene 6.63E-03 50% 7.47E-02 1,3-Butadiene 1.58E-03 50% 4.23E-02 Carboin 2.63E-03 50% 4.74E-04 Acrolein 2.63E-03 50% 4.74E-04 Chlorobenzene 1.29E-05 50% 3.66E-04 Chlorobenzene 1.29E-05 50% 5.71E-04 Ethylene Dibromide 2.13E-05 50% 5.71E-04 Formaldehyde 1.00E-02					
1,1,2,2-Tetrachloroethane 2.53E-05 50% 6.78E-04 1,1,2-Trichloroethane 1.53E-05 50% 4.10E-04 1,1-Dichloroethane 1.13E-05 50% 3.03E-04 1,2-Dichloroppane 1.30E-05 50% 3.03E-04 1,3-Dichloroppane 1.30E-05 50% 3.48E-04 1,3-Dichloroppone 1.27E-05 50% 3.48E-04 1,3-Dichloroppone 1.27E-05 50% 7.47E-02 Acctaldehyde 2.79E-03 50% 7.05E-02 Benzene 1.58E-03 50% 4.23E-02 Carlon Tetrachloride 1.77E-05 50% 4.23E-02 Carlon Tetrachloride 1.37E-05 50% 3.46E-04 Chloroform 1.37E-05 50% 5.71E-04 Formaldehyde 1.00E-02 0% 0.13 Methanol 3.06E-03 50% 3.78E-03 Styrene 1.91E-05	НАР				
1,1,2-Trichloroethane 1.53E-05 50% 4.10E-04 1,1-Dichloroethane 1.13E-05 50% 3.03E-04 1,2-Dichloropthane 1.3E-05 50% 3.04E-04 1,2-Dichloropthane 1.30E-05 50% 3.04E-04 1,3-Dichloropropane 1.30E-05 50% 3.44E-04 1,3-Dichloropropene 1.27E-05 50% 3.40E-04 Acetaldehyde 2.79E-03 50% 7.47E-02 Acetaldehyde 2.77E-05 50% 4.74F-04 Chlorobenzene 1.58E-03 50% 4.74E-04 Chlorobenzene 1.27E-05 50% 4.74E-04 Chloroform 1.37E-05 50% 3.67E-04 Chloroform 1.37E-05 50% 6.64E-04 Chloroform 1.37E-05 50% 8.20E-02 Methylene 01/07E-05 50% 8.20E-02 Methylene 3.06E-03 50% 1.0E-03 Naphthalene 9.71E-05 <	1.1.2.2-Tetrachloroethane			1 /	
1,2-Dichloropropane 1.31E-05 50% 3.03E-04 1,2-Dichloropropane 1.30E-05 50% 3.48E-04 1,3-Butadiene 6.63E-04 50% 3.48E-04 1,3-Dichloropropene 1.27E-05 50% 3.40E-04 Acetaldehyde 2.79E-03 50% 7.47E-02 Accrolein 2.63E-03 50% 4.23E-02 Benzene 1.58E-03 50% 4.74E-04 Carbon Tetrachloride 1.77E-05 50% 3.46E-04 Chlorobenzene 1.29E-05 50% 3.67E-04 Ethylene Dibromide 2.13E-05 50% 5.71E-04 Ethylene Dibromide 2.13E-05 50% 5.71E-04 Formaldehyde 1.00E-02 0% 0.13 Methanol 3.06E-03 50% 8.20E-02 Methylene Chloride 4.12E-05 50% 3.78E-03 Styrene 1.91E-05 50% 3.78E-03 Styrene 1.95E-04 <	1,1,2-Trichloroethane				
1,2-Dichloropropane 1.31E-05 50% 3.03E-04 1,2-Dichloropropane 1.30E-05 50% 3.48E-04 1,3-Butadiene 6.63E-04 50% 3.48E-04 1,3-Dichloropropene 1.27E-05 50% 3.40E-04 Acetaldehyde 2.79E-03 50% 7.47E-02 Accrolein 2.63E-03 50% 4.23E-02 Benzene 1.58E-03 50% 4.74E-04 Carbon Tetrachloride 1.77E-05 50% 3.46E-04 Chlorobenzene 1.29E-05 50% 3.67E-04 Ethylene Dibromide 2.13E-05 50% 5.71E-04 Ethylene Dibromide 2.13E-05 50% 5.71E-04 Formaldehyde 1.00E-02 0% 0.13 Methanol 3.06E-03 50% 8.20E-02 Methylene Chloride 4.12E-05 50% 3.78E-03 Styrene 1.91E-05 50% 3.78E-03 Styrene 1.95E-04 <	1,1-Dichloroethane	1.13E-05			
1,3-Bittadiene 6.63E-04 50% 1.78E-02 1,3-Dichloropropene 1.27E-05 50% 3.40E-04 Acctaldehyde 2.79E-03 50% 7.47E-02 Accrolein 2.63E-03 50% 7.05E-02 Benzene 1.58E-03 50% 4.23E-02 Carbon Tetrachloride 1.77E-05 50% 4.74E-04 Chloroform 1.37E-05 50% 3.46E-04 Ethylbenzene 2.48E-05 50% 5.71E-04 Ethylbenzene 2.48E-05 50% 5.71E-04 Ethylbene Dibromide 2.13E-05 50% 5.71E-04 Formaldehyde 1.00E-02 0% 0.13 Methanol 3.06E-03 50% 8.20E-02 Methylene Chloride 4.12E-05 50% 3.19E-04 Tollene 5.58E-04 50% 3.19E-04 Tollene 5.58E-04 50% 5.22E-03 Kylene 1.95E-06 <td>1,2-Dichloroethane</td> <td></td> <td></td> <td></td> <td></td>	1,2-Dichloroethane				
1,3-Bittadiene 6.63E-04 50% 1.78E-02 1,3-Dichloropropene 1.27E-05 50% 3.40E-04 Acctaldehyde 2.79E-03 50% 7.47E-02 Accrolein 2.63E-03 50% 7.05E-02 Benzene 1.58E-03 50% 4.23E-02 Carbon Tetrachloride 1.77E-05 50% 4.74E-04 Chloroform 1.37E-05 50% 3.46E-04 Ethylbenzene 2.48E-05 50% 5.71E-04 Ethylbenzene 2.48E-05 50% 5.71E-04 Ethylbene Dibromide 2.13E-05 50% 5.71E-04 Formaldehyde 1.00E-02 0% 0.13 Methanol 3.06E-03 50% 8.20E-02 Methylene Chloride 4.12E-05 50% 3.19E-04 Tollene 5.58E-04 50% 3.19E-04 Tollene 5.58E-04 50% 5.22E-03 Kylene 1.95E-06 <td>1,2-Dichloropropane</td> <td>1.30E-05</td> <td></td> <td></td> <td></td>	1,2-Dichloropropane	1.30E-05			
1,3-Dichloropropene 1.27E-05 50% 3.40E-04 Acrolein 2.79E-03 50% 7.47E-02 Acrolein 2.63E-03 50% 7.47E-02 Benzene 1.58E-03 50% 4.23E-02 Carbon Tetrachloride 1.77E-05 50% 4.74E-04 Chlorobenzene 1.29E-05 50% 3.46E-04 Chloroform 1.37E-05 50% 3.67E-04 Ethylene Dibromide 2.13E-05 50% 5.71E-04 Formaldehyde 1.00E-02 0% 0.13 Methanol 3.06E-03 50% 8.20E-02 Methanol 3.06E-03 50% 1.10E-03 Naphthalene 9.71E-05 50% 3.19E-04 Toluene 5.58E-04 50% 3.19E-04 Vinyl Chloride 7.18E-06 50% 5.22E-03 Kylene 1.95E-04 50% 5.22E-03 Cadmium 1.10E-03 </td <td>1,3-Butadiene</td> <td>6.63E-04</td> <td></td> <td></td> <td></td>	1,3-Butadiene	6.63E-04			
Acctaldehyde 2.79E-03 50% 7.47E-02 Acrolein 2.63E-03 50% 7.05E-02 Benzene 1.58E-03 50% 4.23E-02 Carbon Tetrachloride 1.77E-05 50% 4.74E-04 Chlorobenzene 1.29E-05 50% 3.46E-04 Chloroform 1.37E-05 50% 6.64E-04 Ethylbenzene 2.48E-05 50% 6.64E-04 Ethylene Dibromide 2.13E-05 50% 5.71E-04 Formaldehyde 1.00E-02 0% 0.13 Methanol 3.06E-03 50% 8.20E-02 Methylene Chloride 4.12E-05 50% 1.10E-03 Naphthalene 9.71E-04 50% 3.78E-03 Styrene 1.19E-05 50% 3.78E-03 Styrene 1.92E-04 50% 1.49E-02 Vinyl Chloride 7.8E-06	1,3-Dichloropropene	1.27E-05			
Acrolein 2.63E-03 50% 7.05E-02 Benzene 1.58E-03 50% 4.23E-02 Carbon Tetrachloride 1.77E-05 50% 4.74E-04 Chloroform 1.37E-05 50% 3.46E-04 Chloroform 1.37E-05 50% 3.67E-04 Ethylbenzene 2.48E-05 50% 5.71E-04 Formaldehyde 1.00E-02 0% 0.13 Methanol 3.06E-03 50% 8.20E-02 Methylene Chloride 4.12E-05 50% 8.20E-02 Methylene Chloride 4.12E-05 50% 8.20E-02 Methylene Chloride 4.12E-05 50% 3.78E-03 Styrene 1.9E-05 50% 3.19E-04 Toluene 5.58E-04 50% 1.49E-02 Vinyl Chloride 7.18E-06 50% 5.22E-03 Emission Factor ³ <td>Acetaldehyde</td> <td></td> <td></td> <td></td> <td></td>	Acetaldehyde				
Benzene 1.58E-03 50% 4.23E-02 Carbon Tetrachloride 1.77E-05 50% 4.74E-04 Chlorobenzene 1.29E-05 50% 3.46E-04 Chloroform 1.37E-05 50% 3.66E-04 Ethylbenzene 2.48E-05 50% 6.64E-04 Ethylene Dibromide 2.13E-05 50% 5.71E-04 Formaldehyde 1.00E-02 0% 0.13 Methanol 3.06E-03 50% 8.20E-02 Methylene Chloride 4.12E-05 50% 1.10E-03 Naphthalene 9.71E-05 50% 3.78E-03 PAH 1.41E-04 50% 3.19E-04 Toluene 5.58E-04 50% 1.92E-04 Xylene 1.95E-04 50% 5.22E-03 Beryllium 1.20E-05 0% 7.95E-06 Beryllium 1.20E-03	Acrolein	2.63E-03			7.05E-02
Carbon Tetrachloride 1.77E-05 50% 4.74E-04 Chlorobenzene 1.29E-05 50% 3.46E-04 Chloroform 1.37E-05 50% 3.67E-04 Ethylbenzene 2.48E-05 50% 6.64E-04 Ethylene Dibromide 2.13E-05 50% 5.71E-04 Formaldehyde 1.00E-02 0% 0.13 Methanol 3.06E-03 50% 8.20E-02 Methylene Chloride 4.12E-05 50% 1.10E-03 Naphthalene 9.71E-05 50% 3.78E-03 Styrene 1.19E-05 50% 3.19E-04 Toluene 5.58E-04 50% 1.49E-02 Vinyl Chloride 7.18E-06 50% 1.22E-04 Xylene 1.95E-04 50% 5.22E-03 HAP (Ib/MMscf) (g/hp-hr) (%) (hg-hp-hr) Kylene 1.20E-05	Benzene				
Chlorobenzene 1.29E-05 50% 3.46E-04 Chloroform 1.37E-05 50% 3.67E-04 Ethylbenzene 2.48E-05 50% 6.64E-04 Ethylbenzene 2.48E-05 50% 6.64E-04 Ethylbenzene 2.13E-05 50% 5.71E-04 Formaldehyde 1.00E-02 0% 0.13 Methanol 3.06E-03 50% 8.20E-02 Methanol 3.06E-03 50% 1.10E-03 Naphthalene 9.71E-05 50% 2.60E-03 PAH 1.41E-04 50% 3.19E-04 Toluene 5.58E-04 50% 1.92E-04 Vinyl Chloride 7.18E-06 50% 5.22E-03 Kylene 1.0E-03 0% 7.95E-06 Beryllium 1.20E-05 0% 4.68E-07 Cadmium 1.10E-03	Carbon Tetrachloride	1.77E-05			4.74E-04
Chloroform 1.37E-05 50% 3.67E-04 Ethylbenzene 2.48E-05 50% 6.64E-04 Ethylene Dibromide 2.13E-05 50% 5.71E-04 Formaldehyde 1.00E-02 0% 0.13 Methanol 3.06E-03 50% 8.20E-02 Methylene Chloride 4.12E-05 50% 8.20E-02 Methylene Chloride 4.12E-05 50% 8.20E-02 Methylene Chloride 4.12E-05 50% 1.10E-03 Naphthalene 9.71E-04 50% 2.60E-03 PAH 1.41E-04 50% 3.78E-03 Styrene 1.19E-05 50% 1.49E-02 Vingl Chloride 7.18E-06 50% 5.22E-03 Kylene 1.95E-04 50% 5.22E-03 HAP (lb/MMscf) (g/bp-hr) (%) (tpy) Arsenic 2.04E-04	Chlorobenzene				
Ethylbenzene 2.48E-05 50% 6.64E-04 Ethylene Dibromide 2.13E-05 50% 5.71E-04 Formaldehyde 1.00E-02 0% 0.13 Methanol 3.06E-03 50% 8.20E-02 Methylene Chloride 4.12E-05 50% 8.20E-02 Maphthalene 9.71E-05 50% 2.60E-03 PAH 1.41E-04 50% 3.78E-03 Styrene 1.19E-05 50% 3.19E-04 Toluene 5.58E-04 50% 1.49E-02 Vinyl Chloride 7.18E-06 50% 1.92E-04 Xylene 1.95E-04 50% 5.22E-03 HAP (Ib/MMscf) Emission (g/bhp-hr) Emissions (%) Emissions Factor ³ 0% 7.95E-06 Beryllium 1.20E-05 0% 4.68E-07 Chromium 1.40E-03 <	Chloroform	1.37E-05			
Ethylene Dibromide 2.13E-05 50% 5.71E-04 Formaldehyde 1.00E-02 0% 0.13 Methanol 3.06E-03 50% 8.20E-02 Methylene Chloride 4.12E-05 50% 8.20E-02 Naphthalene 9.71E-05 50% 1.10E-03 Naphthalene 9.71E-05 50% 2.60E-03 PAH 1.41E-04 50% 3.78E-03 Styrene 1.19E-05 50% 3.19E-04 Vinyl Chloride 7.18E-06 50% 1.49E-02 Vinyl Chloride 7.18E-06 50% 5.22E-03 Kylene 1.95E-04 50% 5.22E-03 HAP (Ib/MMscf) (g/bhp-hr) (%) (tpy) Arsenic 2.04E-04 0% 7.95E-06 Beryllium 1.20E-05 0% 4.68E-07 Cadmium 1.10E-03	Ethvlbenzene				
Formaldehyde 1.00E-02 0% 0.13 Methanol 3.06E-03 50% 8.20E-02 Methylene Chloride 4.12E-05 50% 1.10E-03 Naphthalene 9.71E-05 50% 2.60E-03 PAH 1.41E-04 50% 3.78E-03 Styrene 1.19E-05 50% 3.19E-04 Toluene 5.58E-04 50% 1.49E-02 Vinyl Chloride 7.18E-06 50% 1.22E-04 Xylene 1.95E-04 50% 5.22E-03 Emission Emission Emission Emissions Emissions HAP (lb/MMscf) (g/bhp-hr) (%) (tpy) Arsenic 2.04E-04 0% 7.95E-06 Beryllium 1.20E-05 0% 4.68E-07 Cadmium 1.40E-03 0% 5.46E-05 Chromium 1.40E-05 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
Methanol 3.06E-03 50% 8.20E-02 Methylene Chloride 4.12E-05 50% 1.10E-03 Naphthalene 9.71E-05 50% 2.60E-03 PAH 1.41E-04 50% 3.78E-03 Styrene 1.19E-05 50% 3.19E-04 Toluene 5.58E-04 50% 1.49E-02 Vinyl Chloride 7.18E-06 50% 1.92E-04 Xylene 1.95E-04 50% 5.22E-03 HAP (lb/MMscf) Emission Factor ³ Control Emissions Kasenic 2.04E-04 0% 7.95E-06 Beryllium 1.20E-05 0% 4.68E-07 Cadmium 1.40E-03 0% 4.29E-05 Chromium 1.40E-03 0% 3.27E-06 Maganese 3.80E-04 0% 3.27E-06 Marganese 3.80E-04			1.00E-02		0.13
Methylene Chloride 4.12E-05 50% 1.10E-03 Naphthalene 9.71E-05 50% 2.60E-03 PAH 1.41E-04 50% 3.78E-03 Styrene 1.19E-05 50% 3.19E-04 Toluene 5.58E-04 50% 1.49E-02 Vinyl Chloride 7.18E-06 50% 1.92E-04 Xylene 1.95E-04 50% 5.22E-03 HAP (lb/MMscf) Emission (g/bhp-hr) Control (%) Emissions Arsenic 2.04E-04 0% 7.95E-06 Beryllium 1.20E-05 0% 7.95E-06 Chronium 1.40E-03 0% 4.68E-07 Cadmium 1.40E-03 0% 4.68E-05 Cobalt 8.40E-05 0% 3.27E-06 Manganese 3.80E-04 0% 1.48E-05 Mercury 2.60E-04	Methanol	3.06E-03			
Naphthalene 9.71E-05 50% 2.60E-03 PAH 1.41E-04 50% 3.78E-03 Styrene 1.19E-05 50% 3.19E-04 Toluene 5.58E-04 50% 1.49E-02 Vinyl Chloride 7.18E-06 50% 1.92E-04 Xylene 1.95E-04 50% 5.22E-03 Emission Emission Control Emissions Controlled Controlled HAP 1.02E-05 0% 7.95E-06 Controlled (tpy) Arsenic 2.04E-04 0% 7.95E-06 Controlled (tpy) Arsenic 2.04E-04 0% 4.68E-07 Cadmium 1.10E-03 0% 4.68E-07 Cadmium 1.40E-03 0% 5.46E-05 Cobalt 8.40E-05 0% 3.27E-06 Manganese 3.80E-04 0% 1.48E-05 0%	Methylene Chloride			50%	1.10E-03
PAH 1.41E-04 50% 3.78E-03 Styrene 1.19E-05 50% 3.19E-04 Toluene 5.58E-04 50% 1.49E-02 Vinyl Chloride 7.18E-06 50% 1.92E-04 Xylene 1.95E-04 50% 5.22E-03 Emission Emission Control Emissions Controlled Controlled HAP (lb/MMscf) (g/bhp-hr) (%) (tpy) Controlled Controlled HAP 1.20E-05 0% 7.95E-06 Efficiency Controlled Controlled Beryllium 1.20E-05 0% 4.68E-07 Cadmium 1.10E-03 0% 4.29E-05 Chromium 1.40E-03 0% 5.46E-05 Cobalt 8.40E-05 0% 3.27E-06 Manganese 3.80E-04 0% 1.48E-05 Mercury 0% 1.01E-05 Nickel 2.1				50%	
Toluene 5.58E-04 50% 1.49E-02 Vinyl Chloride 7.18E-06 50% 1.92E-04 Xylene 1.95E-04 50% 5.22E-03 Emission Emission Factor ² Control Emissions HAP (lb/MMscf) (g/bhp-hr) (%) (tpy) Arsenic 2.04E-04 0% 7.95E-06 Beryllium 1.20E-05 0% 4.68E-07 Cadmium 1.10E-03 0% 4.29E-05 Chromium 1.40E-03 0% 5.46E-05 Cobalt 8.40E-05 0% 1.48E-05 Manganese 3.80E-04 0% 1.48E-05 Mercury 2.60E-04 0% 1.01E-05 Nickel 2.10E-03 0% 8.18E-05 Selenium 2.40E-05 0% 8.18E-05	PAH				
Vinyl Chloride 7.18E-06 50% 1.92E-04 Xylene 1.95E-04 50% 5.22E-03 Emission HAP Emission (lb/MMscf) Emission Factor ³ Control Factor ² Emissions Efficiency Controlled Arsenic 2.04E-04 0% 7.95E-06 Beryllium 1.20E-05 0% 4.68E-07 Cadmium 1.10E-03 0% 5.46E-05 Chromium 1.40E-03 0% 5.46E-05 Cobalt 8.40E-05 0% 1.48E-05 Manganese 3.80E-04 0% 1.01E-05 Nickel 2.10E-03 0% 8.18E-05 Selenium 2.40E-05 0% 8.18E-05	Styrene	1.19E-05		50%	3.19E-04
Xylene 1.95E-04 50% 5.22E-03 Emission Factor ³ (lb/MMscf) Emission Factor ² (g/bhp-hr) Control Efficiency (%) Emissions Controlled Arsenic 2.04E-04 0% 7.95E-06 Beryllium 1.20E-05 0% 4.68E-07 Cadmium 1.10E-03 0% 5.46E-05 Chromium 1.40E-03 0% 5.46E-05 Cobalt 8.40E-05 0% 1.48E-05 Manganese 3.80E-04 0% 1.01E-05 Nickel 2.10E-03 0% 1.01E-05 Selenium 2.40E-05 0% 1.01E-05	Toluene	5.58E-04		50%	1.49E-02
Emission Factor ³ (lb/MMscf) Emission Factor ² (g/bhp-hr) Control Efficiency (%) Emissions Controlled (hpy) Arsenic 2.04E-04 0% 7.95E-06 Beryllium 1.20E-05 0% 4.68E-07 Cadmium 1.10E-03 0% 4.29E-05 Chromium 1.40E-03 0% 5.46E-05 Cobalt 8.40E-05 0% 1.48E-05 Manganese 3.80E-04 0% 1.48E-05 Mercury 2.60E-04 0% 1.01E-05 Nickel 2.10E-03 0% 8.18E-05 Selenium 2.40E-05 0% 8.18E-05	Vinyl Chloride	7.18E-06		50%	1.92E-04
Factor ³ (lb/MMscf) Factor ² (g/bhp-hr) Efficiency (%) Controlled (tpy) Arsenic 2.04E-04 0% 7.95E-06 Beryllium 1.20E-05 0% 4.68E-07 Cadmium 1.10E-03 0% 4.29E-05 Chromium 1.40E-03 0% 5.46E-05 Cobalt 8.40E-05 0% 3.27E-06 Manganese 3.80E-04 0% 1.48E-05 Mercury 2.60E-04 0% 1.01E-05 Nickel 2.10E-03 0% 8.18E-05 Selenium 2.40E-05 0% 9.35E-07	Xylene	1.95E-04		50%	5.22E-03
HAP(lb/MMscf)(g/bhp-hr)(%)(tpy)Arsenic2.04E-040%7.95E-06Beryllium1.20E-050%4.68E-07Cadmium1.10E-030%4.29E-05Chromium1.40E-030%5.46E-05Cobalt8.40E-050%3.27E-06Manganese3.80E-040%1.48E-05Mercury2.60E-040%1.01E-05Nickel2.10E-030%8.18E-05Selenium2.40E-050%9.35E-07		Emission	Emission	Control	Emissions
HAP(lb/MMscf)(g/bhp-hr)(%)(tpy)Arsenic2.04E-040%7.95E-06Beryllium1.20E-050%4.68E-07Cadmium1.10E-030%4.29E-05Chromium1.40E-030%5.46E-05Cobalt8.40E-050%3.27E-06Manganese3.80E-040%1.48E-05Nickel2.10E-030%8.18E-05Selenium2.40E-050%8.18E-05		Factor ³	Factor ²	Efficiency	Controlled
Beryllium 1.20E-05 0% 4.68E-07 Cadmium 1.10E-03 0% 4.29E-05 Chromium 1.40E-03 0% 5.46E-05 Cobalt 8.40E-05 0% 3.27E-06 Manganese 3.80E-04 0% 1.48E-05 Mercury 2.60E-04 0% 1.01E-05 Nickel 2.10E-03 0% 8.18E-05 Selenium 2.40E-05 0% 9.35E-07	НАР	(lb/MMscf)	(g/bhp-hr)	-	(tpy)
Cadmium 1.10E-03 0% 4.29E-05 Chromium 1.40E-03 0% 5.46E-05 Cobalt 8.40E-05 0% 3.27E-06 Manganese 3.80E-04 0% 1.48E-05 Mercury 2.60E-04 0% 1.01E-05 Nickel 2.10E-03 0% 8.18E-05 Selenium 2.40E-05 0% 9.35E-07	Arsenic	2.04E-04		0%	7.95E-06
Cadmium 1.10E-03 0% 4.29E-05 Chromium 1.40E-03 0% 5.46E-05 Cobalt 8.40E-05 0% 3.27E-06 Manganese 3.80E-04 0% 1.48E-05 Mercury 2.60E-04 0% 1.01E-05 Nickel 2.10E-03 0% 8.18E-05 Selenium 2.40E-05 0% 9.35E-07	Beryllium				
Chromium 1.40E-03 0% 5.46E-05 Cobalt 8.40E-05 0% 3.27E-06 Manganese 3.80E-04 0% 1.48E-05 Mercury 2.60E-04 0% 1.01E-05 Nickel 2.10E-03 0% 8.18E-05 Selenium 2.40E-05 0% 9.35E-07	Cadmium	1.10E-03		0%	
Cobalt 8.40E-05 0% 3.27E-06 Manganese 3.80E-04 0% 1.48E-05 Mercury 2.60E-04 0% 1.01E-05 Nickel 2.10E-03 0% 8.18E-05 Selenium 2.40E-05 0% 9.35E-07	Chromium				
Manganese 3.80E-04 0% 1.48E-05 Mercury 2.60E-04 0% 1.01E-05 Nickel 2.10E-03 0% 8.18E-05 Selenium 2.40E-05 0% 9.35E-07	Cobalt	8.40E-05		0%	
Mercury 2.60E-04 0% 1.01E-05 Nickel 2.10E-03 0% 8.18E-05 Selenium 2.40E-05 0% 9.35E-07	Manganese			0%	1.48E-05
Nickel 2.10E-03 0% 8.18E-05 Selenium 2.40E-05 0% 9.35E-07	Mercury				
	Nickel	2.10E-03		0%	8.18E-05
	Selenium	2.40E-05		0%	9.35E-07
	Total HAP Emissions	*			0.45

1. Emission factor from AP-42 Table 3.2-3, Uncontrolled Emission Factors for 4-Stroke Rich-Burn Engines (July 2000).

2. Catalyst vendor.

3. Emission factor from AP-42 Table 1.4-4, Emission Factors for Metals from Natural Gas Combustion (July 1998).

4. Control efficiency from the dual catalytic converter unit was conservatively assumed to be 50% per verbal guidance by NDDH on 4/29/10.

Edgewater Compressor Station Engine Emissions

Equipment Data:

Equipment Data.	
Emission Unit (EU):	EU8
	Caterpillar G3516J
Emission Unit Name:	1380 bhp
Engine Type:	4SLB

	Fuel Usage =	65.304 M
	Horsepower =	1,380 bl
	Speed =	1,400 rp
Hours	of Operation =	8,760 h
Max. Fuel Combustio	n Rate (HHV) =	8,103 B
Fuel Heating	Value (HHV) =	1,500 M
Max. Hea	at Rate (HHV) =	11.18 M

65.304 MMscf/yr 1,380 bhp 1,400 rpm 8,760 hr/yr 8,103 Btu/bhp-hr 1,500 MMBtu/MMscf 11.18 MMBtu/hr (Calculated value based on max fuel combustion rate.)

(Based on Manufacturer Specs) estimated

	Emission		Emission Factor	Hourly Emissions	Annual Emissions
Pollutant	Factor	Units	Reference	(lb/hr)	(ton/yr)
PM-10 (Front and Back Half)	0.01941	lb/MMBtu	AP-42 Table 3.2-3 (07/00)	0.22	0.95
NOx	1.00	g/BHP-hr	NSPS JJJJ Lean Burn Limit	3.04	13.33
со	2.00	g/BHP-hr	NSPS JJJJ Lean Burn Limit	6.08	26.65
SOx	5.88E-04	lb/MMBtu	AP-42 Table 3.2-3 (07/00)	0.01	0.03
VOC	0.70	g/BHP-hr	NSPS JJJJ Lean Burn Limit	2.74	11.99
Total HAPs			Engine Vendor/AP-42 Table 3.2-3	0.61	2.67
Formaldehyde	0.20	g/BHP-hr	Manufacturer Estimate	0.61	2.67
	Emission		Emission Factor	Hourly Emissions	Annual Emissions
Pollutant	Factor	Units	Reference	(lb/hr)	(ton/yr)
CO ₂ e		-		1,299	5,691
GHG			-	1,233	5,399
CO ₂	110	lb/MMBtu	AP-42 Table 3.2-3 (07/00)	1,230	5,388
CH ₄	0.23	lb/MMBtu	AP-42 Table 3.2-3 (07/00)	2.57	11.26
N ₂ O	2.2	lb/MMscf	AP-42 Table 1.4-2 (07/00)	0.02	0.07

Notes: 1. NO, and VOC emissions based on manufacturer data. Formaldehyde emissions are based on manufacturer data with assumption of 50 % reduction, similar to VOC percent reduction. PM/PM₁₀ and SO₂ emissions based on AP-42 Table 3.2-3.

Per AP-42, all particulate is considered to be less than 1.0 micrometer in diameter.
 VOC emissions include formaldehyde.

Sample Calculation:

PM-10 Emissions (ton/yr) =	(Emission Factor, lb/MMBtu) x (Max Heat Input Rate (HHV), MMBtu/hr) x (Hours of Operation, hr/yr) / (2,000 lb/ton)
PM-10 Emissions (ton/yr) =	(0.01941 lb/MMBtu) x (11.18 MMBtu/hr) x (8,760 hr/yr) / (2,000 lb/ton) = 0.95 ton/yr
VOC Emissions (ton/yr) =	(Emission Factor, g/bhp-hr) x (Horsepower, bhp) x (Hours of Operation, hr/yr) / (2,000 lb/ton) / (453.59 grams/1 lb)
VOC Emissions (ton/yr) =	(0.7 g/bhp-hr) x (1380 bhp) x (8,760 hr/yr) / (2,000 lb/ton) / (453.59 g/lb) = 11.99 ton/yr
CO ₂ e Emissions (ton/yr) =	(CO ₂ emissions x 1) + (CH ₄ emissions x 25) + (N ₂ O emissions x 298)
CO ₂ e Emissions (ton/yr) =	((5387.56 ton/yr x 1) + (11.26 ton/yr x 25) + (0.07 ton/yr x 298)) = 5690.58 ton/yr
GHG Emissions (ton/yr) =	$(CO_2 \text{ emissions}) + (CH_4 \text{ emissions}) + (N_2O \text{ emissions})$
GHG Emissions (ton/yr) =	(5387.56 ton/yr) + (11.26 ton/yr) + (0.07 ton/yr) = 5398.89 ton/yr

HAP Emissions from 4 Stroke Lean-Burn Compressor Engines

HAP Emissions from 4 Stroke Lean-Burn Comp			Heat Input	Fuel Input	1
Engines	Horsepower (hp)	Hours per Year	(MMBtu/yr)	(MMscf/yr)	
Engine EU8	1.380	8.760	11.18	65.30	
	/	-,	-		1
	Emission	Emission	Control	Emissions	
	Factor	Factor	Efficiency	(tpy)	
HAP	(lb/MMBtu)	(g/bhp-hr)	(%)	(Controlled)	Notes
1,1,2,2-Tetrachloroethane	4.00E-05		0%	2.24E-07	1
1,1,2-Trichloroethane	3.18E-05		0%	1.78E-07	1
1,3-Butadiene	2.67E-04		0%	1.49E-06	1
1,3-Dichloropropene	2.64E-05		0%	1.48E-07	1
2-Methylnaphthalene	3.32E-05		0%	1.86E-07	1
2,2,4-Trimethylpentane	2.50E-04		0%	1.40E-06	1
Acenaphthene	1.25E-06		0%	6.99E-09	1
Acenaphthylene	5.53E-06		0%	3.09E-08	1
Acetaldehyde	8.36E-03		0%	4.67E-05	1
Acrolein	5.14E-03		0%	2.87E-05	1
Benzene	4.40E-04		0%	2.46E-06	1
Benzo(e)fluoranthene	1.66E-07		0%	9.28E-10	1
Benzo(e)pyrene	4.15E-07		0%	2.32E-09	1
Benzo(e)pervlene	4.14E-07		0%	2.31E-09	1
Biphenyl	2.12E-04		0%	1.19E-06	1
Carbon Tetrachloride	3.67E-05		0%	2.05E-07	1
Chlorobenzene	3.04E-05		0%	1.70E-07	1
Chloroform	2.85E-05		0%	1.59E-07	1
Chrysene	6.93E-07		0%	3.87E-09	1
Ethylbenzene	3.97E-05		0%	2.22E-07	1
Ethylene Dibromide	4.43E-05		0%	2.48E-07	1
Fluoranthene	1.11E-06		0%	6.21E-07	1
Fluorene	5.67E-06		0%	3.17E-08	1
Formaldehyde	5.07E-00	0.200	NA	2.67	1
Methanol	2.50E-03	0.200	0%	2.07 1.40E-05	1
Methylene Chloride	2.00E-05		0%	1.40E-03	1
n-Hexane	1.11E-03		0%	6.21E-06	1
	7.44E-05		0%	6.21E-06 4.16E-07	1
Naphthalene			-		
PAH	2.69E-05		0%	1.50E-07	1
Phenanthrene	1.04E-05		0%	5.81E-08	1
Phenol	2.40E-05		0%	1.34E-07	1
Pyrene	1.36E-06		0%	4.44E-08	1
Styrene	2.36E-05		0%	7.71E-07	1
Tetrachloroethane	2.48E-06		0%	8.10E-08	1
Toluene	4.08E-04		0%	1.33E-05	1
Vinyl Chloride	1.49E-05		0%	4.87E-07	1
Xylene (mixed isomers)	1.84E-04		0%	6.01E-06	1
Total				2.67	

1) Emission factor based on EPA's AP-42 Section 3.2, Table 3.2-2 (07/00) [4-Stroke Lean-Burn Engines].

Edgewater Compressor Station Compressor Blowdown Emissions

Emission Units	Designation	Compressor Volume	Compressor Pressure	Number of Events	Gas VOC Weight %	Gas MW	Average Gas Temperature	Estimated MCF per event	Estimated SCF per event	Estimated SCF per year	Pot	ential VOC Emissio	ons
		(ft ³)	(psig)	(#/ per Year)	(%)	(lb/lb-mol)	(°F)				lb/scf	lb/year	(tpy)
4	Compressor	197	100	70	39.72	26.79	60	1.6	1600	448000	0.028	12563	6.28
1	Compressor	197	1,250	24	39.72	26.79	60	35.8	35800	859200	0.028	24093	12.05
												Total Losses	18.33

Emission Units	Designation	Compressor Volume	Compressor Pressure	Number of Events	Gas HAPs Weight %	Gas MW	Average Gas Temperature	Estimated MCF per event	Estimated SCF per event	Estimated SCF per year	Pot	ential HAPs Emissic	ons
		(ft ³)	(psig)	(#/ per Year)	(%)	(lb/lb-mol)	(°F)				lb/scf	lb/year	(tpy)
4	Compressor	197	100	70	1.18	26.79	60	1.6	1600	448000	0.00083	372	0.19
1	Compressor	197	1,250	24	1.18	26.79	60	35.8	35800	859200	0.00083	713	0.36
												Total Losses	0.54

26.79

1.1756%

Notes:

1. To be conservative, a 20% buffer is added to the total number of controlled blowdown events at 100 psig

2. Assumes the majority of blowdowns are using the recycle process of reducing the pressure to 100 psig

3. Assumes 24 blowdowns/year released to atmosphere at 1250 psig.

4. To be conservative, number of blowdowns at 100 psig assumed to be same as noted in 2021 PTE update

<u>Calculation:</u> VOC weight percentage is from Edgew	ater Inlet Gas Analysis 10/28/202	2.
Molecular Weight of Gas =	26.79 approx	Molecular Weight of Gas =
VOC Weight Percent =	39.72% approx	HAPs Weight Percent =
Universal Gas Content = 379.5 ft ³ /lb-n	nol @ 60 F and 14.696 psia	
Specific Gravity =	0.92517	
Calculation:		

Pound " X"/ scf = Wt Fraction (wt%) * MW of Gas * 1 lb mol/379.5 sci

lbs NM/E VOC/scf = 0.028 lb HAPs/scf = 0.0083

Estimated MCF per event from using Blowdown Volumes Compressibility Spreadsheel Emissions (tpy) = (Estimated scf/event * number of events per year * lb/scf)/2000 (lb/ton

Edgewater Compressor Station Tank Truck Loading Emissions

Parameter		
Product	Produce	ed Water
Saturation Factor, S ¹	0	.6
Vapor MW ²	62.00	lb/lb-mol
Maximum Vapor Pressure	10.06	psia
Average Vapor Pressure	7.93	psia
Max Temperature	78.28	°F
Average Temperature	64.9	°F
Short-Term Loading Loss Factor ^{4, 5}	8.67	lb/1000 gal
Annual Loading Loss Factor ^{4, 5}	7.01	lb/1000 gal
Hourly Throughput	7,560	gal/hr
Annual Throughput	1,260,000	gal/yr
Water Content Reduction (%) ⁷	90)%

Fugitive Losses		
Hourly Losses	65.52	lb/hr
Annual Losses	4.41	tpy
Hourly Losses (minus water)	6.55	lb/hr
Annual Losses (minus water)	0.44	tpy

Notes:

1. Saturation factor is from EPA's AP-42, 5th Edition, Section 5.2, Table 5.2-1; for submerged loading; dedicated normal service.

2. Molecular weight of vapors was taken from Tanks 4.09d.

3. Vapor pressure was determined using AP-42, Figure 7.1-13b.

4. Losses are based on the loading losses equation from EPA's AP-42, Section 2, 5th Edition, June, 2008, Equation 1:

where:

L = Loading Losses, lb/1000 gallons

S = Saturation Factor, see Table 5.2-1 in AP-42, Section 5.2.

P = True vapor pressure, psia

M = Molecular weight of vapors, lb/lb-mol

T = Temperature of bulk liquid loaded, R (F + 460)

5. Short-term loading loss factor is calculated based on the worst-case (highest) temperature and vapor pressure.

6. Annual loading loss factor is calculated based on the average temperature and vapor pressure.

7. The volume of liquids loaded are estimated to be 90% water; therefore, overall fugitive losses from loading are assumed to be 10% of the total emissions.

Edgewater Compressor Station NGL Truck Loading Emissions NGL Truck Loading Calculation Method Utilized with ND Audits

Emissions Data:

Emis	Emission Unit (EU):		NA	
Expected Max NGL	Expected Max NGL Daily Volume =		gal/day	
Expected Max NGL A	nnual Volume =	14,600,000	gal/yr	
Average Tank 1	ruck Capacity =	9,000	gal	
	5 - 1 5 - 5 - 5			
Loading Arm Diameter	Soft Hose	Loading Arm	-	Depressurized
	Length	Pipe Length	Overpressure	Volume
(in)	(ft)	Pipe Length (ft)	Overpressure (psig)	Volume (ft ³ /truck)

Product Transferred	Vapor Molecular Weight	Vapor Pressure at 60°F	Unloading Emissions	VOC Content	Loading VOC Emissions	Loading VOC Emissions
	(lb/lb-mole)	(psia)	(lb/truck)	wt. %	(lb/truck)	(tpy)
Y-Grade	56	164	1.01	100%	1.01	0.82

Notes:

1. The calculation of depressurized volume assumes that any residual vapors in the loading arm at 1 psig and all vapors from the soft loading hose depressurize to atmospheric pressure.

Number of Trucks (#/yr) = Expected Max NGL Volume (gal/yr) /Avg Tank Truck capacity (gal) Number of Trucks (#/yr) = 1,623 per year

Emissions (lb/truck) = Depr. Vol (ft³/truck)/St. Pressure (psia) * TVP (psia) / Gas Constant (scf/lb-mole) * MW (lb/lbmole) Emissions (lb/truck) = 1.01 lb/truck Emissions (tpy) = Number of Trucks x Emissions (lb/truck) / 2000 lb/ton Emissions (tpy) = 0.82 tpy

Edgewater Compressor Station Gas Analysis

Sample name	Gas Taken	Gas Taken Before Dehydrator		
Sample location	Edgewate			
Sample temperature and pressure	105 °F, 12	00 psig		
Date of sample	10/28/202	2		
Component	MW (g/mol)	Mole %	Gas Weight (Ib/Ibmol)	Weight %
CO2	44.010	0.9390	0.413	1.5425
Nitrogen	28.013	3.0350	0.850	3.1735
methane (C1)	16.042	57.1670	9.171	34.2319
ethane (C2)	30.069	19.0050	5.715	21.3305
propane (C3)	44.096	10.9740	4.839	18.0624
iso-butane (C4)	58.122	1.2420	0.722	2.6945
nor-butane (C4)	58.122	4.3870	2.550	9.5175
iso-pentane (C5)	72.149	0.8440	0.609	2.2729
n-pentane	72.149	1.3090	0.944	3.5252
Cyclopentane	72.149	0.0280	0.020	0.0754
2,2,4 Trimethyl pentane	72.149	0.0080	0.006	0.0215
n-Hexane	86.180	0.3140	0.271	1.0101
Cyclohexane	86.180	0.0720	0.062	0.2316
Other Hexanes	86.180	0.3910	0.337	1.2578
Methylcyclohexane	86.180	0.0280	0.024	0.0901
heptane (C7+)	100.200	0.1790	0.179	0.6695
octane (C8+)	114.230	0.0290	0.033	0.1236
nonane (C9+)	128.260	0.0020	0.003	0.0096
decane (C10+)	142.290	0.0030	0.004	0.0159
benzene	78.110	0.0230	0.018	0.0671
toluene	92.140	0.0120	0.011	0.0413
Ethylbenzene	106.170	0.0020	0.002	0.0079
xylenes (M, P, O)	106.170	0.0070	0.007	0.0277
H2S	34.082	0.0000	0.000	0.0000
	Total	100.0000	26.7908	100.0000
Vap	or MW (lb/lb-mol)	26.791		
	VOC Weight (%)	39.7216		
	HAPs Weight (%)	1.1756		

Specific Gravity =

0.92517

Page: 1 GRI-GLYCalc VERSION 4.0 - SUMMARY OF INPUT VALUES Case Name: Edgewater CS Revision December 2022 File Name: Z: Edgewater Permits Edgewater 2022 Permit Revision to Add One Unit\Dehy\Edgewater Rev 2022.ddf Date: December 07, 2022 DESCRIPTION: _____ Description: Edgewater CS Revision December 2022 Annual Hours of Operation: 8760.0 hours/yr WET GAS: _____ Temperature: 100.00 ucg 1100.00 psig 100.00 deg. F Wet Gas Water Content: Saturated Component Conc. (vol %) ----- -----
 Carbon Dioxide
 0.9390

 Nitrogen
 3.0350

 Methane
 57.1670

 Ethane
 19.0050

 Propane
 10.9740
 Isobutane 1.2420 n-Butane 4.3870 Isopentane 0.8440 n-Pentane 1.3090 Cyclopentane 0.0280 n-Hexane 0.3140 Cyclohexane 0.0720 Other Hexanes 0.3910 Heptanes 0.1790 Methylcyclohexane 0.0280 2,2,4-Trimethylpentane 0.0080 Benzene 0.0230 Toluene 0.0120 Ethylbenzene 0.0020 Xylenes 0.0070 C8+ Heavies 0.0300 DRY GAS: _____ Flow Rate: 27.0 MMSCF/day Water Content: 4.0 lbs. H2O/MMSCF LEAN GLYCOL: _____ Glycol Type: TEG Water Content: 1.5 wt% H2O Flow Rate: 3.5 gpm

Page: 1

GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: Edgewater CS Revision December 2022 File Name: Z:\Edgewater\Permits\Edgewater 2022 Permit Revision to Add One Unit\Dehy\Edgewater Rev 2022.ddf Date: December 07, 2022

DESCRIPTION:

Description: Edgewater CS Revision December 2022

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

CONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.0133	0.319	0.0582
Ethane	0.0290	0.695	0.1269
Propane	0.0514	1.234	0.2251
Isobutane	0.0105	0.252	0.0460
n-Butane	0.0477	1.144	0.2088
Isopentane	0.0100	$\begin{array}{c} 0.240 \\ 0.440 \\ 0.047 \\ 0.143 \\ 0.154 \end{array}$	0.0438
n-Pentane	0.0183		0.0802
Cyclopentane	0.0020		0.0087
n-Hexane	0.0060		0.0261
Cyclohexane	0.0064		0.0281
Other Hexanes	0.0068	0.162	0.0296
Heptanes	0.0035	0.084	0.0154
Methylcyclohexane	0.0018	0.043	0.0078
2,2,4-Trimethylpentane	0.0001	0.002	0.0004
Benzene	0.0256	0.615	0.1123
Toluene	0.0073	0.175	0.0320
Ethylbenzene	0.0006	0.014	0.0025
Xylenes	0.0021	0.051	0.0093
C8+ Heavies	<0.0001	<0.001	<0.0001
Total Emissions	0.2423	5.815	1.0612
Total Hydrocarbon Emissions	0.2423	5.815	1.0612
Total VOC Emissions	0.2000	4.801	0.8762
Total HAP Emissions	0.0417	1.000	0.1825
Total BTEX Emissions	0.0356	0.855	0.1560

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.2663	6.392	1.1666
Ethane	0.5841	14.019	2.5585
Propane	1.0696	25.670	4.6847
Isobutane	0.2280	5.473	0.9988
n-Butane	1.0749	25.798	4.7081
Isopentane	0.2641	6.338	1.1567
n-Pentane	0.5202	12.486	2.2786
Cyclopentane	0.0631	1.515	0.2765
n-Hexane	0.2511	6.026	1.0997

Cyclohexane	0.3308	7.940	Page: 2 1.4491
Other Hexanes	0.2343	5.624	1.0264
Heptanes	0.3190	7.657	1.3973
Methylcyclohexane	0.1555	3.731	0.6809
2,2,4-Trimethylpentane	0.0074	0.176	0.0322
Benzene	1.4944	35.866	6.5455
Toluene	1.0317	24.760	4.5187
Ethylbenzene	0.2113	5.072	0.9257
Xylenes	1.0367	24.882	4.5409
C8+ Heavies	0.2630	6.313	1.1522
Total Emissions	9.4057	225.737	41.1970
Total Hydrocarbon Emissions	9.4057	225.737	41.1970
Total VOC Emissions	8.5552	205.326	37.4720
Total HAP Emissions	4.0326	96.782	17.6627
Total BTEX Emissions	3.7742	90.580	16.5308

FLASH GAS EMISSIONS

Note: Flash Gas Emissions are zero with the Recycle/recompression control option.

FLASH TANK OFF GAS

Component	lbs/hr	lbs/day	tons/yr
Methane	52.0628	1249.507	228.0350
Ethane	35.6142	854.742	155.9904
Propane	30.5689	733.653	133.8916
Isobutane	4.5719	109.725	20.0248
n-Butane	16.8271	403.851	73.7028
Isopentane	3.7901	90.962	16.6005
n-Pentane	6.0900	146.160	26.6742
Cyclopentane	0.1940	4.656	0.8496
n-Hexane	1.7298	41.514	7.5763
Cyclohexane	0.6026	14.462	2.6393
Other Hexanes	2.0998	50.395	9.1971
Heptanes	1.1462	27.508	5.0202
Methylcyclohexane	0.2288	5.490	1.0020
2,2,4-Trimethylpentane	0.0510	1.223	0.2232
Benzene	0.4041	9.698	1.7699
Toluene	0.1908	4.579	0.8357
Ethylbenzene	0.0238	0.571	0.1042
Xylenes	0.0814	1.954	0.3567
C8+ Heavies	0.1375	3.300	0.6023
Total Emissions	156.4145	3753.949	685.0957
Total Hydrocarbon Emissions	156.4145	3753.949	685.0957
Total VOC Emissions	68.7375	1649.701	301.0704
Total HAP Emissions	2.4808	59.539	10.8659
Total BTEX Emissions	0.7001	16.802	3.0664

EQUIPMENT REPORTS:

Condenser Outlet Temperatu Condenser Pressu Condenser Du Hydrocarbon Recove Produced Wat Ambient Temperatu Excess Oxyg Combustion Efficien Supplemental Fuel Requireme	are: 14.7 aty: 1.95e-00 ery: 0.3 are: 3.9 are: 100.0 gen: 5.0 acy: 95.0	0 psia 2 MM BTU/hr 6 bbls/day 1 bbls/day 0 deg. F 0 % 0 %
	Emitted	Destroyed
Ethane Propane Isobutane n-Butane Isopentane n-Pentane Cyclopentane n-Hexane Cyclohexane Other Hexanes Heptanes Methylcyclohexane 2,2,4-Trimethylpentane Benzene Toluene Ethylbenzene	3.79% 3.52% 3.13% 2.37% 1.94% 2.88% 1.10% 1.15% 1.21% 1.72% 0.71%	95.04% 95.19% 95.39% 95.56% 96.21% 96.48% 96.87% 97.63% 98.06% 97.12% 98.90% 98.85% 98.79% 98.28% 99.29% 99.73%
	0.00%	

NOTE: Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25 and has calculated a revised Dry Gas Dew Point.

Calculated Absorber Stages: Calculated Dry Gas Dew Point:	1.25 3.56	lbs. H2O/MMSCF
Temperature:	100 0	deq. F
Pressure:	1100.0	psig
Dry Gas Flow Rate:		
Glycol Losses with Dry Gas:	4.4362	lb/hr
Wet Gas Water Content:		
Calculated Wet Gas Water Content:		lbs. H2O/MMSCF
Calculated Lean Glycol Recirc. Ratio:	3.65	gal/lb H2O

Component	Remaining in Dry Gas	Absorbed in Glycol
Water	6.49%	93.51%
Carbon Dioxide	99.80%	0.20%
Nitrogen	99.98%	0.20%
Methane	99.98%	0.02%
Ethane	99.96%	0.04%

Propane Isobutane n-Butane Isopentane n-Pentane	99.95% 99.95% 99.94% 99.95% 99.95%	Page: 0.05% 0.05% 0.06% 0.05% 0.06%	4
Cyclopentane	99.73%	0.27%	
n-Hexane	99.93%	0.07%	
Cyclohexane	99.66%	0.34%	
Other Hexanes	99.94%	0.06%	
Heptanes	99.90%	0.10%	
Methylcyclohexane	99.70%	0.30%	
2,2,4-Trimethylpentane	99.96%	0.04%	
Benzene	96.61%	3.39%	
Toluene	96.45%	3.55%	
Ethylbenzene	96.44%	3.56%	
Xylenes	95.10%	4.90%	
C8+ Heavies	99.91%	0.09%	

FLASH TANK

Flash Contr Flash Temperatu Flash Pressu	ire: 150	/recompression .0 deg. F .0 psig
Component	Left in Glycol	Removed in Flash Gas
Water Carbon Dioxide Nitrogen Methane Ethane	99.29% 4.96% 0.49% 0.51% 1.61%	99.51%
Propane	3.38%	96.62%
Isobutane	4.75%	95.25%
n-Butane	6.00%	94.00%
Isopentane	6.62%	93.38%
n-Pentane	7.99%	92.01%
Cyclopentane	24.78%	75.22%
n-Hexane	12.80%	87.20%
Cyclohexane	36.83%	63.17%
Other Hexanes	10.27%	89.73%
Heptanes	21.92%	78.08%
Methylcyclohexane	41.98%	58.02%
2,2,4-Trimethylpentane	12.86%	87.14%
Benzene	79.73%	20.27%
Toluene	85.57%	14.43%
Ethylbenzene	90.89%	9.11%
Xylenes	93.63%	6.37%
C8+ Heavies	67.19%	32.81%

REGENERATOR

No Stripping Gas used in regenerator.

	Remaining	Distilled
Component	in Glycol	Overhead

		Page:	5
Water	34.09%		
Carbon Dioxide	0.00%	100.00%	
Nitrogen	0.00%	100.00%	
Methane	0.00%	100.00%	
Ethane	0.00%	100.00%	
Propane	0.00%	100.00%	
Isobutane	0.00%	100.00%	
n-Butane	0.00%	100.00%	
Isopentane	1.68%	98.32%	
n-Pentane	1.63%	98.37%	
Cyclopentane	1.22%	98.78%	
n-Hexane	1.15%	98.85%	
Cyclohexane	5.83%	94.17%	
Other Hexanes	2.47%	97.53%	
Heptanes	0.84%	99.16%	
Methylcyclohexane	6.09%	93.91%	
2,2,4-Trimethylpentane	2.22%	97.78%	
Benzene	5.98%	94.02%	
Toluene	8.84%	91.16%	
Ethylbenzene	10.98%	89.02%	
Xylenes	13.43%	86.57%	
C8+ Heavies	6.59%	93.41%	

STREAM REPORTS:

WET GAS STREAM

 ono oncentra			
Temperature: Pressure: Flow Rate:	100.00 1114.70 1.13e+006	psia	F

Component	Conc. (vol%)	Loading (lb/hr)
Carbon Dioxide Nitrogen Methane	1.15e-001 9.38e-001 3.03e+000 5.71e+001 1.90e+001	1.23e+003 2.52e+003 2.72e+004
Isobutane n-Butane Isopentane	1.10e+001 1.24e+000 4.38e+000 8.43e-001 1.31e+000	2.14e+003 7.56e+003 1.81e+003
Cyclohexane Other Hexanes	3.14e-001 7.19e-002	8.03e+002 1.80e+002 9.99e+002
	7.99e-003 2.30e-002 1.20e-002	2.71e+001 5.33e+001 3.28e+001
Xylenes C8+ Heavies	6.99e-003 3.00e-002	

DRY GAS STREAM

Temperature: 100.00 deg. F Pressure: 1114.70 psia Flow Rate: 1.13e+006 scfh		
Component	(vol%)	Loading (lb/hr)
Carbon Dioxide Nitrogen Methane	7.50e-003 9.37e-001 3.04e+000 5.72e+001 1.90e+001	4.00e+000 1.22e+003 2.52e+003 2.72e+004
Isobutane n-Butane Isopentane	1.10e+001 1.24e+000 4.39e+000 8.44e-001 1.31e+000	2.14e+003 7.56e+003 1.81e+003
Cyclohexane Other Hexanes	3.14e-001 7.18e-002	8.02e+002 1.79e+002 9.99e+002
	8.00e-003 2.22e-002 1.16e-002	2.71e+001 5.15e+001 3.16e+001
Xylenes C8+ Heavies		
Total Components	100.00	
LEAN GLYCOL STREAM		

Temperature: 100.00 deg. F Flow Rate: 3.50e+000 gpm

 Component
 Conc. (wt%)
 Loading (lb/hr)

 TEG
 9.85e+001
 1.94e+003

 Water
 1.50e+000
 2.96e+001

 Carbon Dioxide
 1.24e-011
 2.45e-010

 Nitrogen
 3.05e-012
 6.00e-011

 Methane
 8.23e-018
 1.62e-016

 Ethane
 1.58e-007
 3.11e-006

 Propane
 1.36e-008
 2.67e-007

 Isobutane
 1.61e-009
 3.18e-008

 n-Butane
 5.91e-009
 1.16e-007

 Isopentane
 2.29e-004
 4.52e-003

 n-Pentane
 4.38e-004
 8.63e-003

 Cyclopentane
 3.96e-005
 7.81e-004

 n-Hexane
 1.48e-004
 2.91e-003

 Cyclohexane
 1.04e-003
 2.05e-002

 Other
 Hexanes
 3.02e-004
 5.95e-003

Heptanes 1.37e-004 2.69e-003 Methylcyclohexane 5.12e-004 1.01e-002 2,2,4-Trimethylpentane 8.48e-006 1.67e-004 Benzene 4.83e-003 9.51e-002 Toluene 5.08e-003 1.00e-001 Ethylbenzene 1.32e-003 2.61e-002 Xylenes 8.16e-003 1.61e-001 C8+ Heavies 9.41e-004 1.85e-002 _____ ____ Total Components 100.00 1.97e+003 RICH GLYCOL AND PUMP GAS STREAM Temperature: 100.00 deg. F Pressure: 1114.70 psia Pressure: 1114.70 psia Flow Rate: 4.00e+000 gpm NOTE: Stream has more than one phase. Conc. Loading (wt%) (lb/hr) Component _____ TEG 8.81e+001 1.94e+003 Water 3.96e+000 8.73e+001 Carbon Dioxide 2.08e-001 4.59e+000 Nitrogen 2.27e-001 5.00e+000 Methane 2.38e+000 5.23e+001 Ethane 1.64e+000 3.62e+001 Propane 1.44e+000 3.16e+001 Isobutane 2.18e-001 4.80e+000 n-Butane 8.13e-001 1.79e+001 Isopentane 1.84e-001 4.06e+000 n-Pentane 3.01e-001 6.62e+000 Cyclopentane 1.17e-002 2.58e-001 n-Hexane 9.01e-002 1.98e+000 Cyclohexane 4.33e-002 9.54e-001 Other Hexanes 1.06e-001 2.34e+000 Heptanes 6.66e-002 1.47e+000 Methylcyclohexane 1.79e-002 3.94e-001 2,2,4-Trimethylpentane 2.66e-003 5.85e-002 Benzene 9.05e-002 1.99e+000 Toluene 6.00e-002 1.32e+000 Ethylbenzene 1.19e-002 2.61e-001 Xvlenes 5.81e-002 1.28e+000 C8+ Heavies 1.90e-002 4.19e-001 Total Components 100.00 2.20e+003

FLASH TANK OFF GAS STREAM

Temperature: 150.00 deg. F Pressure: 69.70 psia Flow Rate: 2.28e+003 scfh Component Conc. Loading (vol%) (lb/hr) Water 5.72e-001 6.20e-001 Carbon Dioxide 1.65e+000 4.36e+000 Nitrogen 2.95e+000 4.98e+000 Methane 5.39e+001 5.21e+001

Ethane 1.97e+001 3.56e+001 Propane 1.15e+001 3.06e+001 Isobutane 1.31e+000 4.57e+000 n-Butane 4.81e+000 1.68e+001 Isopentane 8.73e-001 3.79e+000 n-Pentane 1.40e+000 6.09e+000 Cyclopentane 4.60e-002 1.94e-001 n-Hexane 3.34e-001 1.73e+000 Cyclohexane 1.19e-001 6.03e-001 Other Hexanes 4.05e-001 2.10e+000 Heptanes 1.90e-001 1.15e+000 Methylcyclohexane 3.87e-002 2.29e-001 2,2,4-Trimethylpentane 7.41e-003 5.10e-002 Benzene 8.60e-002 4.04e-001 Toluene 3.44e-002 1.91e-001 Ethylbenzene 3.72e-003 2.38e-002 Xylenes 1.27e-002 8.14e-002 C8+ Heavies 1.34e-002 1.38e-001 Total Components 100.00 1.66e+002

FLASH TANK GLYCOL STREAM

Temperature: 150.00 deg. F Flow Rate: 3.63e+000 gpm Component Conc. Loading (wt%) (lb/hr) TEG 9.52e+001 1.94e+003 Water 4.26e+000 8.67e+001 Carbon Dioxide 1.12e-002 2.27e-001 Nitrogen 1.20e-003 2.45e-002 Methane 1.31e-002 2.66e-001 Ethane 2.87e-002 5.84e-001 Propane 5.25e-002 1.07e+000 Isobutane 1.12e-002 2.28e-001 n-Butane 5.28e-002 1.07e+000 Isopentane 1.32e-002 2.69e-001 n-Pentane 2.60e-002 5.29e-001 Cyclopentane 3.14e-003 6.39e-002 n-Hexane 1.25e-002 2.54e-001 Cyclohexane 1.73e-002 3.51e-001 Other Hexanes 1.18e-002 2.40e-001 Heptanes 1.58e-002 3.22e-001 Methylcyclohexane 8.13e-003 1.66e-001 2,2,4-Trimethylpentane 3.69e-004 7.52e-003 Benzene 7.81e-002 1.59e+000 Toluene 5.56e-002 1.13e+000 Ethylbenzene 1.17e-002 2.37e-001 Xylenes 5.88e-002 1.20e+000 C8+ Heavies 1.38e-002 2.82e-001 ----- ------Total Components 100.00 2.04e+003

FLASH GAS EMISSIONS

Control Method: Recycle/recompression

Control Efficiency: 100.00

Note: Flash Gas Emissions are zero with the Recycle/recompression control option.

REGENERATOR OVERHEADS STREAM _____ Temperature: 212.00 deg. F Pressure: 14.70 psia Flow Rate: 1.26e+003 scfh Conc. Component Loading (vol%) (lb/hr) Water 9.52e+001 5.71e+001 Carbon Dioxide 1.55e-001 2.27e-001 Nitrogen 2.62e-002 2.45e-002 Methane 4.98e-001 2.66e-001 Ethane 5.83e-001 5.84e-001 Propane 7.28e-001 1.07e+000 Isobutane 1.18e-001 2.28e-001 n-Butane 5.55e-001 1.07e+000 Isopentane 1.10e-001 2.64e-001 n-Pentane 2.16e-001 5.20e-001 Cyclopentane 2.70e-002 6.31e-002 n-Hexane 8.75e-002 2.51e-001 Cyclohexane 1.18e-001 3.31e-001 Other Hexanes 8.16e-002 2.34e-001 Heptanes 9.56e-002 3.19e-001 Methylcyclohexane 4.75e-002 1.55e-001 2,2,4-Trimethylpentane 1.93e-003 7.35e-003 Benzene 5.74e-001 1.49e+000 Toluene 3.36e-001 1.03e+000 Ethylbenzene 5.98e-002 2.11e-001 Xylenes 2.93e-001 1.04e+000 C8+ Heavies 4.64e-002 2.63e-001 Total Components 100.00 6.68e+001

CONDENSER PRODUCED WATER STREAM

			100.00 deg. F 1.14e-001 gpm	
(ppm)	Loading (lb/hr)		Component	
	6.86e-006 1.51e-004		Carbon Dioxide Nitrogen Methane	
11. 1. 8. 1. 2.	6.95e-005 4.29e-004 6.52e-005	1.07e-003 1.22e-004 7.52e-004 1.14e-004 2.28e-004	Isobutane n-Butane Isopentane	
2. 1. 4.	3.65e-005	6.40e-005	Cyclopentane n-Hexane Cyclohexane	

Other Hexanes Heptanes	5.75e-005 2.14e-005		Page: 10 1. 0.
Methylcyclohexane 2,2,4-Trimethylpentane Benzene	5.63e-005 3.58e-007 5.22e-002 1.26e-002	3.21e-005 2.04e-007 2.98e-002 7.21e-003	1. 0. 522. 126. 8.
Xylenes C8+ Heavies	3.84e-008	2.31e-003 2.19e-008	Ο.
Total Components			
CONDENSER RECOVERED OIL STREAM			
Temperature: 100.00 deg. F Flow Rate: 1.06e-002 gpm			
Component	(wt응)	(lb/hr)	
Water Carbon Dioxide Nitrogen Methane	4.20e-002	1.90e-003 9.19e-004 4.70e-005 3.64e-004	
Isobutane n-Butane Isopentane	9.05e-001 3.96e-001 2.68e+000 1.41e+000 3.40e+000	1.79e-002 1.21e-001 6.40e-002	
Cyclohexane Other Hexanes	2.92e+000 4.47e+000	1.32e-001 2.02e-001 9.93e-002	
	1.23e-001 2.11e+001 1.94e+001	5.57e-003 9.52e-001 8.78e-001	
C8+ Heavies		2.63e-001	
CONDENSER VENT STREAM			
Temperature: 100.00 deg. F Pressure: 14.70 psia Flow Rate: 4.37e+001 scfh			
Component	Conc.	Loading	

 Component
 Conc. (vol%)
 Loading (lb/hr)

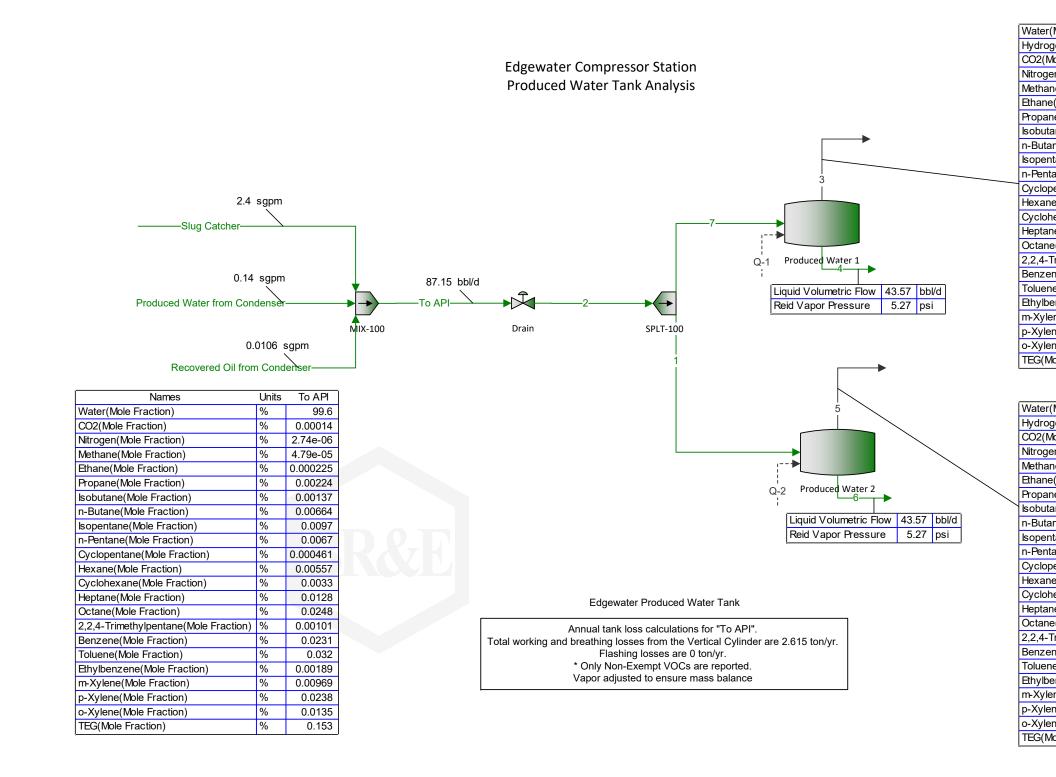
 Water
 6.51e+000
 1.35e-001

 Carbon Dioxide
 4.41e+000
 2.24e-001

 Nitrogen
 7.56e-001
 2.44e-002

 Methane
 1.44e+001
 2.66e-001

 Ethane
 1.67e+001
 5.79e-001


Page: 11

Propane 2.02e+001 1.03e+000 Isobutane 3.14e+000 2.10e-001 n-Butane 1.42e+001 9.54e-001 Isopentane 2.41e+000 2.00e-001 n-Pentane 4.41e+000 3.66e-001 Cyclopentane 4.89e-001 3.95e-002 n-Hexane 1.20e+000 1.19e-001 Cyclohexane 1.32e+000 1.29e-001 Other Hexanes 1.36e+000 1.35e-001 Heptanes 6.07e-001 7.02e-002 Methylcyclohexane 3.16e-001 3.57e-002 2,2,4-Trimethylpentane 1.35e-002 1.78e-003 Benzene 5.70e+000 5.13e-001 Toluene 1.37e+000 1.46e-001 Ethylbenzene 9.25e-002 1.13e-002 Xylenes 3.46e-001 4.24e-002 C8+ Heavies 1.15e-003 2.26e-004 _____ Total Components 100.00 5.23e+000

COMBUSTION DEVICE OFF GAS STREAM

5	Cemperature:	1000.00	deg.	F	
]	Pressure:	14.70	psīa		
I	Flow Rate:	1.93e+000	scfh		

Component	Conc. (vol%)	Loading (lb/hr)
Ethane Propane Isobutane	1.63e+001 1.89e+001 2.29e+001 3.55e+000 1.61e+001	2.90e-002 5.14e-002 1.05e-002
Cyclopentane	4.99e+000 5.54e-001 1.36e+000	1.83e-002 1.98e-003 5.96e-003
Methylcyclohexane 2,2,4-Trimethylpentane	6.88e-001 3.58e-001	3.51e-003 1.79e-003 8.91e-005
Ethylbenzene Xylenes C8+ Heavies	3.92e-001 1.31e-003	5.66e-004 2.12e-003 1.13e-005
Ethylbenzene Xylenes	1.05e-001 3.92e-001 1.31e-003	5.66e-00 2.12e-00

(Mole Fraction)		%
gen Sulfide(Mole Fraction)		%
<i>l</i> ole Fraction)		%
en(Mole Fraction)		%
ne(Mole Fraction)		%
e(Mole Fraction)		%
ne(Mole Fraction)		%
ane(Mole Fraction)		%
ane(Mole Fraction)		%
ntane(Mole Fraction)		%
ane(Mole Fraction)		%
pentane(Mole Fraction)		%
e(Mole Fraction)		%
nexane(Mole Fraction)		%
ne(Mole Fraction)		%
e(Mole Fraction)		%
Trimethylpentane(Mole Fraction)		%
ne(Mole Fraction)		%
ne(Mole Fraction)		%
enzene(Mole Fraction)		%
ene(Mole Fraction)		%
ne(Mole Fraction)		%
ne(Mole Fraction)		%
lole Fraction)		%
	_	

(Mole Fraction)	%
gen Sulfide(Mole Fraction)	%
<i>I</i> ole Fraction)	%
en(Mole Fraction)	%
ne(Mole Fraction)	%
e(Mole Fraction)	%
ne(Mole Fraction)	%
ane(Mole Fraction)	%
ane(Mole Fraction)	%
ntane(Mole Fraction)	%
tane(Mole Fraction)	%
pentane(Mole Fraction)	%
e(Mole Fraction)	%
nexane(Mole Fraction)	%
ne(Mole Fraction)	%
e(Mole Fraction)	%
Trimethylpentane(Mole Fraction)	%
ene(Mole Fraction)	%
ne(Mole Fraction)	%
enzene(Mole Fraction)	%
ene(Mole Fraction)	%
ene(Mole Fraction)	%
ene(Mole Fraction)	%
Nole Fraction)	%
	_

Edgewater Produced Water Tank

Process Stream	To API[Flowsheet1]	
Tank Geometry	Vertical Cylinder	
Shell Length	12	ft
Shell Diameter	20	ft
Number of Storage Tanks Employed	2	
Location	Williston, North Dakota	
Time Frame	Year	
Report Components	Non-exempt VOC	
Set Bulk Temperature to Stream Temperature?	FALSE	
Use AP42 Raoult's Vapor Pressure?	FALSE	
Maximum Fraction Fill of Tank	90	%
Average Fraction Fill of Tank	50	%
Material Category	Light Organics	
Tank Color	Tan	
Shell Paint Condition	Good	
Operating Pressure	0.25	psig
Breather Vent Pressure	0.25	psig
Breather Vacuum Pressure	-0.025	psig
Roof Type	Cone	
Slope of Coned Roof	0.0625	
Roof Color	Tan	
Roof Paint Condition	Good	
Flashing Temperature	54.57	°F
Calculate Loading Losses?	FALSE	
Output Flashing Losses?	TRUE	
Output Working/Breathing Losses?	TRUE	

Edgewater Produced Water Tank

Atmospheric Pressure	13.82	psia
True Vapor Pressure at Average Temperature	2.67	psia
Average Liquid Surface Temperature	46.45	°F
Maximum Liquid Surface Temperature	54.57	°F
Bulk Liquid Temperature	43.01	°F
Annual Tank Turnover Rate	27.58	
Flashing Losses	0.00	ton/yr
Total W/B Losses	2.62	ton/yr
Working Losses per Tank	0.89	ton/yr
Standing Losses per Tank	0.42	ton/yr
Withdrawal Loss per Tank	0.00	ton/yr

Edgewater Produced Water Tank

ProMax AP-42 Emissions Report Annual Emissions Vertical Cylinder

Components	Working Losses (ton/yr)	Breathing Losses (ton/yr)	Total Losses (ton/yr)
Mixture	1.772	0.8438	2.615
Propane	0.2113	0.1006	0.3119
Isobutane	0.17	0.08098	0.251
n-Butane	0.5465	0.2603	0.8067
Methanol	1.23E-05	5.88E-06	1.82E-05
Isopentane	0.3228	0.1537	0.4765
n-Pentane	0.1657	0.07892	0.2446
Cyclopentane	0.005923	0.002821	0.008745
Cyclohexane	0.01536	0.007316	0.02268
Heptane	0.03163	0.01507	0.0467
Methylcyclohexane	0.003985	0.001898	0.005882
Octane	0.01785	0.008503	0.02636
Nonane	0.001335	0.0006356	0.00197
Decane	0.005615	0.002675	0.00829
2-Methylpentane	0.03193	0.01521	0.04714
3-Methylpentane	0.009264	0.004412	0.01368
Hexane	0.04086	0.01946	0.06031
2,2,4-Trimethylpentane	0.003151	0.001501	0.004652
Benzene	0.1158	0.05516	0.171
Toluene	0.05135	0.02446	0.0758
Ethylbenzene	0.0008968	0.0004271	0.001324
m-Xylene	0.004235	0.002017	0.006253
p-Xylene	0.01092	0.005203	0.01613
o-Xylene	0.005224	0.002488	0.007712
TEG	6.13E-10	2.92E-10	9.05E-10

Edgewater Produced Water Tank

Vapor adjusted to ensure mass balance

AMERICAN MOBILE RESEARCH, INC.

P.O. BOX 2909 CASPER, WYOMING 82602 (307) 235-4590 PHONE (307) 265-4489 FAX

EXTENDED HYDROCARBON GAS (GLYCALC) STUDY CERTIFICATE OF ANALYSIS

Company	KINDER MORGAN, INC.
Lab Number	CR-22987
Date Sampled	10-19-2022
Time Sampled	2:40 PM
Method of Analysis	Dual TCD-FID Chromatography

Study Number	CR-6
Date Tested	10-28-2022
Time Tested	12:05 PM
Ambient Temp at Sampling	g 67 F

Sample Identification GAS TAKEN BEFORE DEHYDRATOR EDGEWATER COMPRESSOR STATION

Sample Location	ALEXANDER, NORTH DAKOTA.		
Type Sample	. Spot	County	. N/A
Effective Date	. N/A	Composite From	N/A
Sample Pressure	. 1,200 PSIG	Sample Temperature	105 F
Cylinder ID	AMR 410	Cylinder Heated To	130 F
Instrument Used	. Shimadzu GC-2014	Calibration Date	10-28-2022
Sample Method	. Trap & Purge	Un-Normalized Total	98.017 %
Test Method	GPA-2286	Sampled By	. KMI - K. Knutson

Components	Mole %	Weight %	Liq. Vol. %
Carbon Dioxide	0.939	1.542	0.752
Hydrogen Sulfide	0.000	0.000	0.000
Nitrogen	3.035	3.173	1.566
Methane	57.167	34.226	45.467
Ethane	19.005	21.327	23.845
Propane	10.974	18.059	14.184
iso-Butane	1.242	2.694	1.907
n-Butane	4.387	9.516	6.489
iso-Pentane	0.844	2.273	1.448
n-Pentane	1.309	3.525	2.226
Cyclopentane	0.028	0.073	0.039
n-Hexane	0.314	1.010	0.606
Cyclohexane	0.072	0.226	0.115
Other Hexanes	0.391	1.257	0.749
Heptanes	0.179	0.669	0.387
Methylcyclohexane	0.028	0.103	0.053
2,2,4-Trimethylpentane	0.008	0.034	0.020
Benzene	0.023	0.067	0.030
Toluene	0.012	0.041	0.019
Ethylbenzene	0.002	0.008	0.004
Xylenes	0.007	0.028	0.013
Octanes	0.029	0.124	0.070
Nonanes	0.002	0.010	0.005
Decanes +	0.003	0.016	0.009
Totals	100.000	100.000	100.000

ADDITIONAL BETX DATA

Components	Mole %	Weight %	Liq. Vol. %
Cyclopentane	0.028	0.073	0.039
Cyclohexane	0.072	0.226	0.115
2-Methylpentane	0.280	0.899	0.535
3-Methylpentane	0.111	0.358	0.213
n-Hexane	0.314	1.010	0.606
Methylcyclohexane	0.028	0.103	0.053
2,2,4-Trimethylpentane	0.008	0.034	0.020
Benzene	0.023	0.067	0.030
Toluene	0.012	0.041	0.019
Ethylbenzene	0.002	0.008	0.004
m-Xylene	0.001	0.004	0.002
p-Xylene	0.004	0.017	0.008
o-Xylene	0.002	0.007	0.003
Hexanes, Total	0.805	2.567	1.508
Heptanes, Total	0.238	0.873	0.490
Octanes, Total	0.050	0.201	0.105
Nonanes, Total	0.002	0.010	0.005
Decanes+, Total	0.003	0.016	0.009

SPECIFIC GRAVITY AT 60/60 F, calculated	0.92517
TOTAL GPM (ETHANE INCLUSIVE)	11.101
CALCULATED BTU / REAL CF AT 14.73 PSIA, dry basis	1525.723
CALCULATED BTU / REAL CF AT 14.73 PSIA, wet basis	1499.431
AVERAGE MOLECULAR WEIGHT	26.795
MOLAR MASS RATIO	0.92517
RELATIVE DENSITY (G x Z (Air) / Z), calculated	0.93067
IDEAL GROSS HEATING VALUE, BTU / IDEAL CF AT 14.696 PSIA, calculated	1513.223
COMPRESSIBILITY FACTOR (Z)	0.99409
ETHANE GPM	5.0696
PROPANE GPM	3.0156
iso-BUTANE GPM	0.4054
n-BUTANE GPM	1.3795
iso-PENTANE GPM	0.3079
n-PENTANE GPM	0.4733
GASOLINE RANGE (HEXANES+) GPM	0.4501

NOTATION: ALL CALCULATIONS PERFORMED USING PHYSICAL CONSTANTS FROM GPA 2145-16, THE TABLES OF PHYSICAL CONSTANTS FOR HYDROCARBONS AND OTHER COMPOUNDS OF INTEREST TO THE NATURAL GAS INDUSTRY.

> James A. Kane, President American Mobile Research, Inc.

(307) 235-4590 PHONE (307) 265-4489 FAX

EXTENDED WATER GLYCALC STUDY CERTIFICATE OF ANALYSIS

CompanyI	KINDER MORGAI	N, INC.		
Lab Number	CR-20730		Study Number	CR-3
Date Sampled	8-24-2020		Date Tested	9-3-2020
Sample Identification	PRO	DUCED WATER		
		RAMENTO STATION		
Sample Location	NORTH DAKOTA			
Sample Pressure	20 PSIG		Sample Temperatu	re 50 F
Type Sample	SPOT		County	N/A
Test Method	GPA 2186M		Cylinder ID	KMI 2573
Components	Mole %	Weight %	Liq. Vol. %	
Water	99.626	97.295	96.998	
Hydrogen Sulfide	0.000	0.000	0.000	
Carbon Dioxide	0.000	0.000	0.000	
Nitrogen	0.000	0.000	0.000	
Methane	0.000	0.000	0.000	
Ethane	0.000	0.000	0.000	
Propane	0.001	0.002	0.005	
iso-Butane	0.001	0.003	0.006	
n-Butane	0.004	0.013	0.022	
Methanol	0.002	0.003	0.004	
iso-Pentane	0.009	0.035	0.056	
n-Pentane	0.004	0.016	0.025	
Hexanes	0.004	0.019	0.028	
Heptanes	0.010	0.054	0.079	
Octanes	0.023	0.142	0.201	
Nonanes	0.006	0.042	0.058	
Decanes+	0.083	0.709	0.949	
Benzene	0.006	0.025	0.029	
Toluene	0.020	0.100	0.114	
Ethylbenzene	0.002	0.012	0.013	
Xylenes	0.034	0.196	0.225	
n-Hexane	0.002	0.009	0.014	
2,2,4-Trimethylpentane	0.001	0.006	0.009	
Glycol	0.162	1.319	1.166	
Totals	100.000	100.000	100.000	

ADDITIONAL BETX DATA

Components	Mole %	Weight %	Liq. Vol. %
2-Methylpentane	0.003	0.012	0.018
3-Methylpentane	0.001	0.006	0.010
n-Hexane	0.002	0.009	0.014
2,2,4-Trimethylpentane	0.001	0.006	0.009
Benzene	0.006	0.025	0.029
Toluene	0.020	0.100	0.114
Ethylbenzene	0.002	0.012	0.013
m-Xylene	0.005	0.029	0.034
p-Xylene	0.020	0.117	0.135
o-Xylene	0.009	0.049	0.056

API GRAVITY AT 60/60 F, calculated	10.43
SPECIFIC GRAVITY AT 60/60 F, calculated	0.99695
RELATIVE SPECIFIC GRAVITY OF DECANES+ (C10+) FRACTION, calculated	0.74442
AVERAGE MOLECULAR WEIGHT	18.447
AVERAGE MOLECULAR WEIGHT OF DECANES+ (C10+) FRACTION, calculated	157.573
TRUE VAPOR PRESSURE AT 100 F, PSIA, calculated	0.955
AVERAGE BOILING POINT, F, calculated	214.777
CUBIC FEET OF GAS / GALLON OF LIQUID, as Ideal Gas, calculated	170.724
BTU / GALLON OF LIQUID AT 14.73 PSIA, calculated	10,899.34
LBS / GALLON OF LIQUID, calculated	8.312

NOTATION: ALL CALCULATIONS PERFORMED USING PHYSICAL CONSTANTS FROM GPA 2145-16, THE TABLES OF PHYSICAL CONSTANTS FOR HYDROCARBONS AND OTHER COMPOUNDS OF INTEREST TO THE NATURAL GAS INDUSTRY.

James A. Kane, President American Mobile Research, Inc.

AMERICAN MOBILE RESEARCH, INC.

1955 CBS COURT CASPER, WYOMING 82604 (307) 235-4590 OFFICE PHONE (307) 265-4489 OFFICE FAX

CERTIFICATE OF ANALYSIS OXYGENATES IN HYDROCARBON GASES

Company KINDER MORGAN, INC.

Lab Number CR-20730	Study Number CR-31	В
Date Sampled 8-24-2020	Date Tested 9-9-20	020
Sample IdentificationSACRAMENTO STATION PRODUCED WA	TER	

Sample Location SACRAMENTO STATION, WATFORD CITY, NORTH D.	АКОТА.
Sample Pressure 20 PSIG	Sample Temperature50 F
Sample TypeSPOT	CountyN/A
Test Method ASTM D-7423	Sample Container KMI 1967

Component	Concentration, ppm by Volume
Dimethyl Ether (DME)	< 1.0 PPMV
Acetone	8.98 PPMV
sec-Butyl Methyl Ether	< 1.0 PPMV
Methyl tert-Butyl Ether (MTBE)	< 1.0 PPMV
Methyl Ethyl Ketone (MEK)	< 1.0 PPMV
Methyl Alcohol (MeOH)	31.84 PPMV
Ethyl tert-Butyl Ether (EtBE)	< 1.0 PPMV
Ethyl Alcohol (EtOH)	< 1.0 PPMV
tert-Amyl Methyl Ether (TAME)	< 1.0 PPMV
iso-Propanol (IPA)	23.61 PPMV
tert-Butyl Alcohol (tBA)	< 1.0 PPMV
n-Propanol (nPA)	5.50 PPMV
sec-Butyl Alcohol	< 1.0 PPMV
2-Methyl-1-Propanol	< 1.0 PPMV
Butyl Alcohol	< 1.0 PPMV
Total Glycols (EG, DEG, TEG)	. <u>13,177.30 PPMV</u>
Total Oxygenates	13,247.23 PPMV

Analysis performed according to methodology outlined in ASTM D-7423, Determination of Oxygenates in C2, C3, C4, and C5 Hydrocarbon Matrices.

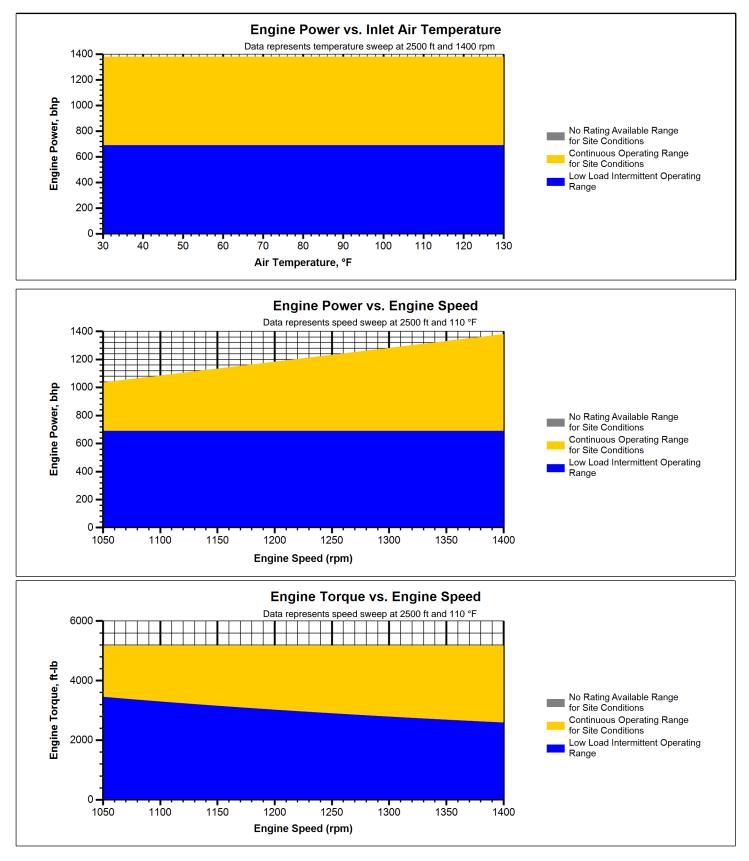
James A. Kane, President American Mobile Research, Inc.

GAS ENGINE SITE SPECIFIC TECHNICAL DATA RFQ PRP-114932 Edgewater Compresso

ENGINE SPEED (rpm):	1400	RATING STRATEGY:
COMPRESSION RATIO:	8	RATING LEVEL:
AFTERCOOLER TYPE:	SCAC	FUEL SYSTEM:
AFTERCOOLER - STAGE 2 INLET (°F): AFTERCOOLER - STAGE 1 INLET (°F): JACKET WATER OUTLET (°F): ASPIRATION: COOLING SYSTEM: CONTROL SYSTEM: EXHAUST MANIFOLD: COMBUSTION: NOX EMISSION LEVEL (g/bhp-hr NOX): SET POINT TIMING:	130 201 210 TA JW+OC+1AC, 2AC ADEM3 ASWC LOW EMISSION 0.5 28	SITE CONDITIONS: FUEL: FUEL PRESSURE RAN FUEL METHANE NUM FUEL LHV (Btu/scf): ALTITUDE(ft): INLET AIR TEMPERAT STANDARD RATED PO

FUEL SYSTEM: **SITE CONDITIONS:** FUEL: FUEL PRESSURE RANGE(psig): (See note 1) FUEL METHANE NUMBER: FUEL LHV (Btu/scf): ALTITUDE(ft): NLET AIR TEMPERATURE(°F): STANDARD RATED POWER: STANDARD CONTINUOUS CAT WIDE RANGE WITH AIR FUEL RATIO CONTROL

> Gas Analysis 7.0-40.0 59.0 1145 2500 110 1380 bhp@1400rpm


				MAXIMUM RATING			
RATING		NOTES	LOAD	100%	100%	75%	50%
ENGINE POWER	(WITHOUT FAN)	(2)	bhp	1380	1380	1035	690
INLET AIR TEMPERATURE			°F	110	110	110	110
ENGINE DATA							
FUEL CONSUMPTION (LHV)		(3)	Btu/bhp-hr	7361	7361	7727	8305
FUEL CONSUMPTION (HHV)		(3)	Btu/bhp-hr	8103	8103	8506	9142
AIR FLOW (@inlet air temp, 14.7 psia)	(WET)	(4)(5)	ft3/min	3325	3325	2541	1745
AIR FLOW	(WET)	(4)(5)	lb/hr	13890	13890	10614	7289
FUEL FLOW (60°F, 14.7 psia)			scfm	148	148	116	83
INLET MANIFOLD PRESSURE		(6)	in Hg(abs)	88.6	88.6	70.5	48.5
EXHAUST TEMPERATURE - ENGINE OUTLET		(7)	°F	824	824	822	878
EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia)	(WET)	(5)(8)	ft3/min	8038	8038	6144	4415
EXHAUST GAS MASS FLOW	(WET)	(5)(8)	lb/hr	14407	14407	11021	7580
EMISSIONS DATA - ENGINE OUT							
NOx (as NO2)		(9)(10)	g/bhp-hr	0.50	0.50	0.50	0.50
СО		(9)(10)	g/bhp-hr	2.42	2.42	2.43	2.34
THC (mol. wt. of 15.84)		(9)(10)	g/bhp-hr	4.13	4.13	4.03	3.81
NMHC (mol. wt. of 15.84)		(9)(10)	g/bhp-hr	2.07	2.07	2.02	1.91
NMNEHC (VOCs) (mol. wt. of 15.84)		(9)(10)(11)	g/bhp-hr	0.85	0.85	0.83	0.78
HCHO (Formaldehyde)		(9)(10)	g/bhp-hr	0.40	0.40	0.38	0.37
CO2		(9)(10)	g/bhp-hr	505	505	530	570
EXHAUST OXYGEN		(9)(12)	% DRY	9.1	9.1	8.8	8.4
HEAT REJECTION							
HEAT REJ. TO JACKET WATER (JW)		(13)	Btu/min	36653	36653	31504	26258
HEAT REJ. TO ATMOSPHERE		(13)	Btu/min	5313	5313	4428	3543
HEAT REJ. TO LUBE OIL (OC)		(13)	Btu/min	4431	4431	3808	3174
HEAT REJ. TO A/C - STAGE 1 (1AC)		(13)(14)	Btu/min	11658	11658	8851	2397
HEAT REJ. TO A/C - STAGE 2 (2AC)		(13)(14)	Btu/min	5497	5497	4738	2903
COOLING SYSTEM SIZING CRITERIA							
TOTAL JACKET WATER CIRCUIT (JW+OC+1AC)		(14)(15)	Btu/min	57876			
TOTAL AFTERCOOLER CIRCUIT (2AC)		(14)(15)	Btu/min	5772			
A cooling system safety factor of 0% has been added to the coolin	ng system sizing criteria.	· · · ·					

CONDITIONS AND DEFINITIONS

Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Maximum rating is the maximum capability at the specified aftercooler inlet temperature for the specified fuel at site altitude and reduced inlet air temperature. Refer to product O&M manual for details on additional lower load capability. No overload permitted at rating shown.

For notes information consult page three.

GAS ENGINE SITE SPECIFIC TECHNICAL DATA RFQ PRP-114932 Edgewater Compresso

Note:

At site conditions of 2500 ft and 110°F inlet air temp., constant torque can be maintained down to 1050 rpm. The minimum speed for loading at these conditions is 1050 rpm.

PREPARED BY: Daniel Andres Maldonado, Enerflex Data generated by GERP Web Version 2.2.0.17 Ref. Dta Set EM1495-05-001, Printed 14Nov2022 **CATERPILLAR®**

G3516J

GAS ENGINE SITE SPECIFIC TECHNICAL DATA RFQ PRP-114932 Edgewater Compresso

NOTES:

1. Fuel pressure range specified is to the engine fuel pressure regulator. Additional fuel train components should be considered in pressure and flow calculations.

2. Engine rating is with two engine driven water pumps. Tolerance is ±3% of full load.

3. Fuel consumption tolerance is ± 3.0% of full load data.

4. Air flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of ± 5 %.

5. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.

6. Inlet manifold pressure is a nominal value with a tolerance of \pm 5 %.

7. Exhaust temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.

8. Exhaust flow value is on a "wet" basis. Flow is a nominal value with a tolerance of ± 6 %.

9. Emissions data is at engine exhaust flange prior to any after treatment.

10. Values listed are higher than nominal levels to allow for instrumentation, measurement, and engine-to-engine variations. They indicate the maximum values expected under steady state conditions. Fuel methane number cannot vary more than ± 3. THC, NMHC, and NMNEHC do not include aldehydes. An oxidation catalyst may be required to meet Federal, State or local CO or HC requirements.

11. VOCs - Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ

12. Exhaust Oxygen level is the result of adjusting the engine to operate at the specified NOx level. Tolerance is ± 0.5 .

13. Heat rejection values are nominal. Tolerances, based on treated water, are ± 10% for jacket water circuit, ± 50% for radiation, ± 20% for lube oil circuit, and ± 5% for aftercooler circuit.

14. Aftercooler heat rejection includes an aftercooler heat rejection factor for the site elevation and inlet air temperature specified. Aftercooler heat rejection values at part load are for reference only. Do not use part load data for heat exchanger sizing.

15. Cooling system sizing criteria are maximum circuit heat rejection for the site, with applied tolerances.

GAS ENGINE SITE SPECIFIC TECHNICAL DATA RFQ PRP-114932 Edgewater Compresso

Constituent	Abbrev	Mole %	Norm		
Water Vapor	H2O	0.0000	0.0000	Fuel Makeup:	Gas Analysis
Methane	CH4	67.0083	67.0083	Unit of Measure:	English
Ethane	C2H6	19.7659	19.7659		
Propane	C3H8	7.2090	7.2090	Calculated Fuel Properties	
Isobutane	iso-C4H10	0.3616	0.3616	Caterpillar Methane Number:	59.0
Norbutane	nor-C4H10	0.8755	0.8755		
Isopentane	iso-C5H12	0.0587	0.0587	Lower Heating Value (Btu/scf):	1145
Norpentane	nor-C5H12	0.0727	0.0727	Higher Heating Value (Btu/scf):	1261
Hexane	C6H14	0.0527	0.0527	WOBBE Index (Btu/scf):	1309
Heptane	C7H16	0.0000	0.0000		
Nitrogen	N2	3.5493	3.5493	THC: Free Inert Ratio:	20.76
Carbon Dioxide	CO2	1.0463	1.0463	Total % Inerts (% N2, CO2, He):	4.60%
Hydrogen Sulfide	H2S	0.0000	0.0000	RPC (%) (To 905 Btu/scf Fuel):	100%
Carbon Monoxide	CO	0.0000	0.0000		
Hydrogen	H2	0.0000	0.0000	Compressibility Factor:	0.996
Oxygen	O2	0.0000	0.0000	Stoich A/F Ratio (Vol/Vol):	11.85
Helium	HE	0.0000	0.0000	Stoich A/F Ratio (Mass/Mass):	15.48
Neopentane	neo-C5H12	0.0000	0.0000	Specific Gravity (Relative to Air):	0.766
Octane	C8H18	0.0000	0.0000		
Nonane	C9H20	0.0000	0.0000	Fuel Specific Heat Ratio (K):	1.275
Ethylene	C2H4	0.0000	0.0000		1.210
Propylene	C3H6	0.0000	0.0000		
TOTAL (Volume %)	_	100.0000	100.0000		

CONDITIONS AND DEFINITIONS Caterpillar Methane Number represents the knock resistance of a gaseous fuel. It should be used with the Caterpillar Fuel Usage Guide for the engine and rating to determine the rating for the fuel specified. A Fuel Usage Guide for each rating is included on page 2 of its standard technical data sheet.

RPC always applies to naturally aspirated (NA) engines, and turbocharged (TA or LE) engines only when they are derated for altitude and ambient site conditions.

Project specific technical data sheets generated by the Caterpillar Gas Engine Rating Pro program take the Caterpillar Methane Number and RPC into account when generating a site rating.

Fuel properties for Btu/scf calculations are at 60F and 14.696 psia.

Caterpillar shall have no liability in law or equity, for damages, consequently or otherwise, arising from use of program and related material or any part thereof.

FUEL LIQUIDS

Field gases, well head gases, and associated gases typically contain liquid water and heavy hydrocarbons entrained in the gas. To prevent detonation and severe damage to the engine, hydrocarbon liquids must not be allowed to enter the engine fuel system. To remove liquids, a liquid separator and coalescing filter are recommended, with an automatic drain and collection tank to prevent contamination of the ground in accordance with local codes and standards.

To avoid water condensation in the engine or fuel lines, limit the relative humidity of water in the fuel to 80% at the minimum fuel operating temperature.

ENERFLEX

Enerflex Contract Compression Unit

Information Form

Date

12/12/2022

Enerflex Contract Compression	n Unit #	EF6347	Ur	nit Description	GAS (COMP: G3516J, JGT/4,	3Stg	
Engine Make	(Caterpillar		Compressor Make		Ariel		
Engine Model	G3516ULB			Compressor Model	-	JGT/4		
Engine Serial Number	N6W01218			Compressor Serial Nu	umber -	F60648		
Engine Manufactured Date	2	2/6/2019		Compressor Manufa	cture Date	6/28/2019		
Engine Rated Horsepower		1380			-			
Engine Max RPM		1400		Compressor Max RPI	И	1400		
Engine Combustion Type	4 Cy	cle Lean Burn						
Engine Displacement (in3)		4211 CID		Engine Modified or				
Fuel Delivery Method	Electronic I	uel Metering Valve		Reconstructed		N/A		
Turbo or Naturally Aspirated		Turbo			-			
Air Environmental Regulati Engine Federal Requirements:	ons		Sub	ject to NSPS JJJJ Tier 2	emissions lir	nits		
NSPS JJJJ Emissions Limits g/bhp-	hr:	со	2	NOx	1	voc	0.7	
Uncontrolled Emission:	g/hp-hr	со	2.42	NOx	0.5	voc	0.85	
		нсно	0.4					
AFR Make		Cat		Catalyst Housing Ma	ke	EMIT		
AFR Model	ADEI	M III Nox ULB		Catalyst Housing Mo	del	ELH-3550-1616F-4CE0-241		
				Catalyst Element Typ	e -	Oxidation		
				Number of Catalyst E	lements in	3		
				Housing	_			
				Other Engine Emission	s Controls	N/A		
Controlled Emissions		со	1	NOx	0.5	VOC	0.7	
		нсно	0.2					

Notes

All emissions values are based on Engine, AFR controller & Catalyst Manufacturer specification assuming a "Pipeline Quality" fuel gas composition, 1200ft elevation and 100F max air inlet temp unless otherwise specified. Note that Emissions values are based on 100% engine load operation and some emissions values are nominal and are not representative of Not-to-Exceed values unless otherwise specified. It is recommended to apply a safety factor to all emissions values for air permitting to allow for operational flexibility and variations in fuel gas composition.

EMISSION TECHNOLOGIES

Our Ref. 001-00-281048.01 Date: 13 December, 2022 Page: 1 of 1

23.88 x 14.88 x 3.7

3.6 inches of H2O

3 per Unit

To Enerflex Attn Kevin Parsons Via E-mail

Catalyst Performance

			catalyst renormance				
For: Caterpillar G3516J			Project/Location : EF63	Project/Location : EF6347			
ngine Parameters							
Engine Manufacturer	Caterpillar				Raw Exhaust		
Engine Model	G3516J		NOx	0.50	g/bhp-hr		
Horsepower	1380	bhp	СО	2.42	g/bhp-hr		
Speed	1400	rpm	NMHC	2.07	g/bhp-hr		
Exhaust Flowrate	8038	acfm	NMNEHC (VOC)	0.85	g/bhp-hr		
Exhaust Temperature	824	° F	НСНО	0.40	g/bhp-hr		
Fuel	Natural Gas		Oxygen	9.10	%		

Overall Dimensions

Pressure Drop

Catalyst Qty Required

Catalyst Description and Performance Expectations REMB-2415F-D-15HF-HFX4

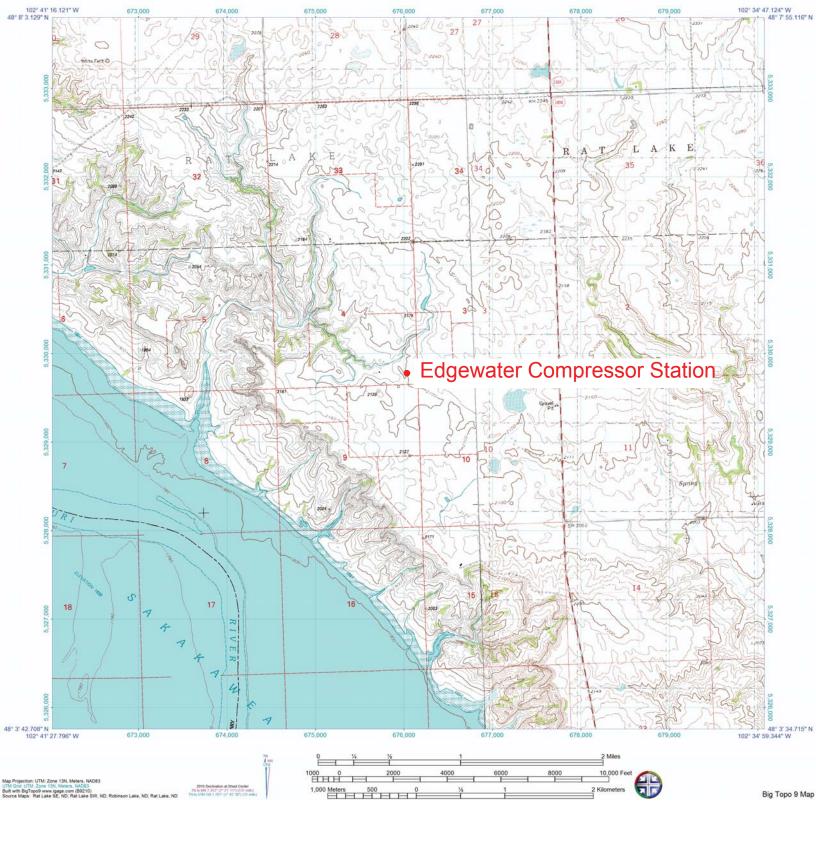
Catalyst Model
Cell Pattern, Substrate
Formulation
Warranty Period [hrs]

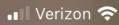
	F	Performance	Expect	ed Fresh Performance	Expected I	End of Life Performance
NOx	0.50	g/bhp-hr	-	% Conversion	-	% Conversion
CO	1.00	g/bhp-hr	99	% Conversion	96	% Conversion
NMHC						
NMNEHC (VOC)	0.70	g/bhp-hr	30	% Conversion	19	% Conversion
НСНО	0.20	g/bhp-hr	95	% Conversion	85	% Conversion

This quote is subject to Catalytic Combustion's Terms and Conditions of Sale which can be reviewed at www.catalyticcombustion.com

Please contact us if you have any questions or to let us know how we can be of further help.

15HF


HFX4


24000

Best regards,

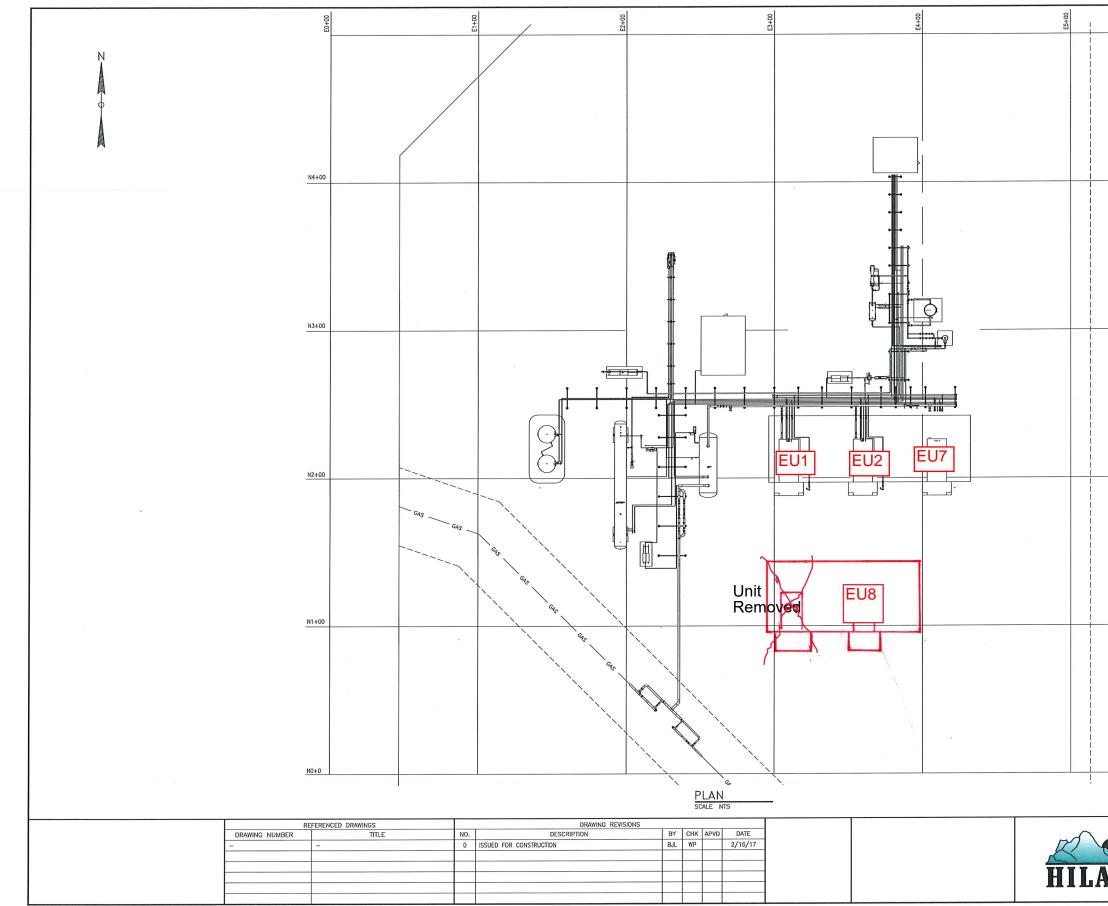
Minely Thompson

Mindy Thompson Account Manager, Catalytic Combustion Corporation Prepared By: JL

1 HI

12:14 PM

1


④✓3D

1

Q Search for a place or address

10. $\langle s \rangle = cc$	ulation gasket kit itractor to stop pipe fabrication until location of equipment crons / the points are verified in field by contractor.							
CONF								
	HILAND PARTNERS PIPING KEY PLAN EDGEWATER COMPRESSOR STATION	l						
TID	JOB NO. 208882							
A N D	DRAWING NO. 15039-P02-1000	REV.						
	PLOT SIZE: ANSI D SCALE: AS SHOWN	1						

NOTES: 1. CONTRACTOR TO INSTALL 1" HIGH POINT VENTS AND LOW POINT DRAINS AS NEEDED. 2. IA - PIPING TO BE ROUTED 18" FROM DEVICE. 3. CONTRACTOR TO FELD ROUTE ALL LINES 1 ½" AND UNDER NOT SHOWN ON PIPING DRAWINGS BUT SHOWN ON PADDa. 5. ADD PIPE SUPPORTS AS REQUIRED ON 1 ½" AND SMALLER PIPING. 6. CONTRACTOR TO CHEL QUIPMENT CONNECTIONS PRIOR TO PIPE FABRICATION. 7. CONTRACTOR TO CARLY ALL GOUPMENT CONNECTIONS PRIOR TO PIPE FABRICATION. 8. DECK GRATING NOT SHOWN FOR CLARITY.

NOTES: