Annual Report

North Dakota Ambient Air Quality Monitoring Program

Network Plan with Data Summary

2019

Environmental Quality

Annual Report

North Dakota Ambient Monitoring Network Plan With Data Summary 2019

Doug Burgum Governor

L. David Glatt Environmental Quality Director

Environmental Quality

Division of Air Quality Ambient Air Monitoring Program 918 E Divide Avenue Bismarck, ND 58501-1947

CONTENTS

	URESv
ACRONYMS AN	D ABBREVIATIONS vii
1.0 INTF	RODUCTION 1
1.1 \$	Site Selection
1.1.1	Monitoring Objectives 2
1.1.2	Spatial Scale
	General Monitoring Needs 4
1.3 N	Network Monitoring Objectives 6
2.0 AMBI	ENT AIR MONITORING NETWORK COVERAGE 8
2.1 0	Carbon Monoxide
2.1.1	Point Sources
2.1.2	Monitoring Network
2.1.3	Network Changes
2.2 I	Lead
2.2.1	Network Changes 11
2.3 0	Dxides of Nitrogen 11
2.3.1	Point Sources
2.3.2	Area Sources 13
2.3.3	Monitoring Network 14
2.3.4	Network Analysis 14
2.3.5	Network Changes 14
2.4 0	Dzone
2.4.1	Point Sources 18
2.4.2	Area Sources 18
2.4.3	Monitoring Network 19
2.4.4	Network Analysis 19
2.5 E	Particle Pollution
2.5.1	Point Sources 22
2.5.2	Monitoring Network 23
2.5.3	PM_{10} Network Analysis 23
2.5.4	PM _{2.5} Network Analysis 25
2.5.5	Speciation Network 26
2.5.6	Network Changes 26
	Sulfur Dioxide
2.6.1	Point Sources
2.6.2	Other Sources
2.6.3	Monitoring Network 27
2.6.4	Network Analysis 27
2.6.5	Network Changes 30
2.7 H	Yydrogen Sulfide
2.7.1	Point Sources
2.7.2	Monitoring Network 31
2.7.3	Network Changes 31
2.8 A	Ammonia 31
2.8.1	Point Sources
2.8.2	Monitoring Network 33
2.8.3	Network Analysis 33
2.8.4	Network Changes 33
	Air Toxics
2.9.1	Point Sources
2.9.2	Monitoring Network 34

2.9.	3 N	<pre>//etwork Changes</pre>
3.0 NE	ETWORK	SITE CHANGES 35
3.1	D	Dunn Center/Lake Ilo 35
4.0 SU	JMMARY	AND CONCLUSIONS
4.1	• Ca	rbon Monoxide (CO) 36
4.2		ad 36
4.3	• Ni	trogen Dioxide (NO ₂) 36
4.4		one (O ₃)
4.5	• Pa	rticulate Matter (PM ₁₀ , PM _{2.5}) 36
4.6	• Su	lfur Dioxide (SO ₂) 37
4.7	• Ну	drogen Sulfide (H ₂ S) 37
4.8	• Am	monia (NH ₃)
4.9	• Ai	r Toxics (HAP) 37
Appendix .	A	Air Quality Personnel Organizational Chart 1
Appendix :	В	Ambient Air Quality Standards 1
Appendix	С	AAQM Site Descriptions 1
Site 1	Name:	Beulah - North 2
Site 1	Name:	Bismarck Residential 5
Site 1	Name:	Lake Ilo 8
Site 1	Name:	Fargo NW 11
Site 1	Name:	Hannover
Site 1	Name:	Lostwood NWR 17
Site 1	Name:	Painted Canyon (TRNP - SU) 20
Site 1	Name:	Ryder 23
Site 1	Name:	TRNP-NU
		Williston
Appendix	D	Wind and Pollution Roses 1
		Beulah - North 2
Site 1	Name:	Bismarck Residential 6
Site 1	Name:	Lake Ilo
Site 1	Name:	Fargo NW 12
Site 1	Name:	Hannover
		Lostwood NWR 18
		Painted Canyon (TRNP - SU) 22
Site 1	Name:	TRNP-NU
		Williston 27
		Hess Tioga Gas Plant - Station A South 2
Site 1	Name:	Hess Tioga Gas Plant - Station B Northeast 5

LIST OF TABLES

Table 1.	Ambient Air Quality Network Description	7
Table 2.	Major CO Sources (≥ 100 TPY) in 2018	
Table 3.	Major NO _x Sources (≥ 100 TPY) in 2018	
Table 4.	Major VOC Sources (≥ 100 TPY) in 2018	
Table 5.	Major PM 10 Sources (≥ 100 TPY)* in 2018	
Table 6.	Major PM 2.5 Sources (≥ 100 TPY)* in 2018	
Table 7.	Major SO ₂ Sources (≥ 100 TPY) in 2018	
Table 8.	Major Ammonia Sources (≥ 100 TPY) in 2018	
Table 9.	Major Air Toxics Sources in 2018	
Table 10.	National and North Dakota Ambient Air Quality Standards	

LIST OF FIGURES

Figure 1.	North Dakota Ambient Air Quality Monitoring Sites	5
Figure 2.	Major CO Sources in 2018	
Figure 3.	CO Concentrations (2 nd high) Compared to the 1-hour and 8-hour Standards	
Figure 4.	Major Oxides of Nitrogen Sources in 2018	
Figure 5.	NO2 Concentrations Compared to the 1-hour Standard	
Figure 6.	NO ₂ Concentrations Compared to the Annual Standard	
Figure 7.	NO ₂ 98 th Percentile 1-Hour Concentrations	
Figure 8.	NO ₂ Annual Average Concentrations	
Figure 9.	Major VOC Sources in 2018	
Figure 10.	Özone Concentrations compared to the 8-hour Standard	
Figure 11.	Annual 4 th Highest 8-HR Ozone Concentrations	
Figure 12.	Major PM ₁₀ Sources in 2018	
Figure 13.	PM ₁₀ Concentrations Compared to the 24-hour Standard	
Figure 14	Major PM _{2.5} Sources in 2018	
Figure 15.	PM _{2.5} Concentrations Compared to the 24-hour Standard	
Figure 16.	PM _{2.5} Concentrations Compared to the Annual Standard	
Figure 17.	Major Sulfur Dioxide Sources in 2018	
Figure 18.	SO ₂ Concentrations Compared to the 1-hour Standard	
Figure 19	SO ₂ 99 th Percentile 1-Hour Concentrations	
Figure 20.	Major Ammonia Sources in 2018	
Figure 21.	NH ₃ Concentrations: Maximum Value and Arithmetic Mean	
Figure 22.	Major Air Toxics Sources in 2018	35
Figure 23.	Organizational Chart	
Figure 24.	Beulah Wind Rose for 2018	D-2
Figure 25.	Beulah NO ₂ Pollution Rose for 2018	D-2
Figure 26.	Beulah O ₃ Pollution Rose for 2018	D-3
Figure 27.	Beulah PM ₁₀ Pollution Rose for 2018	D-3
Figure 28.	Beulah PM _{2.5} Pollution Rose for 2018	D-4
Figure 29.	Beulah SO ₂ Pollution Rose for 2018	D-4
Figure 30.	Beulah NH ₃ Pollution Rose for 2018	D-5
Figure 31.	Bismarck Wind Rose for 2018	D-6
Figure 32.	Bismarck NO ₂ Pollution Rose for 2018	D-6
Figure 33.	Bismarck O ₃ Pollution Rose for 2018	D-7
Figure 34.	Bismarck PM ₁₀ Pollution Rose for 2018	D-7
Figure 35.	Bismarck SO ₂ Pollution Rose for 2018	D-8
Figure 36.	Lake Ilo Wind Rose for 2018	D-9
Figure 37.	Lake Ilo NO ₂ Pollution Rose for 2018	D-9
Figure 38.	Lake Ilo O ₃ Pollution Rose for 2018	D-10
Figure 39.	Lake Ilo PM ₁₀ Pollution Rose for 2018	D-10
Figure 40.	Lake Ilo PM _{2.5} Pollution Rose for 2018	D- 11
Figure 41.	Lake Ilo SO ₂ Pollution Rose for 2018	D- 11
Figure 42.	Fargo Wind Rose for 2018	D-12

Figure 43.	Fargo NO ₂ Pollution Rose for 2018	D-12
Figure 44.	Fargo O ₃ Pollution Rose for 2018	D-13
Figure 45.	Fargo PM ₁₀ Pollution Rose for 2018	D-13
Figure 46.	Fargo PM _{2.5} Pollution Rose for 2018	D-14
Figure 47.	Fargo SO ₂ Pollution Rose for 2018	D-14
Figure 48.	Hannover Wind Rose for 2018	
Figure 49.	Hannover NO ₂ Pollution Rose for 2018	D-15
Figure 50.	Hannover O ₃ Pollution Rose for 2018	D-16
Figure 51.	Hannover PM ₁₀ Pollution Rose for 2018	D-16
Figure 52.	Hannover PM _{2.5} Pollution Rose for 2018	D-17
Figure 53.	Hannover SO ₂ Pollution Rose for 2018	D-17
Figure 54.	Lostwood Wind Rose for 2018	
Figure 55.	Lostwood NO ₂ Pollution Rose for 2018	D-18
Figure 56.	Lostwood O ₃ Pollution Rose for 2018	D-19
Figure 57.	Lostwood PM ₁₀ Pollution Rose for 2018	D-19
Figure 58.	Lostwood PM _{2.5} Pollution Rose for 2018	D-20
Figure 59.	Lostwood SO ₂ Pollution Rose for 2018	D-20
Figure 60.	Lostwood NH ₃ Pollution Rose for 2018	D-21
Figure 61.	Painted Canyon Wind Rose for 2018	
Figure 62.	Painted Canyon O ₃ Pollution Rose for 2018	D-22
Figure 63.	Painted Canyon PM _{2.5} Pollution Rose for 2018	
Figure 64.	Painted Canyon SO ₂ Pollution Rose for 2018	D-23
Figure 65.	TRNP – North Unit Wind Rose for 2018	D-24
Figure 66.	TRNP – North Unit NO ₂ Pollution Rose for 2018	
Figure 67.	TRNP – North Unit O ₃ Pollution Rose for 2018	D-25
Figure 68.	TRNP – North Unit PM ₁₀ Pollution Rose for 2018	D-25
Figure 69.	TRNP – North Unit PM _{2.5} Pollution Rose for 2018	D-26
Figure 70.	TRNP – North Unit SO ₂ Pollution Rose for 2018	D-26
Figure 71.	Williston Wind Rose for 2018	D-27
Figure 72.	Williston O ₃ Pollution Rose for 2018	
Figure 73.	Williston PM ₁₀ Pollution Rose for 2018	D-28
Figure 74.	Williston PM _{2.5} Pollution Rose for 2018	D-28
Figure 75.	Tioga Gas Plant Wind Rose – Three Year Summary	E-1

ACRONYMS AND ABBREVIATIONS

- AQM Ambient Air Quality Monitoring
- AQS Air Quality System
- BAM Beta Attenuation Particulate Monitor
- BART Best Available Retrofit Technology
- CFR Code of Federal Regulations
- CO Carbon Monoxide
- CSN Chemical Speciation Network
- DRR Data Requirements Rule
- EPA United States Environmental Protection Agency
- FEM Federal Equivalent Method
- FRM Federal Reference Method
- GIS Geographic Information System
- H₂S Hydrogen sulfide
- H₂SO₃ Sulfurous acid
- H₂SO₄ Sulfuric acid
- HAP Hazardous Air Pollutant
- IMPROVE Interagency Monitoring of Protected Visual Environments
- MSA Metropolitan Statistical Area
- NAAMS National Ambient Air Monitoring Strategy
- NAAQS National (also North Dakota) Ambient Air Quality Standards
- NCore National Core Monitoring Network
- NH₃ Ammonia
- NO Nitric oxide
- NO₂ Nitrogen dioxide
- NO_x Oxides of Nitrogen

- NO_y Total Reactive Nitrogen
- NPS National Park Service
- NTN National Trends Network
- NWR National Wildlife Refuge
- O₃ Ozone
- PM Particulate Matter
- PM₁₀ Particulate Matter less than 10 microns in diameter
- PM_{2.5} Particulate Matter less than 2.5 microns in diameter (fine particulate matter)
- PM_{10-2.5} Particulate Matter between 2.5 and 10 microns in diameter (coarse particulate matter)
- ppb parts per billion
- PSD Prevention of Significant Deterioration
- SLAMS State and Local Air Monitoring Stations
- SO₂ Sulfur dioxide
- SPM Special Purpose Monitoring
- STN Speciation Trends Network
- TAD Technical Assistance Document
- TEOM Tapered Element Oscillating Microbalance
- TRNP Theodore Roosevelt National Park (NU – North Unit; SU – South Unit at Painted Canyon)
- TPY Tons Per Year
- UV Ultraviolet
- VOC Volatile Organic Compound

1.0 INTRODUCTION

The North Dakota Department of Environmental Quality (Department), Division of Air Quality (Division)¹, has the primary responsibility of protecting the health and welfare of North Dakotans from the detrimental effects of air pollution. Toward that end, the Division ensures that the ambient air quality in North Dakota is maintained in accordance with the levels established by the state and federal Ambient Air Quality Standards (NAAQS)² and the Prevention of Significant Deterioration of Air Quality (PSD) Rules.

To carry out this responsibility, the Division operates and maintains a network of ambient air quality monitoring (AQM) sites throughout the state³.

The Division conducts an annual review of the network to determine if all federal monitoring requirements as set forth in 40 CFR 58⁴ are being met. This document is an account of the review and demonstrates that siting and operation of each monitor in the network meets the requirements of appendices A, B, C, D, and E of the part, where applicable. The annual review also serves to identify any network modifications that are necessary to meet federal requirements. Modifications could include the establishment of new sites, relocation of sites to more appropriate areas, or the removal of sites where the original justification for the site no longer exists. Modifications described in this report are proposed for a period within 18 months of report publication.

Additionally, every five years the Division completes a longer-range assessment to assure that the network has and will continue to meet all its monitoring obligations. The five-year assessment allows for the evaluation of future possible expansions or retractions of the network and the possible incorporation of new technologies.

Each year, the Division completes a data summary report for the previous 12-month data collection season. In the past, this report was issued as a separate document from the network review. Upon inspection, it was found that much of the information included in the data summary report duplicates what was included in the network review. To avoid a doubling-up of effort, beginning in 2015, the data summary for state run AQM sites was combined with the network review resulting in one single comprehensive annual report document⁵.

¹ See Appendix A of this document for an organizational chart for the Division.

² See Appendix B of this document for a summary table of all applicable federal and state ambient air quality standards.

³ See Appendix C of this document for a full description for each site, site photographs, and a site map.

⁴ The Code of Federal Regulations - 40 CFR 58 was promulgated by the Environmental Protection Agency (EPA) on October 17, 2006 and updated effective April 27, 2016.

⁵ This document is subject to 30 days of public comment before finalization. See Appendix E of this document for applicable public comments received.

1.1 Site Selection

1.1.1 Monitoring Objectives

The AQM network consists of a number of individual sites located throughout North Dakota which host the equipment needed to measure pollution concentrations in the air. The process of selecting a monitoring site begins by identifying a monitoring objective. Appendix D of 40 CFR 58 defines the six basic monitoring objectives used to choose the locations of sites in a monitoring program:

- To determine the highest <u>pollutant concentrations</u> expected to occur in an area covered by the network.
- To determine representative concentrations of pollutants in areas of high population density.
- To determine the impact on ambient pollution levels by a <u>significant source</u> or source categories⁶.
- To determine the <u>general/background</u> concentration levels of a given pollutant.
- To determine the impact on air quality by <u>regional transport⁷</u> of pollutants.
- To determine the <u>welfare-related</u> impacts (such as impacts on visibility and vegetation) of pollution.

1.1.2 Spatial Scale

Once an objective for a site has been identified, a spatial scale is chosen. EPA has defined a set of spatial scales based on physical dimensions that, given a particular objective, would be likely to have similar pollutant concentrations throughout. These are:

- Micro-scale
 - Dimensions ranging from several meters up to about 100 meters.
- Middle Scale

 Areas up to several city blocks in size with dimensions ranging from about 100 meters to 0.5 km.

- Neighborhood Scale
 - City areas of relatively uniform land use with dimensions of 0.5 to 4.0 km.
- Urban Scale

⁶ Sources of interest could be point sources (a major industrial facility), area sources (a number of smaller emissions sources that collectively impact ambient air quality), or mobile sources (automobiles on a busy roadway or non-road sources including aircraft, construction vehicles, farm equipment, etc.)

⁷ In this case, regional transport refers to the movement of air pollutants that originate from sources outside the borders of North Dakota into areas within the state.

– Overall, city-wide dimensions on the order of 4 to 50 km (Usually requires more than one site for definition).

Regional Scale

- Rural areas of reasonably homogeneous geography covering from 50 km to hundreds of km.

• National or Global Scale – The entire nation or greater.

C

The relationships between monitoring objectives and spatial scales, as specified by EPA, are as follows:

Monitoring Objective	Appropriate Siting Scales
Highest Concentration	Micro, middle, neighborhood, (sometimes urban or regional for secondarily formed pollutants).
Population Oriented	Neighborhood, urban.
Source Impact	Micro, middle, neighborhood.
General/Background	Urban, regional.
Regional Transport	Urban, regional.
Welfare-related Impacts	Urban, regional.

Spatial scales appropriate to the criteria pollutants monitored in North Dakota are shown below⁸:

Criteria Pollutant	Spatial Scales
Inhalable Particulate	Micro, middle, neighborhood, urban, Regional.
Sulfur Dioxide	Middle, neighborhood, urban, regional.

⁸ Carbon monoxide (CO) is also monitored at the North Dakota National Core (NCore) site in order to meet federal requirements. Appendix D to 40 CFR 58 does not identify an urban spatial scale (4 to 50 kilometers) for Carbon monoxide because this pollutant is primarily associated with automobile traffic on a neighborhood or smaller scale. However, because the CO monitor is present to satisfy NCore specific requirements, it has historically been considered by the Department to be an urban scale monitor in alignment with the other monitors at the site.

Ozone	Middle, neighborhood, urban, regional.
Nitrogen Dioxide	Middle, neighborhood, urban.

A good understanding of the appropriate monitoring objective and spatial scale permits a site location to be chosen. Using these criteria to locate sites allows for an objective approach, ensures compatibility among sites, and provides a common basis for data interpretation and application. The annual review process involves assessing each site and associated monitors to confirm that all still meet their intended purpose. Sites and/or monitors that no longer satisfy the intended purpose are either discontinued or modified accordingly.

1.2 General Monitoring Needs

Each air pollutant has certain characteristics that must be considered when establishing a monitoring site. These characteristics may result from:

- (A) Variations in the number and types of sources and emissions in question;
- (B) Reactivity of a particular pollutant with other constituents in the air;
- (C) Local site influences such as terrain and land use; and
- (D) Climatology.

The Department's AQM network is designed to monitor air quality data for six basic objectives:

(1) Monitoring of criteria pollutant background concentrations;

(2) Quantifying population exposure to pollutants;

- (3) Monitoring significant sources of pollutants or class category;
- (4) Long-range transport of pollutants

(5) Regional haze; and

(6) Air quality characterization for attainment designations.

The 2008 National Ambient Air Monitoring Strategy (NAAMS⁹) establishes a monitoring site classification system for the national AQM network. State and Local Monitoring Stations (SLAMS) make up the primary component for determining criteria pollutant NAAQS compliance. The Department operates nine ambient air quality monitoring sites in North Dakota (Figure 1). A tenth site, the Theodore Roosevelt National Park – South Unit site at Painted Canyon (TRNP – SU), is operated by the Department in partnership with the National Park Service (NPS). All of the state operated sites and the partnership site at Painted Canyon have been designated SLAMS sites¹⁰. Additionally, two sites (Hess Tioga Station A – South and Station B – North) have been established

⁹ U.S. EPA (2008). Ambient Air Monitoring Strategy for State, Local, and Tribal Air Agencies. Available via link at: <u>www.epa.gov/ttn/amtic/monstratdoc.html</u>.

¹⁰ See Appendix C of this report for specific information on the location of each monitoring site.

as SLAMS-like sites¹¹ in order to characterize air quality in Williams County in response to the Data Requirements Rule (DRR) for the 2010 1-hour SO₂ standard. These two sites are operated by industry overseen by the Department.

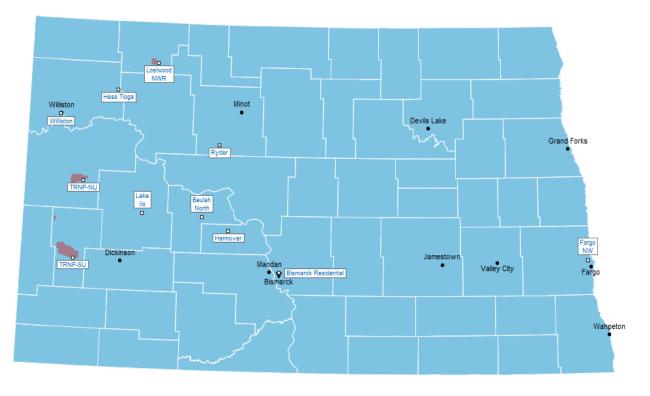


Figure 1. North Dakota Ambient Air Quality Monitoring Sites (Indicated with White Labels)

A National Core (NCore) site is one in a network of approximately 80 multi-pollutant monitoring sites throughout the United States designed to support specific EPA core monitoring objectives in public reporting, emissions trends tracking, and NAAQS compliance evaluation. Each state is required to have one or more NCore designated sites. In addition to being a SLAMS site, on April 8, 2016, EPA approved the Department's request to designate the Bismarck Residential site as the required NCore site in North Dakota¹².

The Bismarck site is also a part of EPA's Chemical Speciation Network (CSN) as a trends site. The Speciation Trends Network (STN; a subset of the CSN) was established to monitor long term trends in concentration of selected particulate matter constituents. The NAAMS document provides additional information regarding these national networks.

¹¹ Monitors operated in a manner equivalent to SLAMS as to meet all applicable requirements of 40 CFR 58,

appendices A, C, and E, and subject to the data certification and reporting requirements of 40 CFR 58.15 and 58.16. ¹² Previously the Fargo NW site was the North Dakota designated NCore site.

1.3 Network Monitoring Objectives

As described in section 1.1, each monitoring site is selected to satisfy certain monitoring objectives. Additionally, 40 CFR 58 outlines certain conditions whereby EPA has determined a particular type of monitor is required to satisfy a given monitoring objective. The monitoring sites in North Dakota can be divided into three categories: 40 CFR 58 required (3 sites), supplemental (7 sites), and 40 CFR 51 DRR required (2 sites). Department's three required Part 58 sites are:

The **Bismarck** monitoring site lies in the second largest metropolitan area in North Dakota. Bismarck is the designated NCore and Chemical Speciation Trends site. This site is designed to satisfy the requirements of 40 CFR 58 Appendix D 3.0 - Design Criteria for NCore Sites, and 4.7 - Fine Particulate Matter (PM_{2.5}) Design Criteria.

The **Fargo NW** site has been designated a population orientated site because the city of Fargo is the largest population center in North Dakota and five major emissions sources are located in the area. The data from the Fargo site are used in dispersion modeling to evaluate construction and operating permit applications for projects located in the eastern part of the state. Additionally, Fargo monitors meet the requirement of 40 CFR 58 Appendix D 4.4 - Sulfur Dioxide (SO₂) Design Criteria.

The **Theodore Roosevelt National Park North Unit (TRNP-NU)** site is used to evaluate background concentrations, long-range transport, and welfare-related impacts of pollutants. Monitors at this site help to meet the requirements of 40 CFR 58 Appendix D subpart 4.7 - Fine Particulate Matter (PM_{2.5}) Design Criteria.

The seven supplemental sites are used to support air dispersion model calibration and/or validation and to supplement data collected at the required sites. Monitoring objectives for the entire network is outlined in Table 1.

Background, welfare-related and long-range transport sites are chosen to determine concentrations of air contaminants in areas remote from urban sources. These are generally sited using the regional spatial scale. Once a specific location is selected for a site, the site is established in accordance with the specific sitting criteria specified in 40 CFR 58, Appendices A, C, D and E.

The Department evaluates any monitoring requirements and site changes needed to support the visibility regulations in 40 CFR 51.300, 40 CFR 51.308 (visibility and regional haze rules) and 40 CFR 51, Appendix Y (Best Available Retrofit Technology, BART).

					Ра	rame	ter M	onito	red				
	Site Name AQS* Site Number	СО	NO ₂	03	Manual PM _{2.5}	Continuous PM _{2.5}	Continuous PM ₁₀	SO2	PM fine Speciation	NH3	ΝΟγ	Wind Speed & Direction	Monitoring Objective
1	Beulah North 380570004		*	*		*	*	*		*		*	Population Exposure & Significant Source
2	Bismarck Residential 380150003	*	*	*	*	*	*	*	*		*	*	Population Exposure (NCore)
3	Lake Ilo 380250004		*	*		*	*	*				*	General Background
4	Fargo NW 380171004		*	*		*	*	*				*	Population Exposure
5	Hannover 380650002		*	*		*	*	*				*	Source Impact
6	Lostwood NWR 380130004		*	*		*	*	*		*		*	General Background & Significant Source
7	Painted Canyon 380070002			*		*		*				*	General Background
8	Ryder 381010003		*	*		*	*	*				*	Population Exposure & Long- range Transport
9	TRNP – NU 380530002		*	*		*	*	*				*	General Background, Long-range Transport, & Welfare-related
10	Williston 381050003			*		*	*					*	Population Exposure
11	Hess Tioga A – South 381050105							*					Source Specific, DRR air quality characterization
12	Hess Tioga B – NE 381050106							*				*	Source Specific, DRR air quality characterization

 Table 1.
 Ambient Air Quality Network Description

2.0 AMBIENT AIR MONITORING NETWORK COVERAGE

The ambient air quality monitoring sites in the state are positioned to satisfy the monitoring objectives (described in Section 1.3 of this report), to collect data to support dispersion modeling activities relating to visibility/regional haze and source permit evaluation, and to compare to the State and Federal ambient air quality standards.

The NAAQS¹³ are established by EPA in order to meet the requirements of the Clean Air Act and address concentrations of six criteria pollutants in the ambient air. The following sections describe the pollutants and outline state monitoring efforts with respect to each pollutant. Monitoring results in relation to the NAAQS are presented in each section. Additionally, Appendix D of this document includes wind and pollution roses for each monitoring site.

2.1 Carbon Monoxide

Carbon monoxide (CO) is an odorless, colorless, and toxic gas. Worn or poorly adjusted and maintained combustion devices (e.g. boilers and furnaces), or those with improperly sized, blocked, disconnected, or leaking flues, can be significant sources of CO. Auto, truck, or bus exhaust can also be a source of CO. Many large urban areas in the United States have problems attaining the NAAQS for CO where the primary source of CO is automobiles. To date, North Dakota does not have large population centers with the corresponding traffic congestion and geographical/meteorological conditions to create significant CO emissions issues. However, there are several stationary sources in the state that emit more than 100 tons per year (TPY) of CO.

The effects of CO exposure can vary greatly from person to person depending on age, overall health and the concentration and length of exposure. At lower levels of exposure, CO causes mild effects that are often mistaken for a cold or the flu virus. These symptoms include headaches, dizziness, disorientation, nausea, and fatigue. In individuals with heart disease, chest pain may be a symptom. At moderate concentrations, angina, impaired vision, and reduced brain function may result. At very high concentrations, CO exposure can be fatal. Acute effects are due to the formation of carboxyhemoglobin in the blood, which inhibits oxygen intake.

2.1.1 Point Sources

The major stationary CO sources (>100 TPY) are listed in Table 2. Figure 2 shows the approximate locations of these facilities (the numbers correspond to the site and source tables). Most of these sources are the same sources that are the major emitters of sulfur dioxide and oxides of nitrogen. However, the corresponding CO levels from these sources are considerably lower.

¹³ Appendix B.

2.1.2 Monitoring Network

A five-year CO monitoring study concluded in 1994. The data produced by this study led the Department to determine that ambient concentrations of CO within the state were well below the NAAQS and exceedances were unlikely. Based on this, CO monitoring in ND was suspended. Between 2009 and early 2016, the Department operated a Trace Level CO analyzer at the Fargo NW site in order to comply with the NCore requirements. Trace Level CO analysis began in Bismarck upon relocation of the NCore site from Fargo to Bismarck. The 2017 monitoring campaign was the first full year of CO data for the Bismarck NCore site, Figure 3 shows CO concentrations at Bismarck in comparison to the 1- and 8-hour NAAQS for the data that was collected.

2.1.3 Network Changes

There were no significant changes made to the CO monitoring network in 2018. There are no changes planned for 2019.

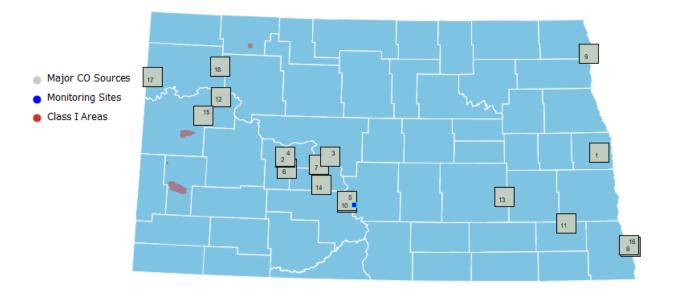
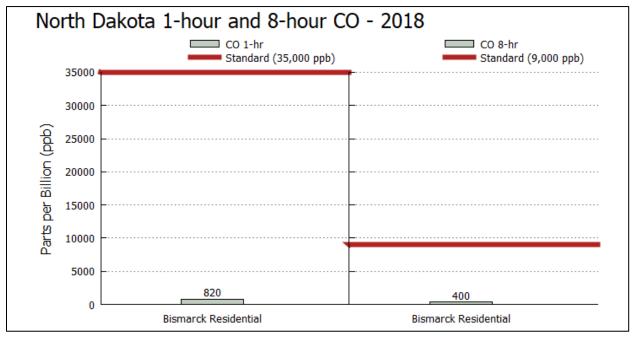



Figure 2. Major CO Sources in 2018

#	COMPANY	SOURCE	EIS Facility ID
1	American Crystal Sugar Company	Hillsboro Plant	7939011
2	Dakota Gasification Company	Great Plains Synfuels Facility	8086711
3	Great River Energy	Coal Creek Station	8011011
4	Basin Electric Power Cooperative	Antelope Valley Station	8086511
5	Montana Dakota Utilities Company	RM Heskett Station	8087011
6	Otter Tail Power Company	Coyote Station	8086611
7	Basin Electric Power Cooperative	Leland Olds Station	8086311
8	Minn-Dak Farmer's Cooperative	Wahpeton Plant	7924011
9	American Crystal Sugar Company	Drayton Plant	7923811
10	Tesoro Refining and Marketing Company	Mandan Refinery	7923611
11	Northern Sun, AMD Co.	Enderlin Facility	7923911
12	Hess North Dakota Pipelines LLC	Hawkeye Gas Facility	10613211
13	Great River Energy	Spiritwood Station	16937511
14	Minnkota Power Cooperative, Inc.	Milton R. Young Station	8087911
15	ONEOK Rockies Midstream, LLC	Garden Creek Gas Plant	N/A
16	Cargill Corn Milling	Wahpeton Facility	10612711
17	ONEOK Rockies Midstream, LLC	Stateline Gas Plant	N/A
18	Hess Tioga Gas Plant LLC	Tioga Gas Plant	8013911

Table 2. Major CO Sources (≥ 100 TPY) in 2018

CO Concentrations (2nd high) Compared to the 1-hour and 8-hour Standards

2.2 Lead

Lead is a heavy metal that can be emitted through some heavy industrial manufacturing processes, including metals processing. Lead is also used as a fuel additive to increase engine performance and reduce valve wear. Although phased out of general use in the United States for on-road automobile and truck fuel in the 1970s, lead additive is still used in some aviation fuels.

High lead levels in the body can affect the nervous system, kidneys, and the immune system. Reproductive and cardiovascular health can also be impacted.

Through prior sampling efforts, the Department has determined that the state has low lead concentrations and no significant lead sources. This determination, coupled with the federal lead monitoring requirements, resulted in the state lead monitoring program ending effective Dec. 31, 1983.

2.2.1 Network Changes

There were no significant changes made to the lead monitoring network in 2018. There are no changes planned for 2019.

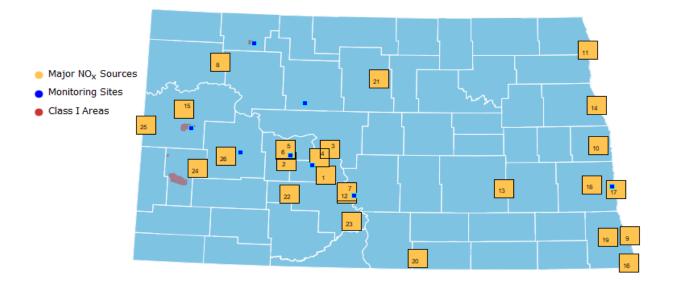
2.3 Oxides of Nitrogen

Oxides of Nitrogen (NO_x) is the term used to represent nitric oxide (NO) plus nitrogen dioxide (NO₂). NO and NO₂ are formed when the nitrogen and oxygen in the air are combined in high-temperature combustion. Major NO_x sources in North Dakota are coal conversion processes, natural gas processing plants, and natural gas compressor stations.

In its pure state, NO_2 is a reddish-orangish-brown gas with a characteristic pungent odor. As a pollutant in ambient air, however, NO_2 is virtually odorless – although it may be an irritant to the eyes and throat. NO_2 is corrosive and a strong oxidizing agent. The dark orangish-brown colored plume that can sometimes be seen downwind from a major combustion emissions source is most likely the result of NO_2 or the conversion of NO to NO_2 .

There is no ambient air quality standard for NO, a colorless gas. NO released into ambient air combines with excess oxygen to form NO₂. The speed with which this conversion occurs is dependent on several factors, including the relative concentrations of NO and ozone, the amount of ultraviolet light available, and meteorological conditions.

 NO_x exposure can result in respiratory distress, including airway inflammation and aggravation of asthmatic symptoms. Ozone, with its own health concerns, is a byproduct of the chemical reaction of NO_x and volatile organic compounds with heat and sunlight. In the form of the corrosive species nitrous and nitric acid, NO_x can result in impacts on vegetation and materials. In combination with


ammonia and water vapor, NO_x can form small particulates, impairing visibility and impacting health.


 NO_y , or "total reactive nitrogen", consists of oxidized compounds of nitrogen (i.e. NO_x + nitric acid and organic nitrates). A NO_y monitor works by converting all reactive species to NO. Non- NO_x species concentrations can be determined by subtracting monitored ambient NO and NO_2 concentrations from the resultant total concentration of converted NO. There is no ambient air quality standard for NO_y .

2.3.1 Point Sources

The major NO_x stationary point sources (>100 TPY) are listed in Table 3.

Figure 4 shows the approximate locations of these facilities (the numbers correspond to the site and source tables). The larger NO_x point sources in North Dakota are associated with coal-fired steam-powered electrical generating plants in the west-central portion of the state and large internal combustion compressor engines in the natural gas fields in the western part of the state. Figure 5 shows the contribution of point sources to the total NO_x emissions. The "Point Sources" category consists of utility boilers (power plant boilers) and oil and gas wells.

#	Company	Source	EIS Facility ID
1	Minnkota Power Cooperative, Inc.	Milton R. Young Station	8087911
2	Otter Tail Power Company	Coyote Station	8086611
3	Great River Energy	Coal Creek Station	8011011
4	Basin Electric Power Cooperative	Leland Olds Station	8086311
5	Basin Electric Power Cooperative	Antelope Valley Station	8086511
6	Dakota Gasification Company	Great Plains Synfuels Facility	8086711
7	Montana Dakota Utilities Company	RM Heskett Station	8087011
8	Hess Corporation	Tioga Gas Plant	8013911
9	Minn-Dak Farmers' Cooperative	Wahpeton Plant	7924011
10	American Crystal Sugar Company	Hillsboro Plant	7939011
11	American Crystal Sugar Company	Drayton Plant	7923811
12	Tesoro Refining & Marketing Company	Mandan Refinery	7923611
13	Great River Energy	Spiritwood Station	16937511
14	University of North Dakota	UND Heating Plant	7292911
15	Northern Border Pipeline Company	Compressor Station #4	8085811
16	Alliance Pipeline, LP	Fairmount Compressor Station	10612211
17	North Dakota State University	NDSU Heating Plant	8448211
18	Tharaldson Ethanol Plant I	Tharaldson Ethanol Plant I, LLC	N/A
19	Guardian Hankinson, LLC	Hankinson Renewable Energy, LLC	16663511
20	Northern Border Pipeline Company	Compressor Station #8	8085311
21	Alliance Pipeline, LP	Towner Compressor Station	10612311
22	Northern Border Pipeline Company	Compressor Station #6	8087111
23	Northern Border Pipeline Company	St. Anthony Compressor Station	10612111
24	ONEOK Rockies Midstream, LLC	Garden Creek Gas Plant	N/A
25	ONEOK Rockies Midstream, LLC	Grasslands Gas Plant	8085511
26	Northern Border Pipeline Company	Manning Compressor Station	7292311
27	ONEOK Rockies Midstream, LLC	Stateline Gas Plant	N/A

Table 3. Major NO_x Sources (≥ 100 TPY) in 2018

2.3.2 Area Sources

Another source of NO_x is automobile emissions. North Dakota has no significant urbanized areas with respect to oxides of nitrogen; the entire population of the state is less than 1,000,000 people and the largest Metropolitan Statistical Area (MSA; includes Fargo) has a population of 238,124

(2016 estimate¹⁴).

2.3.3 Monitoring Network

The Department operated eight NO/NO₂/NO_x analyzers in 2018. From Figure 4 it can be seen that the NO/NO₂/NO_x analyzers are well placed with respect to the major NO_x sources. Additionally, as part of the NCore network site at Bismarck, the Department operates a NO_y monitor.

2.3.4 Network Analysis

Figures 5 and 6 show the 2018 NO_2 monitoring results in comparison to the 1-hour and annual NO_2 NAAQS, respectively. Numbers above the bars indicate monitored concentrations.

Nine of the ten largest NO_x sources in the state are within 45 miles of the Beulah and Hannover monitoring sites. Figures 7 and 8 show the 1-hour and annual average concentrations for the Department-operated sites for 1980 – 2018, respectively.

2.3.5 Network Changes

There were no significant changes made to the NO₂ network in 2018. There are no changes planned for 2019.

¹⁴ US Census Bureau. Annual Estimates of the Resident Population: April 1, 2010 to July 1, 2016 – United States – Metropolitan and Micropolitan Statistical Area; and for Puerto Rico 2016 Population Estimates. https://www.census.gov/data/tables/2016/demo/popest/total-metro-and-micro-statistical-areas.html. Retrieved 5/10/2017

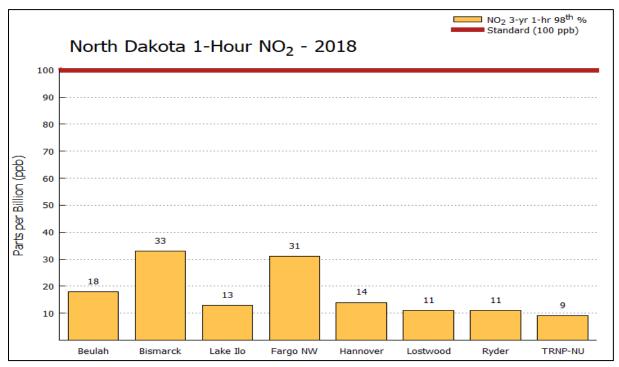


Figure 5. NO₂ Concentrations Compared to the 1-hour Standard

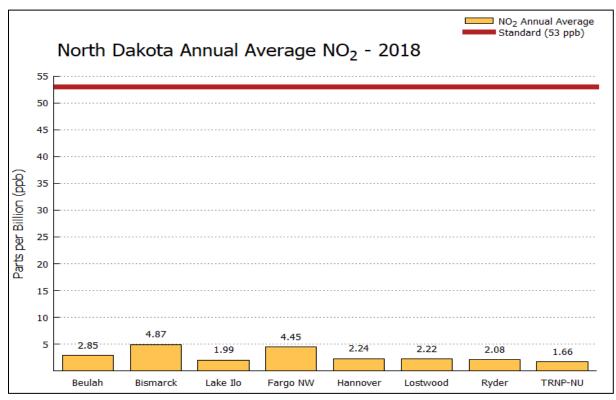


Figure 6. NO₂ Concentrations Compared to the Annual Standard

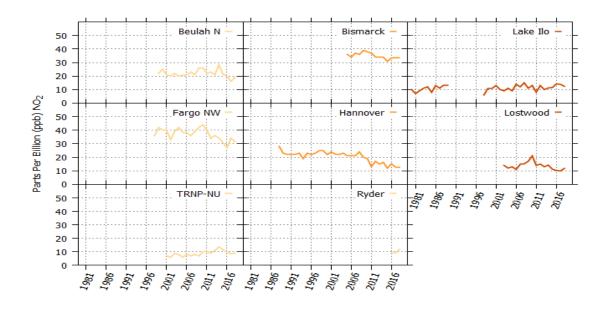


Figure 7. NO₂ 98th Percentile 1-Hour Concentrations

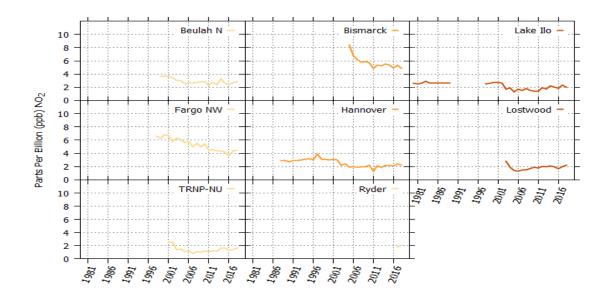


Figure 8. NO₂ Annual Average Concentrations

2.4 Ozone

Ozone (O_3) is a highly reactive form of oxygen. At very high concentrations, it is a blue, unstable gas with a characteristic pungent odor. It can often be detected around an arcing electric motor, lightning storms, or other electrical discharges. However, at ambient concentrations, O_3 is colorless and odorless.

Unlike most other pollutants, O_3 is not emitted directly into the atmosphere, but results from a complex photochemical reaction between volatile organic compounds (VOC), NO_x, and solar radiation. Both VOC and NO_x are emitted directly into the atmosphere. Sources of VOC include automobile exhaust, gasoline and oil storage and transfer, industrial paint solvents, degreasing agents, cleaning fluids, and ink solvents. Some vegetation can also emit VOC (e.g. terpene from pine trees).

Production of O_3 is a year-round phenomenon. However, the highest O_3 levels generally occur during the summer months when sunlight is stronger and stagnant meteorological conditions can cause reactive pollutants to remain in an area for several days. Ozone produced under these conditions can be transported many miles. 40 CFR 58 defines the O_3 monitoring season for North Dakota as March 1 through September 30^{15} .

At ground level where it can be breathed, O_3 is a pollutant. However, ground-level O_3 should not be confused with the stratospheric O_3 located between 12 and 20 miles above the earth's surface. The stratospheric O_3 layer shields the earth from intense cancer-causing ultraviolet radiation. Concentrations of O_3 in this layer are approximately 10,000 to 12,000 ppb, or 100 times the state's ambient air quality standard. Occasionally, meteorological conditions can result in stratospheric O_3 being brought to ground level. This can increase ambient air concentrations by 50 to 100 ppb.

Short-term exposure to O_3 in the range of 150 to 250 ppb may impair mechanical functions of the lungs and may induce respiratory difficulties and related symptoms in sensitive individuals (those who have asthma, emphysema, or reduced lung function). Symptoms and effects of O_3 exposure are more readily induced in people who are exercising.

 O_3 is the major component of photochemical "smog", although the haziness and odors of the smog are caused by other components. The deterioration and degradation of material, especially the splitting and cracking of rubber tires and windshield wiper blades, is associated with O_3 . Many plants, such as soybeans and alfalfa, are sensitive to O_3 and can be damaged by extended exposure to low levels.

¹⁵ The required O₃ monitoring season for NCore stations is January through December. The Department typically collects O₃ monitoring data year-round at all ozone monitoring sites.

2.4.1 Point Sources

The major stationary point sources (> 100 TPY) of VOC as calculated from the most recent emission inventories reported to the Department are listed in Table 4. Figure 10 shows the approximate locations of these facilities.

2.4.2 Area Sources

Point sources contribute only part of the total VOC and NO_x emissions. The remaining emissions can be attributed to oilfield-related activities and mobile sources in urban areas. The EPA has specified design criteria for selecting locations for population oriented O_3 monitoring as any urbanized area having a population of 50,000 to less than 350,000. North Dakota has three urbanized areas (Bismarck; Fargo, ND-Moorhead, MN; and Grand Forks) that meet these criteria. However, to require monitoring, the 4th highest 8-hour average concentration must be at least 68 parts per billion. As can be seen from Figure 10 (numbers above the bars indicate concentration), none of the O_3 monitors at SLAMS sites reach this threshold.

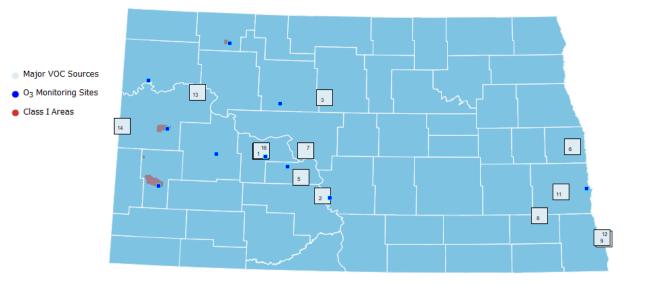


Figure 9. Major VOC Sources in 2018

#	Company	Source	EIS Facility ID
1	Dakota Gasification Company	Great Plains Synfuels Facility	8086711
2	Tesoro Refining and Marketing Company	Mandan Refinery	7923611
3	ADM Processing	Velva Facility	8085211
4	Guardian Hankinson, LLC	Hankinson Renewable Energy	N/A
5	Minnkota Power Cooperative, Inc.	Milton R. Young Station	8087911
6	American Crystal Sugar Company	Hillsboro Plant	7939011
7	Great River Energy	Coal Creek Station	8011011
8	Northern Sun (Division of ADM)	Enderlin Facility	7923911
9	Minn-Dak Farmer's Cooperative	Wahpeton Plant	7924011
10	J.R. Simplot Company	Grand Forks Facility	7293211
11	Tharaldson Ethanol Plant I, LLC	Tharaldson Ethanol Plant I, LLC	12682411
12	Cargill Corn Milling	Wahpeton Facility	10612711
13	Hess North Dakota Pipelines LLC	Hawkeye Gas Facility	10613211
14	ONEOK Rockies Midstream, LLC	Grasslands Gas Plant	8085511
15	Basin Electric Power Cooperative	Pioneer Generation Station	N/A
16	Basin Electric Power Cooperative	Antelope Valley Station	8086511
17	ONEOK Rockies Midstream, LLC	Garden Creek Gas Plant	N/A

Table 4. Major VOC Sources (≥ 100 TPY) in 2018

2.4.3 Monitoring Network

The Department operated ten continuous ultraviolet (UV) photometric ozone analyzers in 2018 (Figure 9). Figure 10 presents the 2018 8-hour data summaries.

2.4.4 Network Analysis

Only three of the 10 monitoring sites are in an area not significantly influenced by VOC sources (see Figure 9). Beulah and Hannover are within 45 miles of five of the 12 major VOC sources in the state. Lostwood National Wildlife Refuge (NWR) and TRNP - NU are located in Class I areas¹⁶ surrounded by oil fields. Bismarck Residential and Fargo NW are located in population centers and influenced by city traffic. Williston is also in a population center located in the heart of oil country. Dunn Center is located in a rural area surrounded by crop land. With this diversity of site locations and influences, one would expect to see a diversity of ozone concentrations. On the contrary, Figure 10 shows a striking similarity among the 4th maximum 8-hour annual concentrations. Since 1980, only four 8-hour averages have been higher than 70 ppb. Another, even stronger, indication of a uniform ozone distribution is the 8-hour concentrations: for all sites, the difference among the

¹⁶ A Class I area is one of 156 parks and wilderness areas given special protection under the Clean Air Act for the purpose of visibility protection.

4th highest average is 3 ppb (see Figure 10). Figure 11 shows the annual average concentrations for the Department-operated sites for 1980 - 2018.

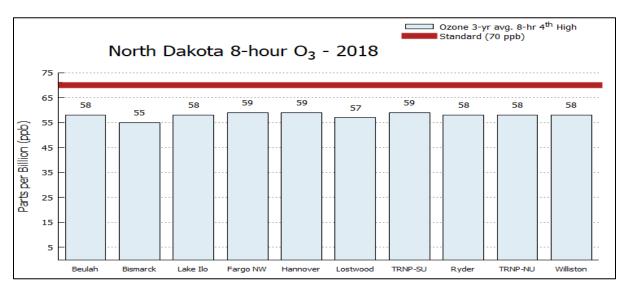


Figure 10. Ozone Concentrations compared to the 8-hour Standard

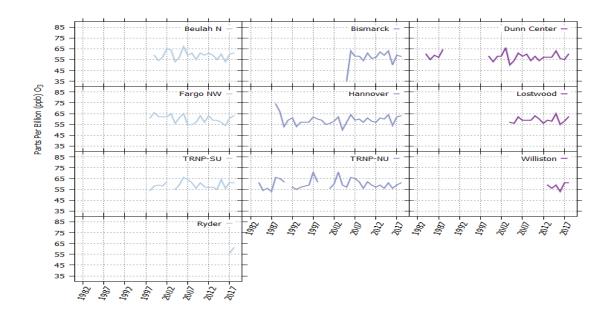


Figure 11. Annual 4th Highest 8-HR Ozone Concentrations (As of December 28, 2015 the ozone standard changed from 75 ppb to 70 ppb)

2.4.5 Network Changes

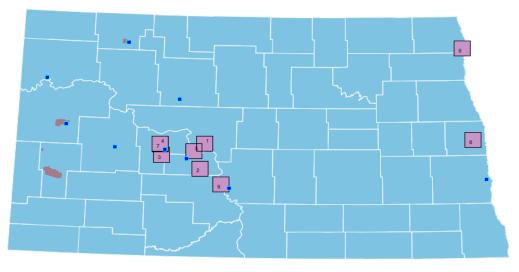
There were no significant changes made to the O_3 network in 2018. The Department has suspended the co-location of Ozone monitors at the Lostwood and Beulah Sites as of December 31st 2018.

2.5 Particle Pollution

Particulate matter (PM) is the term given to the tiny particles of solid or semi-solid material found in the atmosphere. The inhalable PM standards are designed to protect against those particulates that can be inhaled deep into the lungs and cause respiratory problems.

Particles larger than 10 micrometers are usually due to "fugitive dust" (windblown sand and dirt from roadways, fields, and constructions sites) and contain large amounts of silica (sand-like) materials. The majority of anthropogenic (man-made) PM is in the 0.1 to 10 micrometer particle diameter range. Within the NAAQS, there are two subgroups of PM identified: PM_{10} and $PM_{2.5}$. The PM_{10} particles have an aerodynamic diameter less than or equal to a nominal 10 microns, while the $PM_{2.5}$ particles have an aerodynamic diameter less than or equal to a nominal 2.5 microns.

 PM_{10} is generally created during a burning process and includes fly ash (from power plants), carbon black (from automobiles and diesel engines), and soot (from fireplaces and wood-burning stoves); or industrial processes including grinding, crushing, or agricultural processing. PM_{10} from these sources contain a large percentage of elemental and organic carbon, which play a role in both visual haze and health issues. $PM_{2.5}$ can also form directly through combustion processes but can also be the result of indirect formation through chemical reactions between various other compounds and meteorological factors in the atmosphere. The EPA has also defined PM subgroup of particles called "coarse fraction," designated $PM_{10-2.5}$, with an aerodynamic diameter between 10 and 2.5 microns.


The health risk from an inhaled dose of PM depends on the size and concentration of the particulate. Size determines how deeply the inhaled particulate will penetrate into the respiratory tract, where it can persist and do damage. Particles less than 10 micrometers in diameter are easily inhaled deeply into the lungs. $PM_{2.5}$ (also called fine particulate pollution) affects the health of certain subgroups, which can be identified as potentially at risk of adverse health effects from airborne pollutants. There is very strong evidence that asthmatics are much more sensitive (i.e., respond with symptoms at relatively low concentrations) to the effects of particulates than is the general healthy population.

The effects of PM exposure may be the most widespread of all pollutants. Because of the potential for extremely long-range transport of $PM_{2.5}$ particles and because of the chemical reactions that occur, no place on earth has been spared from the particulate generated by urban and rural sources. The effects of PM range from visibility degradation to climate changes to vegetation damage. General soiling can have long-term effects on paint and other materials. Acid deposition can be detected in the most remote areas in the world.

Monitoring Sites

Class I Areas

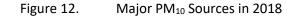


Table 5. Major PM 10 Sources (\geq 100 TPY)* in 2018

#	COMPANY	SOURCE	EIS Facility ID
1	Great River Energy	Coal Creek Station	8011011
2	Minnkota Power Cooperative, Inc.	Milton R. Young Station	8087911
3	Otter Tail Power Company	Coyote Station	8086611
4	Basin Electric Power Cooperative	Antelope Valley Station	8086511
5	Basin Electric Power Cooperative	Leland Olds Station	8086311
6	American Crystal Sugar Company	Hillsboro Plant	7939011
7	Dakota Gasification Company	Great Plains Synfuels Facility	8086711
8	American Crystal Sugar Company	Drayton Plant	7923811
9	Montana Dakota Utilities Company	RM Heskett Station	8087011

Total PM₁₀-Filterable + PM-Condensable as reported.

2.5.1 Point Sources

The major PM_{10} point sources (>100 TPY of PM_{10} -Filterable + PM-Condensable) are listed in Table 5 and the major $PM_{2.5}$ point sources (>100 TPY of $PM_{2.5}$ -Filterable + PM-Condensable) are shown in Table 6. Figures 12 and 14 show the approximate locations of these facilities, respectively (the numbers correspond to the site and source tables). Most of these sources are large coal-fired facilities, and the particles are part of the boiler stack emissions; however, some of the emissions are the result of processing operations. Not included in this table are sources of fugitive dust such as coal mines, gravel pits, agricultural fields and unpaved roads.

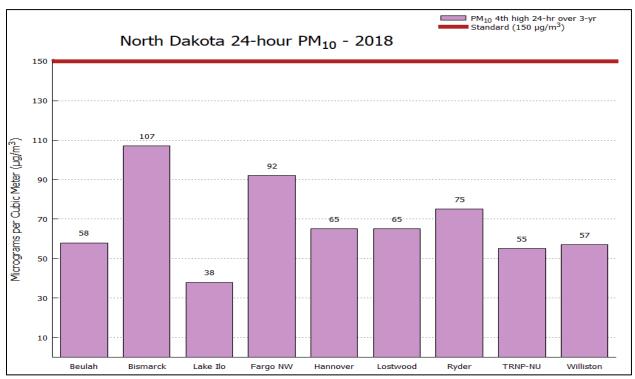
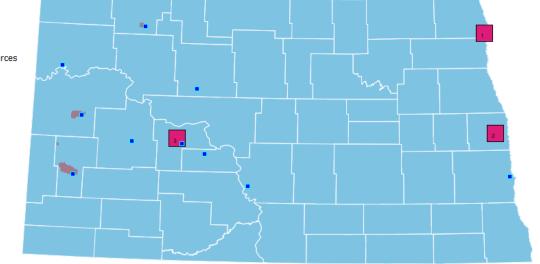


Figure 13. PM₁₀ Concentrations Compared to the 24-hour Standard¹⁷


2.5.2 Monitoring Network

The Department operated eight continuous PM_{10} analyzer sites (Figure 12), one Federal Reference Method (FRM) manual $PM_{2.5}$ site (at the Bismarck NCore site), nine Federal Equivalent Method (FEM) continuous $PM_{2.5}$ analyzer sites (Figure 14), and one speciation sampler site (also at the Bismarck site) in 2018.

2.5.3 PM₁₀ Network Analysis

 PM_{10} and smaller particles are of concern mainly because of their health effects. Continuous PM_{10} analyzers are used with the continuous $PM_{2.5}$ analyzers to determine the $PM_{10-2.5}$ fraction. The data also are compared to both the state and federal ambient air quality standards. Figure 13 shows the 2018 PM_{10} particulate monitoring results in comparison to the 24-hour NAAQS. Numbers above the bars indicate monitored concentrations.

¹⁷ Values shown represent the maximum yearly second high value over a three year period.

- Major PM_{2,5} Sources
- Monitoring Sites
- 🔵 Class I Areas

Major PM 2.5 Sources (\geq 100 TPY)* in 2018 Table 6.

#	COMPANY	SOURCE	EIS Facility ID
1	American Crystal Sugar Company	Drayton Plant	7923811
2	American Crystal Sugar Company	Hillsboro Plant	7939011
3	Dakota Gasification Company	Great Plains Synfuels Facility	8086711
*	Total PMac-Filterable	•	•

Total PM_{2.5}-Filterable.

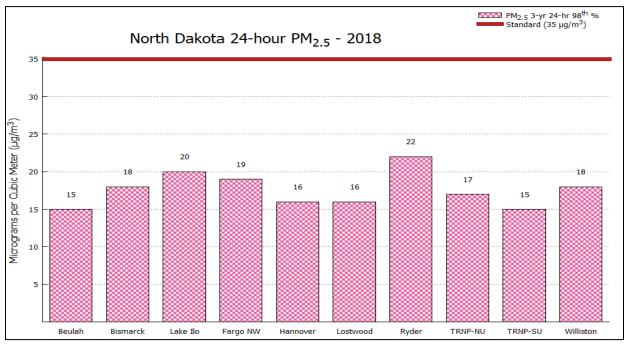


Figure 15. PM_{2.5} Concentrations Compared to the 24-hour Standard

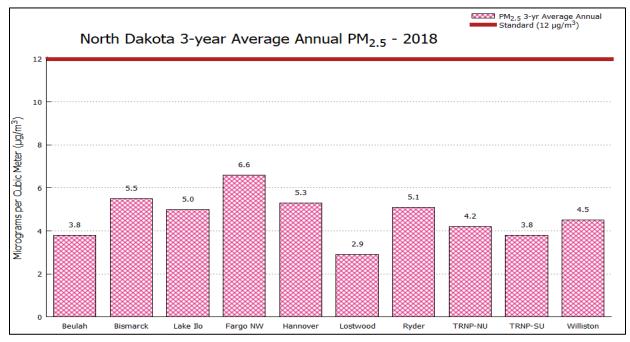


Figure 16. PM_{2.5} Concentrations Compared to the Annual Standard

2.5.4 PM_{2.5} Network Analysis

The manual $PM_{2.5}$ samplers at Bismarck operate on a 1-in-3-day schedule. FEM continuous $PM_{2.5}$ analyzers have been installed at all sites in the network (Figure 14). Figures 15 and 16 show the

2018 $PM_{2.5}$ particulate monitoring results in comparison to the 24-hour and annual standards, respectively. Numbers above the bars indicate monitored concentrations.

2.5.5 Speciation Network

One speciation sampler is installed as a National Trends Network sampler in Bismarck. The data collected by this sampler are added to the Air Quality System (AQS) database by an EPA contractor¹⁸.

2.5.6 Network Changes

The Department has evaluated the $PM_{2.5}$ particulate matter network and determined that the FRM manual sampler co-location requirements can be met by the samplers located at the Bismarck NCore site. Unfortunately, this was not the case for the 2018 monitoring year. In response the Department decided to install a co-located $PM_{2.5}$ monitor, a BAMM 1020 at the Beulah Site. In addition to the BAMM the Department also installed a new Teledyne T640 $PM_{2.5}/PM_{10}$ monitor at the Beulah monitoring site for the 2019 monitoring year.

2.6 Sulfur Dioxide

Sulfur dioxide (SO₂) is a colorless gas with a pungent odor detectable by the human nose at concentrations of 500 to 800 ppb. It is highly soluble in water where it forms sulfurous acid (H₂SO₃). In the atmosphere, sulfurous acid is easily converted to sulfuric acid (H₂SO₄), the major acidic component of "acid rain", which then may convert again to form particulate sulfate compounds. On a worldwide basis, sulfur dioxide is considered to be a major pollutant. It is emitted mainly from stationary sources that burn coal and oil. Energy development in the west and west-central portions of North Dakota has produced a number of sources of SO₂. These sources include coal-fired steam-powered electrical generating facilities, a coal gasification plant, natural gas processing plants, oil refineries, and flaring at oil/gas well sites.

Sulfuric acid aerosols and particulate sulfate compounds, the result of conversions of SO_2 in the atmosphere, are corrosive and potentially carcinogenic (cancer-causing). The major health effects of SO_2 appear when it is associated with high levels of other pollutants, such as particulate. SO_2 also may play an important role in the aggravation of chronic illnesses, such as asthma. The incidence and intensity of asthma attacks have increased when asthmatics are exposed to higher levels of sulfur dioxide and particulate matter sulfates¹⁹.

Particulate matter sulfates resulting from SO_2 emissions can also affect visibility. In combination with high humidity, sulfates can develop to sizes that are effective at scattering sunlight, thus

¹⁸ RTI International

¹⁹ U.S. EPA (2008). Integrated Science Assessment (ISA) for Sulfur Oxides – Health Criteria (Final Report).

Available at: http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=198843.

resulting in reduced visibility through haze formation. SO_2 is one of the Department's primary interests with respect to visibility: first, to aid in establishing the visibility baseline, then to track visibility improvement over time.

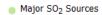
2.6.1 Point Sources

The major SO_2 point sources (>100 TPY) based on 2018 emissions are listed in Table 7. Figure 17 shows the approximate locations of these facilities.

2.6.2 Other Sources

The western part of the state has a number of potential SO_2 sources including oil wells, oil storage facilities, and natural gas compressor stations. These sources may directly emit amounts of hydrogen sulfide to the ambient air (see Section 2.7 for further discussion on hydrogen sulfide) or they may flare the hydrogen sulfide creating SO_2 and contributing to concentrations of this pollutant.

2.6.3 Monitoring Network


In 2018 there were nine SO_2 monitoring sites in the state. As can be seen in Figure 17, the majority of the sites are concentrated in the vicinity of the oil and gas development in the west and the coal-fired steam electrical generating plants in the west-central part of the state.

2.6.4 Network Analysis

Figure 18 shows the 2018 SO_2 monitoring results in comparison to the 1-hour SO_2 NAAQS. Numbers above the bars indicate monitored concentrations.

Nine major SO_2 sources are within 45 miles of both the Beulah and Hannover sites. This makes these two sites very important in tracking the impact of these sources on the ambient air. Also, Lostwood NWR is within 45 miles of four major sources: two natural gas processing plants and two power plants. The two power plants are located near Estevan, Saskatchewan, approximately 40 miles to the northwest.

One would expect that as the large sources in Oliver and Mercer counties came online beginning in 1980, a noticeable change would be seen on the ambient air quality. This has not been the case. The data has demonstrated possible short-term influences, but no significant long-term impacts by the combined sources. Figure 19 presents 1-hour maximums for the Departmentoperated sites.

Monitoring Sites

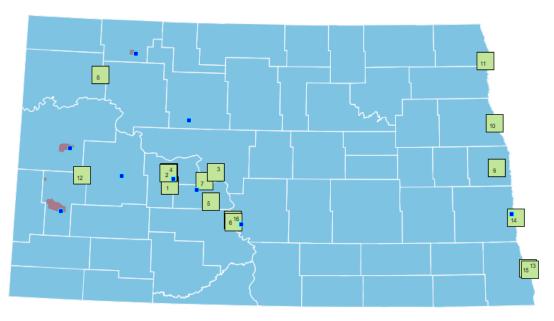


Figure 17. Major Sulfur Dioxide Sources in 2018

Table 7. Major SO₂ Sources (≥100 TPY) in 2018

#	Company Name	Source	EIS Facility ID
1	Otter Tail Power Company	Coyote Station	8086611
2	Basin Electric Power Cooperative	Antelope Valley Station	8086511
3	Great River Energy	Coal Creek Station	8011011
4	Dakota Gasification Company	Great Plains Synfuels Facility	8086711
5	Minnkota Power Cooperative, Inc.	Milton R. Young Station	8087911
6	Montana Dakota Utilities Company	RM Heskett Station	8087011
7	Basin Electric Power Cooperative	Leland Olds Station	8086311
8	Hess Tioga Gas Plant LLC	Tioga Gas Plant	8013911
9	American Crystal Sugar Company	Hillsboro Plant	7939011
13	University of North Dakota	UND Heating Plant	7292911
12	American Crystal Sugar Company	Drayton Plant	7923811
11	Petro-Hunt, LLC	Little Knife Gas Plant	8023811
16	Minn-Dak Farmers' Cooperative	Wahpeton Plant	7924011

#	Company Name	Source	EIS Facility ID
15	North Dakota State University	NDSU Heating Plant	8448211
17	Cargill Corn Milling	Wahpeton Facility	10612711
14	Tesoro Refining & Marketing Company LLC	Mandan Refinery	7923611

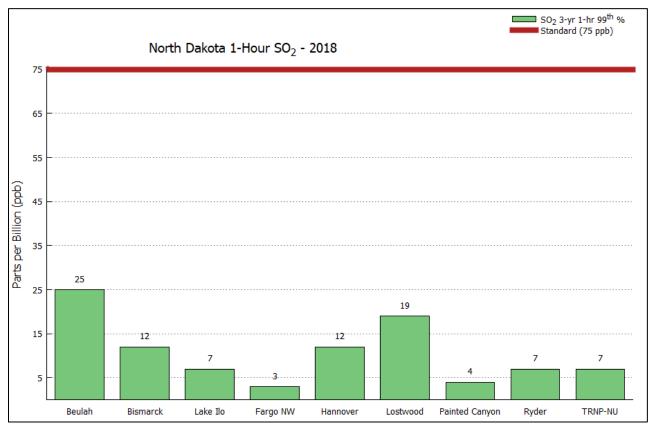


Figure 18. SO₂ Concentrations Compared to the 1-hour Standard

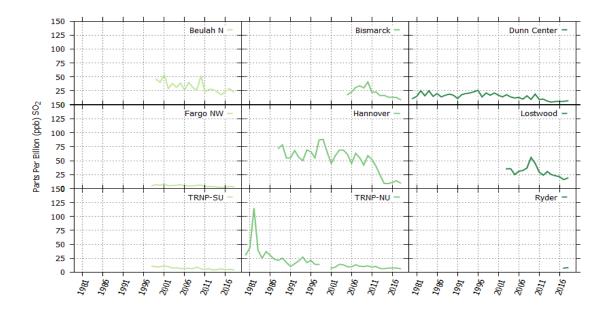


Figure 19 SO₂ 99th Percentile 1-Hour Concentrations

Beginning in 1980, major events are traceable. In 1980, the oil industry was expanding and in 1982 the oil industry in western North Dakota hit a peak in activity prior to the most recent increase. Dunn Center and TRNP – NU show the influence from the oil field activity as the oil fields expanded and flared the gas. As pipelines were built and wells were tied into the pipelines, the amount of hydrogen sulfide gas flared decreased, reducing the amount of sulfur dioxide emitted. Once the wells were tied into pipelines, the predominant influence at these two sites has been long-range transport from major point sources.

Dunn Center and TRNP - NU are indicators of the "oil patch" activity and tracked the activity very well. Since TRNP - NU is more centrally located in the "oil patch," it is the stronger indicator. Dunn Center, which is on the eastern edge of the oil development area, demonstrates influences from both the "oil patch" and the coal conversion facilities to the east.

2.6.5 Network Changes

There were no significant changes made to the SO_2 network in 2018. There are no significant changes planned for 2019.

Additionally, in response to the requirement of 40 CFR 51.1203 (b) concerning characterization of 1-hour SO_2 concentrations for the Tioga area, two new SLAMS-like monitoring sites were established in Williams County for operation in 2017. See Appendix E for more information.

2.7 Hydrogen Sulfide

Hydrogen sulfide (H_2S) is a colorless gas with a rotten egg odor. It is incompatible with strong oxidizers and reacts violently with metal oxides. It will attack many metals, forming sulfides.

A 5-minute exposure to 800 ppm H_2S has resulted in death. Inhalation of 1,000 to 2,000 ppm may cause a coma after a single breath. Exposure to lower concentrations may cause headache, dizziness and upset stomach. Low concentrations (20 to 150 ppm) can cause eye irritation which may be delayed in onset. Although the odor is detectable at very low concentrations, it rapidly causes olfactory fatigue at higher levels, and, therefore, is not considered to have adequate warning.

Although no Federal Ambient Air Quality Standard exists for H_2S , the state of North Dakota has developed H_2S standards in response to historically high petroleum sulfur content (during the 1980s in particular) and associated high H_2S . The major source of H_2S is oil wells. Other sources are natural gas processing plants, lagoons, and sloughs. Emissions have been reduced significantly over time as production from these older sites has declined. The Bakken formation, the focus of the most recent oil and gas activity in the state, has been found to result in very low H_2S emissions when compared to legacy (non-Bakken) operations.

2.7.1 Point Sources

 H_2S emissions of concern stems almost totally from the legacy oil and gas well operations in the western part of the state. Flares and treater stacks associated with oil/gas wells, oil storage tanks, compressor stations, pipeline risers, and natural gas processing plants are potential H_2S emission sources.

2.7.2 Monitoring Network

Currently there are no state H₂S monitoring sites.

2.7.3 Network Changes

There were no significant changes made to the H_2S network in 2018. There are no changes planned for 2019.

2.8 Ammonia

Ammonia (NH₃) is a corrosive, colorless gas with a strong irritating odor. It is used in making fertilizer, plastics, dyes, textiles, detergents, and pesticides. It reacts with acids and oxidizing materials (fluorine, chlorine, etc.). It is corrosive to copper, zinc, and many metal surfaces and reacts with hypochlorite and halogens to form explosive compounds that are pressure and temperature sensitive. In combination with oxides of nitrogen and sulfur, NH₃ can form small particulates with potential impact to health and visibility.

In mild concentrations (< 25,000 ppb), NH₃ will cause conjunctivitis and dermatitis. At higher concentrations, it will cause swelling of tissue, painful burns, lesions, and possible loss of vision. On contact with the skin, it will cause caustic-like burns and inflammation. Toxic level skin exposure (\pm 300,000 ppb) may cause skin lesions resulting in early necrosis and scarring. Inhalation of NH₃ is corrosive and irritating to the upper respiratory system and mucus membranes. Depending on the concentration inhaled, NH₃ may cause burning sensations, coughing, wheezing, shortness of breath, headache and nausea, with eventual collapse and death.

There is no ambient air quality standard for NH_3 . However, the department has monitored NH_3 for the last 10 years. In this period only trace level concentrations have been observed at the Beulah monitoring site. With the reductions of NH_3 from point sources in the area, NH_3 concentrations have been greatly reduced in recent years. The Department has decided to suspend the monitoring of NH_3 at the Beulah and Lostwood monitoring Sites at the end of 2018.

2.8.1 Point Sources

The major sources of NH_3 are listed in Table 8 and Figure 20 shows the approximate locations of these facilities (the numbers correspond to the source table).

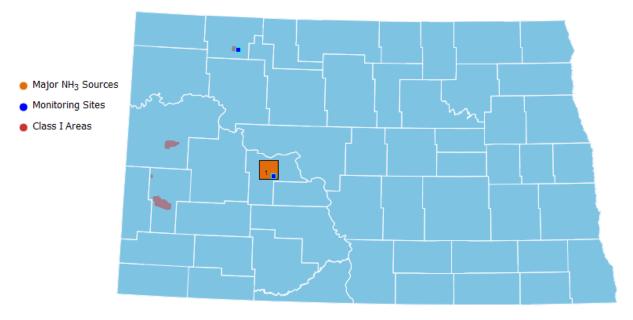
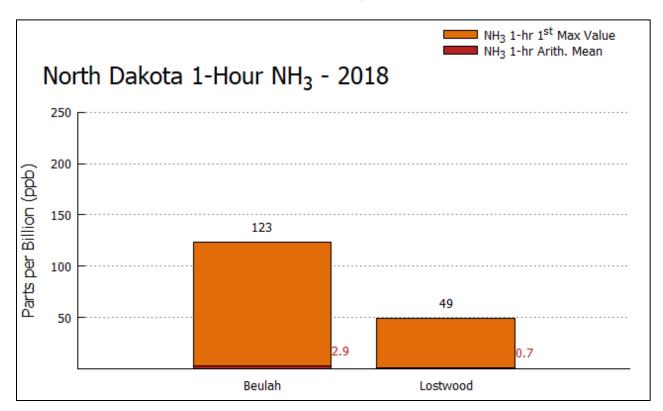


Figure 20. Major Ammonia Sources in 2017

Table 8. Major Ammonia Sources (≥ 100 TPY) in 2018

#	COMPANY	SOURCE	EIS Facility ID
	No Facilities produced more than 100 TONS of NH3	in 2018.	

2.8.2 Monitoring Network


Currently there are two NH₃ monitoring sites in the state (Figure 20).

2.8.3 Network Analysis

Figure 21 shows maximum monitored NH_3 concentrations at the two monitoring sites in comparison with the arithmetic mean yearly concentration. As there is currently no NAAQS for NH_3 , none is shown on the chart.

2.8.4 Network Changes

There were no significant changes made to the NH_3 network in 2018. Due to major reductions in emissions of NH_3 , from point sources in the area. And a history of low concentrations observed over the last 10 years, the North Dakota Environmental Quality will be suspending NH_3 monitoring at the Beulah and Lostwood sites. Effective January 1^{st} , 2019.

Figure 21. NH₃ Concentrations: Maximum Value and Arithmetic Mean

2.9 Air Toxics

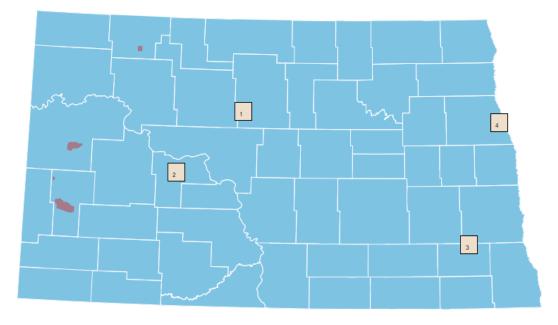
The term 'air toxics' refers to Hazardous Air Pollutants (HAP) - air contaminants, other than those

listed above, that at certain concentrations could be "injurious to human health or well-being or unreasonably interfere with the enjoyment of property or that would injure plant or animal life."²⁰ Currently there are no state or federal air toxics monitoring sites in North Dakota.

2.9.1 Point Sources

The major air toxics sources are listed in Table 9 and Figure 22 shows the approximate locations of these facilities (the numbers correspond to the source table).

2.9.2 Monitoring Network


Currently there are no state air toxics monitoring sites. The historic raw data and associated summaries are available in EPA's AQS system.

2.9.3 Network Changes

There were no significant changes made to the Air Toxics network in 2018. There are no changes planned for 2019.

²⁰ NDDoH (2010). Policy for the Control of Hazardous Air Pollutant Emissions in North Dakota (Air Toxics Policy). Available via link at http://www.ndhealth.gov/AQ/HAPs.aspx

- Major AT Sources
- Monitoring Sites
- 🔵 Class I Areas

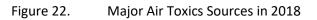


Table 9.Major Air Toxics Sources in 2018(≥ 100 TPY of a single HAP or ≥ 100 TPY aggregate HAPS)

#	COMPANY	SOURCE	EIS Facility ID
1	ADM Processing	Velva Facility	8085211
2	Dakota Gasification Company	Great Plains Synfuels Facility	8086711
3	Northern Sun (Division of ADM)	Enderlin Facility	7923911
4	LM Wind Power Blades	Grand Forks Facility	7293311

3.0 NETWORK SITE CHANGES

3.1 Dunn Center/Lake Ilo

A monitoring station in the Dunn Center area (AQS# 38-025-0003) has been providing air quality data for approximately 40 years. The current site is located on leased private land and future

accessibility has been called into question. The Department has entered into an agreement with the U.S. Fish and Wildlife Service to allow a new air monitoring site to be located at the Lake Ilo National Wildlife Refuge. The Lake Ilo site is about 1 mile west of the city of Dunn Center and about 6 miles WNW of the current Dunn Center monitoring site location. Monitoring at Lake Ilo (AQS# 38-025-0004) began in the first quarter of 2018.

4.0 SUMMARY AND CONCLUSIONS

The North Dakota Ambient Air Quality Monitoring Network is designed to monitor those air pollutants that demonstrate the greatest potential for deteriorating the air quality of North Dakota. Due to a greater number of pollution-producing sources in the western part of the state (primarily associated with the energy producing industries) the greatest percentage of the network is located in the western part of the State.

4.1 • Carbon Monoxide (CO)

Neither the state nor federal CO standards of 35,000 ppb (1-hour) or 9,000 ppb (8-hour) were exceeded at the monitoring site. The maximum concentrations are as follows: 1-hour -754 ppb; 8-hour -672 ppb.

4.2 • Lead

No lead monitoring was conducted. No changes to the network were identified.

4.3 • Nitrogen Dioxide (NO₂)

Neither the state nor federal NO₂ standards of 100 ppb (1-hour) or 53 ppb (annual) were exceeded at any of the monitoring sites. The maximum concentrations were as follows: Three-year average of the 98^{th} percentile 1-hour average concentrations – 33 ppb; annual – 4.87 ppb.

4.4 • Ozone (O₃)

Neither the state nor federal O_3 standard of 70 ppb was exceeded during the year. The maximum fourth-highest 8-hour concentration was 59 ppb.

4.5 • Particulate Matter (PM₁₀, PM_{2.5})

The federal PM_{10} 24-hour standard states that the concentration of PM_{10} in the ambient air should not go over 150 µg/m³ more than once per year on average over a three-year period. Neither the state nor federal PM_{10} standard was exceeded during the year. The 4th highest value over three years was 107 μ g/m³.

Neither the state nor federal PM_{2.5} standards of 35 μ g/m³ (24-hour) and 12 μ g/m³ (annual) were exceeded during the year. The maximum concentrations are as follows: 24-hour – 22 μ g/m³; annual – 6.6 μ g/m³.

4.6 • Sulfur Dioxide (SO₂)

Neither the state nor federal SO₂ standard of 75 ppb (1-hour) was exceeded at any state operated monitoring site. The maximum concentration measured was: 3-year average 1-hour 99th percentile -25 ppb.

4.7 • Hydrogen Sulfide (H₂S)

No H₂S monitoring was conducted. No changes to the network were identified.

4.8 • Ammonia (NH₃)

There is no ambient air quality standard for ammonia. The maximum 1-hour concentration measured was 123 ppb with a maximum yearly average (arithmetic mean) of 2.9 ppb. The Department will be suspending NH3 monitoring at the end of 2018.

4.9 • Air Toxics (HAP)

No Air Toxics monitoring was conducted. No changes to the network were identified.

Appendix A

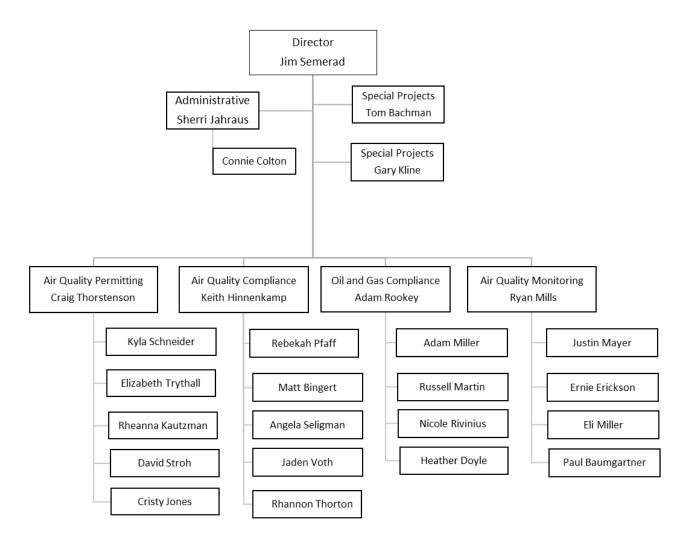


Figure 23. Organizational Chart July 2019

Appendix **B**

Ambient Air Quality Standards

Ambient Air Quality Standards						
Dollut	Pollutant		North Dakota		Federal	
Pollut	ant	Period	µg/m³	ppb	µg/m³	ppb
Carbon Mon	ovido (CO)	1-hour ^a	40,000	35,000	40,000	35,000
Carbon Mone	Dxide (CO)	8-hour ^a	10,000	9,000	10,000	9,000
Lea	d	3-month ^b	0.15		0.15	
Nitrogon Dio	vide (NO)	Annual ^c	100	53	100	53
Nitrogen Dio		1-hour ^d	188	100	188	100
Ozone	(O ₃)	8-hour ^e	147	75	147	70
Deutiquiate	PM ₁₀	24-hour ^f	150		150	
Particulate Matter	PM _{2.5}	24-hour ^g	35		35	
watter		Annual ^h	12		12	
		1-hour ⁱ	196	75	196	75
Sulfur Diavi		3-hour ^a	1309	500	1309	500
Sulfur Diox	ide (SO ₂)	24-hour ^{a*}			365	140
					80	30
			14,000	10,000		
Libuding gave Co			280	200		
Hydrogen Su	mue (H ₂ S)	24-hour ^a	140	100		
		Quarter	28	20		

 Table 10.
 National and North Dakota Ambient Air Quality Standards

^a Not to be exceeded more than once per calendar year.

^b Not to be exceeded by a rolling three-month arithmetic mean.

^c Annual arithmetic mean.

^d Three-year average of 98th percentile of 1-hour daily maximum concentrations.

^e Three-year average of the annual fourth-highest daily maximum 8-hour concentrations.

^f Not to be exceeded more than once per year on average over a 3-year period.

^g Three-year average of the annual 98th percentile values.

^h Three-year average of annual concentrations.

ⁱ Three-year average of 99th percentile of 1-hour daily maximum concentrations.

^j Not to be exceeded more than once per month.

* The 24-hour and Annual SO² standards were revoked per the 2010 rulemaking. However, these standards will remain in effect until one year after attainment status designations for the 2010 1-hour SO² standard are complete for a given area.

** On October 26, 2015 EPA revised the primary ozone standard level to from 75 to 70 ppb with an effective date of December 28, 2015. North Dakota ambient air quality standards will be revised to concur with federal standards in a future rulemaking.

Appendix C AAQM Site Descriptions

This appendix includes site descriptions and information relating to State operated analyzers and samplers onsite. Please note that all sites meet the siting criteria specified in 40 CFR 58, Appendices A, C, D, and E. When selecting a site, five factors are considered: modeling results, landowner permission, power availability, year-round access to the site, and prevailing wind direction.

The sites addressed in this report are only the current active sites. A complete list of sites and all monitoring that has been conducted at each site can be found in the AQS system at <u>www.epa.gov/air/data/aqsdb.html</u>. Also available at this site are air quality summary data and emissions data.

Map images in this appendix are from the North Dakota Geographic Information Systems (GIS) Hub site at http://www.nd.gov/gis.

Site Name: Beulah – North

Station Type	: SLAMS (required)		
AQS#:	38-057-0004	MSA: 0000	
Address:	6024 Highway 200		
	Beulah, ND		
Latitude:	+47.298611	Longitude:	-101.766944

Site Description: This is one of three key sites in the Department's ambient monitoring network to meet the six required monitoring objectives. When this site was established, it was decided to enhance the site to include ammonia, solar radiation and delta temperature to support air quality dispersion modeling. This site is one of the required $PM_{2.5}$ monitoring sites for North Dakota

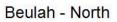
Gas/Particulate	parameters:
-----------------	-------------

	Sampling &	Operating	Monitoring	Spatial
Parameter	Analysis Method	Schedule	Objective	Scale
Sulfur Dioxide	Instrumental	Continuous	Population Exposure	Urban
	Pulsed Florescent			
Nitrogen Dioxide	Instrumental	Continuous	Population Exposure	Urban
	Chemiluminescence			
Ozone	Instrumental Ultraviolet	Continuous	Population Exposure	Urban
Ozone	Instrumental	Continuous	Population Exposure	Urban
	Chemiluminescence			
Ammonia	Instrumental	Continuous	General Background	Regional
	Chemiluminescence			
PM _{2.5}	PM _{2.5} Beta Attenuation	Continuous	Population Exposure	Urban
PM ₁₀	PM ₁₀ TEOM Gravimetric	Continuous	Population Exposure	Urban
	50° Celsius			

Meteorological parameters:

	Sampling &	Operating		Spatial
Parameter	Analysis Method	Schedule	Tower Height	Scale
Wind Speed	Elec. or Mach Avg. Level 1	Continuous	10 meters	Urban
Wind Direction	Elec. or Mach Avg. Level 1	Continuous	10 meters	Urban
Ambient	Elec. or Mach Avg.	Continuous	10 meters	Urban
Temperature				
Delta Temperature	Elec. or Mach Avg.	Continuous	10 - 2 meters	Urban
Ambient Pressure	Barometric Pressure	Continuous	6 meters	Urban
	Transducer			
Solar Radiation	Pyranometer	Continuous	2 meters	Urban

Site Pictures: Beulah North



East West

Looking Northeast

Looking Northwest

		1:18,0	56			
0	0.15	0.3				0.6 mi
-	4 4	4	4	- i -	<u> </u>	4
0	0.25	0.5				1 km
No ith Dakota st	tate agencies and	the ND GIS	Hub			

Site Name: Bismarck Residential

Station Type:	: SLAMS, NCore		
AQS#:	38-015-0003	MSA: 1010	
Address:	1810 N 16 th Street		
	Bismarck, ND		
Latitude:	+46.825425	Longitude:	-100.768210

Site Description: This site is located in the second largest metropolitan area in the state and is the designated NCore site in North Dakota. This site also serves as a field test location for new types of equipment and procedures.

	Sampling &	Operating	Monitoring	Spatial
Parameter	Analysis Method	Schedule	Objective	Scale
Sulfur Dioxide	Instrumental	Continuous	Population Exposure	Urban
	Pulsed Florescent			
Nitrogen Dioxide	Instrumental	Continuous	Population Exposure	Urban
	Chemiluminescence			
Carbon Monoxide	Instrumental	Continuous	Population Exposure	Urban
	Gas Filter Correlation			
NOy	Instrumental	Continuous	Population Exposure	Urban
	Chemiluminescence			
Ozone	Instrumental Ultraviolet	Continuous	Population Exposure	Urban
PM _{2.5}	24-hour Gravimetric	1/3	Population Exposure	Urban
PM _{2.5}	PM _{2.5} Beta Attenuation	Continuous	Population Exposure	Urban
PM _{2.5}	Broadband Spectroscopy	Continuous	Population Exposure	Urban
PM ₁₀	Broadband Spectroscopy	Continuous	Population Exposure	Urban
PM _{2.5} Speciation	24-hour Gravimetric	1/3	Population Exposure	Urban

Gas/Particulate parameters:

Meteorological parameters:

	Sampling &	Operating		Spatial
Parameter	Analysis Method	Schedule	Tower Height	Scale
Wind Speed	Elec. or Mach Avg. Level 1	Continuous	10 meters	Urban
Wind Direction	Elec. or Mach Avg. Level 1	Continuous	10 meters	Urban
Ambient Temperature	Elec. or Mach Avg.	Continuous	10 meters	Urban
Delta Temperature	Elec. or Mach Avg.	Continuous	10 - 2 meters	Urban
Ambient Pressure	Barometric Pressure	Continuous	6 meters	Urban
	Transducer			
Relative Humidity	Hygroscopic Plastic Film	Continuous	10 meters	Urban
Solar Radiation	Pyranometer	Continuous	2 meters	Urban

Site Pictures: Bismarck Residential

North

South

East

Southeast

Bismarck Residential

		1:18,0	56			
0	0.15	0.3				0.6 mi
H	<u> </u>		- ii	- i	- 1 - E	<u> </u>
o	0.25	0.5				1 km
bith Dakota state	agencies and t	he ND GIS	Hub			

Site Name: Lake Ilo

Station Type	: SLAMS		
AQS#:	38-025-0004	MSA: 0000	
Address:	101 st Avenue SW		
	Dunn Center, ND		
Latitude:	+47.342442	Longitude:	-102.645839

Site Description: This site is located about midway between the oil development all along the North Dakota – Montana border and the seven coal conversion facilities to the east. The importance lies in the ability to monitor the transport of sulfur dioxide, nitrogen dioxide, and $PM_{2.5}$ between these two areas. Also, this is a key site used in dispersion model calibration and validation.

Gas/Particulate parameters

Parameter	Sampling & Analysis Method	Operating Schedule	Monitoring Objective	Spatial Scale
Sulfur Dioxide	Instrumental Pulsed Florescent	Continuous	General/Background	Urban
Nitrogen Dioxide	Instrumental Chemiluminescence	Continuous	General/Background	Urban
Ozone	Instrumental Ultraviolet	Continuous	General/Background	Urban
PM _{2.5}	PM _{2.5} Beta Attenuation	Continuous	General/Background	Urban
PM ₁₀	PM ₁₀ TEOM Gravimetric 50° Celsius	Continuous	General/Background	Urban

Meteorological parameters:

Parameter	Sampling & Analysis Method	Operating Schedule	Tower Height	Spatial Scale
Wind Speed	Elec. or Mach Avg. Level 1	Continuous	10 meters	Urban
Wind Direction	Elec. or Mach Avg. Level 1	Continuous	10 meters	Urban
Ambient Temperature	Elec. or Mach Avg.	Continuous	10 meters	Urban
Delta Temperature	Elec. or Mach Avg.	Continuous	10 - 2 meters	Urban
Ambient Pressure	Barometric Pressure Transducer	Continuous	6 meters	Urban
Solar Radiation	Pyranometer	Continuous	2 meters	Urban

Changing site conditions have prompted the Department to relocate this site. This new site location has been identified as Lake Ilo NWR. Relocation was completed prior to the 2018 data collection season.

Site Pictures: Lake Ilo

North

West

East

South

Looking Southeast

Looking Northeast

Site Name: Fargo NW

Station Type:	: SLAMS (required)		
AQS#:	38-017-1004	MSA: 2520	
Address:	4266 40 th Avenue North		
	Fargo, ND		
Latitude:	+46.933754	Longitude:	-96.855350

Site Description: This site is located in the largest metropolitan area in North Dakota. The data collected at this site are used in dispersion modeling for input, calibration and validation.

Gas/Particulate parameters:

Parameter	Sampling & Analysis Method	Operating Schedule	Monitoring Objective	Spatial Scale
Sulfur Dioxide	Instrumental Pulsed Florescent	Continuous	Population Exposure	Urban
Nitrogen Dioxide	Instrumental Chemiluminescence	Continuous	Population Exposure	Urban
Ozone	Instrumental Ultraviolet	Continuous	Population Exposure	Urban
PM _{2.5}	PM _{2.5} Beta Attenuation	Continuous	Population Exposure	Urban
PM ₁₀	PM ₁₀ Beta Attenuation	Continuous	Population Exposure	Urban

Meteorological parameters:

	Sampling &	Operating		Spatial
Parameter	Analysis Method	Schedule	Tower Height	Scale
Wind Speed	Elec. or Mach Avg. Level 1	Continuous	10 meters	Urban
Wind Direction	Elec. or Mach Avg. Level 1	Continuous	10 meters	Urban
Ambient Temperature	Elec. or Mach Avg.	Continuous	10 meters	Urban
Delta Temperature	Elec. or Mach Avg.	Continuous	10 - 2 meters	Urban
Ambient Pressure	Barometric Pressure	Continuous	6 meters	Urban
	Transducer			
Relative Humidity	Hygroscopic Plastic Film	Continuous	10 meters	Urban
Solar Radiation	Pyranometer	Continuous	2 meters	Urban

Site Pictures: Fargo NW

North

West

East

South

Looking Northeast

Looking West

Fargo NW

		1:18,0	56			
0	0.15	0.3				0.6 mi
H	4 4 1	<u> </u>	4	- i -	10	- -
Ó	0.25	0.5				1 km
bith Dakota stat	te a gencles and t	he ND GIS H	Hub			

Site Name: Hannover

Station Type	: SLAMS		
AQS#:	38-065-0002	MSA: 0000	
Address:	1575 Highway 31		
	Stanton, ND		
Latitude:	+47.185833	Longitude:	-101.428056

Site Description: This site is centrally located to the power plants in the Oliver-Mercer-McLean county area. The data collected here are used to supplement ambient data collected at Beulah – North and TRNP – NU.

Gas/Particulate parameters:

	Sampling &	Operating	Monitoring	Spatial
Parameter	Analysis Method	Schedule	Objective	Scale
Sulfur Dioxide	Instrumental Pulsed Florescent	Continuous	Source Oriented	Urban
Nitrogen Dioxide	Instrumental	Continuous	Source Oriented	Urban
	Chemiluminescence			
Ozone	Instrumental Ultraviolet	Continuous	Source Oriented	Urban
PM _{2.5}	PM _{2.5} Beta Attenuation	Continuous	Source Oriented	Urban
PM ₁₀	PM ₁₀ TEOM Gravimetric 50°	Continuous	Source Oriented	Urban
	Celsius			

Meteorological parameters:

Parameter	Sampling & Analysis Method	Operating Schedule	Tower Height	Spatial Scale
Wind Speed	Elec. or Mach Avg. Level 1	Continuous	10 meters	Urban
Wind Direction	Elec. or Mach Avg. Level 1	Continuous	10 meters	Urban
Ambient Temperature	Elec. or Mach Avg.	Continuous	10 meters	Urban
Ambient Pressure	Barometric Pressure Transducer	Continuous	6 meters	Urban

Site Pictures: Hannover

South

West

Looking Southwest

Looking Northeast

Hannover

Site Name: Lostwood NWR

Station Type	e: SLAMS		
AQS#:	38-013-0004	MSA: 0000	
Address:	8315 Highway 8		
	Kenmare, ND		
Latitude:	+48.641930	Longitude:	-102.401800

Site Description: This site is located in a PSD Class I area. This site is downwind of two power plants near Estevan, SK, and located in the Souris River Airshed.

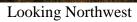
The site has an IMPROVE sampler operated by the US Fish and Wildlife Service. These data will be used with the other ambient data collected here to evaluate long-range transport of aerosols affecting regional haze/visibility.

Sampling & Operating Monitoring **Spatial** Parameter **Analysis Method** Schedule Objective Scale Sulfur Dioxide Instrumental Pulsed Florescent Continuous **Regional Transport** Regional **Regional Transport** Instrumental Chemiluminescence Continuous Regional Nitrogen Dioxide Ozone Instrumental Ultraviolet **Regional Transport** Regional Continuous Ozone Instrumental Chemiluminescence Continuous **Regional Transport** Regional PM_{2.5} Beta Attenuation **Regional Transport** Continuous Regional PM_{2.5} PM₁₀ TEOM Gravimetric 50° **Regional Transport** PM₁₀ Continuous Regional Celsius

Gas/Particulate parameters:

Meteorological parameters:

	Sampling &	Operating	Tower	Spatial
Parameter	Analysis Method	Schedule	Height	Scale
Wind Speed	Elec. or Mach Avg. Level 1	Continuous	10 meters	Urban
Wind Direction	Elec. or Mach Avg. Level 1	Continuous	10 meters	Urban
Ambient Temperature	Elec. or Mach Avg.	Continuous	10 meters	Urban
Delta Temperature	Elec. or Mach Avg.	Continuous	10 - 2 meters	Urban
Ambient Pressure	Barometric Pressure Transducer	Continuous	6 meters	Urban
Solar Radiation	Pyranometer	Continuous	2 meters	Urban
Relative Humidity	Hygroscopic Plastic Film	Continuous	10 meters	Urban


Site Pictures: Lostwood NWR

North

West East

Looking North

Lostwood NWR

		1:18,0	56			
0	0.15	0.3				0.6 mi
	<u> </u>		1	1	- i _	_
0	0.25	0.5	30	100	505	1 km
No ith Dakota state	agencies and t	he ND GIS	Hub			

Site Name: Painted Canyon (TRNP – SU)

Station Type:	SLAMS	
AQS#:	38-007-0002	MSA: 0000
Address:	Theodore Roosevelt National	Park – South Unit
	13881 I94 East	
Latitude:	+46.894300	Longitude: -103.378530

Site Description: Located in the South Unit of Theodore Roosevelt National Park, this Class I area site is operated in partnership with the National Park Service. As it is positioned south of the majority of oil and gas activity in the state, this station plays a key role in monitoring general background conditions and providing data for dispersion modeling input, calibration and validation.

The site has an IMPROVE sampler operated by the National Park Service. These data will be used with the other ambient data collected here to evaluate long-range transport of aerosols affecting regional haze/visibility.

Parameter	Sampling & Analysis Method	Operating Schedule	Monitoring Objective	Spatial Scale
Sulfur Dioxide	Instrumental Pulsed Florescent	Continuous	General/Background	Urban
Ozone	Instrumental Ultraviolet	Continuous	General/Background	Urban
PM _{2.5}	PM _{2.5} Beta Attenuation	Continuous	General/Background	Urban

Gas/Particulate parameters:

Meteorological parameters:

Parameter	Sampling & Analysis Method	Operating Schedule	Tower Height	Spatial Scale
*	*	*	*	*

* All meteorological parameters are monitored as part of the NPS network.

Site Pictures: Painted Canyon

North

East

South

West

Looking Southwest

Painted Canyon

		1:18,0	56			
0	0.15	0.3				0.6 mi
-	<u> </u>		4	- i	- 1 - E	<u> </u>
0	0.25	0.5				1 km

Site Name: Ryder

Station Type	: SLAMS		
AQS#:	38-101-0003	MSA: 0000	
Address:	184 th St. SW		
	Ryder, ND		
Latitude:	+47.940861	Longitude:	-101.571583

Site Description: This site is located at the eastern edge of the major oil and gas production area of the state. Located in Ward County, it is approximately 20 miles southwest of the city of Minot. This station is intended to provide data on regional pollutant transport and population impacts.

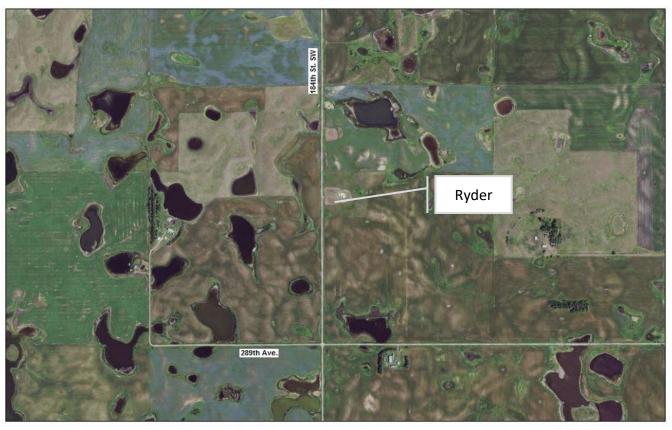
Gas/Particulate parameters:

	Sampling &	Operating	Monitoring	Spatial
Parameter	Analysis Method	Schedule	Objective	Scale
Sulfur Dioxide	Instrumental Pulsed Florescent	Continuous	Regional Transport /	Regional
			Population Exposure	
Nitrogen Dioxide	Instrumental Chemiluminescence	Continuous	Regional Transport /	Regional
			Population Exposure	
Ozone	Instrumental Ultraviolet	Continuous	Regional Transport /	Regional
			Population Exposure	
PM _{2.5}	PM _{2.5} Beta Attenuation	Continuous	Regional Transport /	Regional
			Population Exposure	
PM ₁₀	PM ₁₀ TEOM Gravimetric 50° Celsius	Continuous	Regional Transport /	Regional
			Population Exposure	

Meteorological parameters:

Parameter	Sampling & Analysis Method	Operating Schedule	Tower Height	Spatial Scale
Wind Speed	Elec. or Mach Avg. Level 1	Continuous	10 meters	Urban
Wind Direction	Elec. or Mach Avg. Level 1	Continuous	10 meters	Urban
Ambient Temperature	Elec. or Mach Avg.	Continuous	10 meters	Urban
Ambient Pressure	Barometric Pressure Transducer	Continuous	6 meters	Urban

Site Pictures: Ryder



Looking Northeast

Ryder

0.15	0.3	0.6 mi
1	- 1-1-1	 <u> </u>
0.25	0.5	1 km
	0.15	┷╋╧╋╧╋╧╋╧╋

Site Name: TRNP-NU

Station Type:	SLAMS (required)		
AQS#:	38-053-0002	MSA: 0000	
Address:	229 Service Road		
	Watford City, ND		
Latitude:	+47.581200	Longitude:	-103.299500

Site Description: This site is located in Theodore Roosevelt National Park – North Unit, a Class I area, and is one of three key sites in the Department's ambient monitoring network to meet the six required monitoring objectives. The data collected are used for model calibration/validation.

Gas/Particulate parameters:

Parameter	Sampling & Analysis Method	Operating Schedule	Monitoring Objective	Spatial Scale
Sulfur Dioxide	Instrumental Pulsed Florescent	Continuous	General/Background	Regional
Nitrogen Dioxide	Instrumental Chemiluminescence	Continuous	General/Background	Regional
Ozone	Instrumental Ultraviolet	Continuous	General/Background	Regional
PM _{2.5}	PM _{2.5} Beta Attenuation	Continuous	General/Background	Regional
			Regional Transport	
PM ₁₀	PM ₁₀ TEOM Gravimetric 50°	Continuous	General/Background	Regional
	Celsius		Regional Transport	

Meteorological parameters:

Parameter	Sampling &	Operating	Tower Height	Spatial
	Analysis Method	Schedule		Scale
Wind Speed	Elec. or Mach Avg. Level 1	Continuous	10 meters	Urban
Wind Direction	Elec. or Mach Avg. Level 1	Continuous	10 meters	Urban
Ambient Temperature	Elec. or Mach Avg.	Continuous	10 meters	Urban
Ambient Pressure	Barometric Pressure Transducer	Continuous	6 meters	Urban
Relative Humidity	Hygroscopic Plastic Film	Continuous	10 meters	Urban

There are no plans to move or remove this site.

Site Pictures: TRNP-NU

North

South


East

West

Looking Northwest

Looking Northeast

Theodore Roosevelt National Park - North Unit

		1:36,1	112			
0	0.3	0.6				1.2 mi
	4 4	<u></u>	- 14	- 1	1.	4
0	0.5	1				2 km
No ith Dakota sta	te agencles and t	the ND GIS	Hub			

Site Name: Williston

Station Type:	SLAMS		
AQS#:	38-105-0003	MSA: 0000	
Address:	10 th Street West		
	Williston, ND		
Latitude:	+48.152780	Longitude:	-103.639510

Site Description: This site is located in the Williston Riverview Cemetery in downtown Williston. It is in the heart of the oil and gas development activity area and serves to meet the objective of monitoring population exposure to particulate matter and ozone.

Gas/Particulate parameters:

Parameter	Sampling & Analysis Method	Operating Schedule	Monitoring Objective	Spatial Scale
Ozone	Instrumental Ultraviolet	Continuous	Population Exposure	Urban
PM _{2.5}	PM _{2.5} Beta Attenuation	Continuous	Population Exposure	Urban
PM ₁₀	PM ₁₀ TEOM	Continuous	Population Exposure	Urban
	Gravimetric 50° Celsius			

Meteorological parameters:

Parameter	Sampling & Analysis Method	Operating Schedule	Tower Height	Spatial Scale
Wind Speed	Elec. or Mach Avg. Level 1	Continuous	10 meters	Urban
Wind Direction	Elec. or Mach Avg. Level 1	Continuous	10 meters	Urban
Ambient Temperature	Elec. or Mach Avg.	Continuous	10 meters	Urban
Ambient Pressure	Barometric Pressure Transducer	Continuous	6 meters	Urban

There are no plans to move or remove this site.

Site Pictures: Williston

North

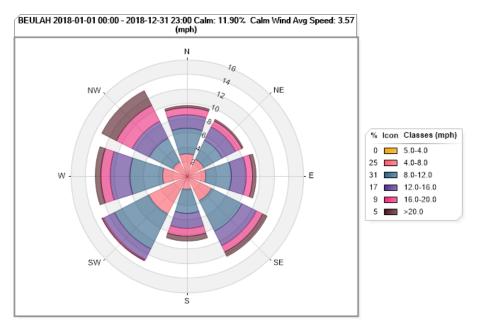
South

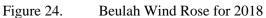
East

West

Williston

		1:18,0	156			
0	0.15	0.3				0.6 mi
1	1 1 1		12	12	- i -	
10		12	- 30	100		1
0	0.25	0.5				1 km
bith Dakota state	agencles and t	he ND GISI	Hub			


N


Appendix D Wind and Pollution Roses

The figures in this appendix are organized with the site's wind rose presented at top, criteria pollutant roses follow in alphabetical order, and conclude with non-criteria (e.g. NH₃) monitored pollutant roses.

The pollution roses show the percentage of time a pollutant is detected when the wind is <u>from</u> a given direction and provide a total summary of detected concentrations in the legend.

Site Name: Beulah – North

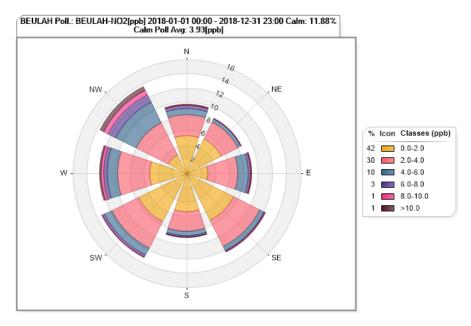


Figure 25. Beulah NO₂ Pollution Rose for 2018

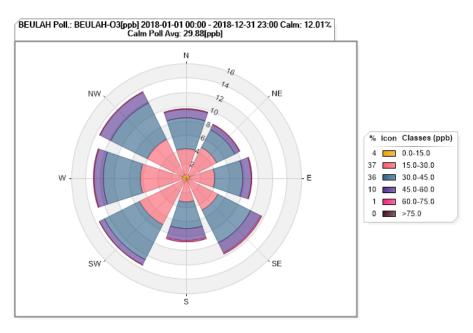
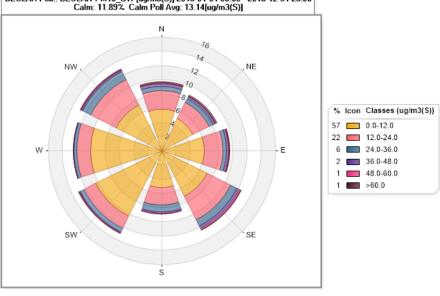



Figure 26. Beulah O₃ Pollution Rose for 2018

BEULAH Poll.: BEULAH-PM10_STP[ug/m3(S)] 2018-01-01 00:00 - 2018-12-31 23:00 Calm: 11.89%. Calm Poll Avg: 13.14[ug/m3(S)]

Figure 27. Beulah PM_{10} Pollution Rose for 2018

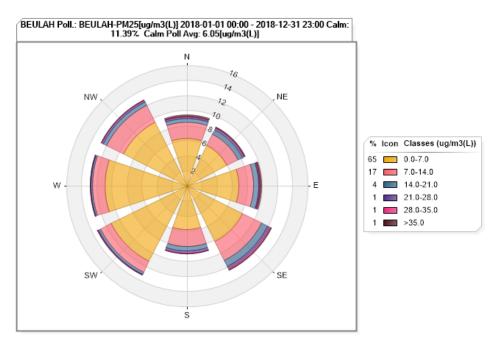


Figure 28. Beulah PM_{2.5} Pollution Rose for 2018

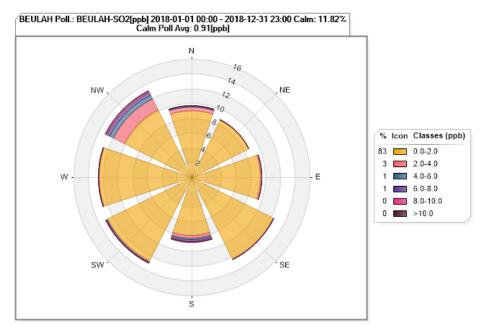


Figure 29. Beulah SO₂ Pollution Rose for 2018

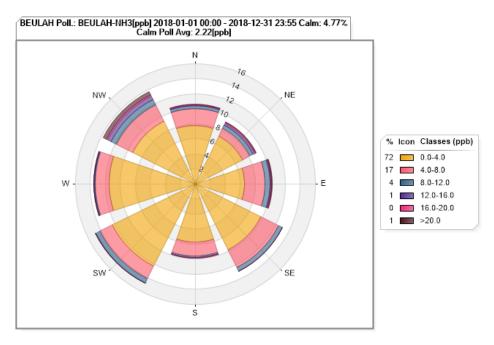


Figure 30. Beulah NH₃ Pollution Rose for 2018

Site Name: Bismarck Residential

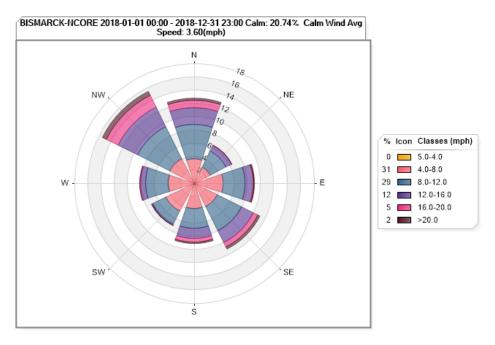
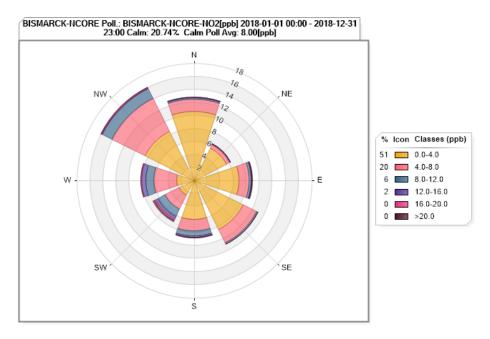
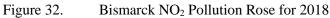




Figure 31. Bismarck Wind Rose for 2018

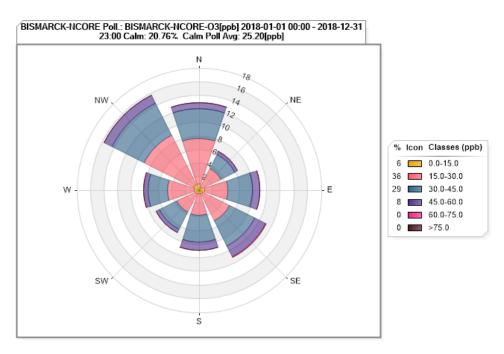


Figure 33. Bismarck O₃ Pollution Rose for 2018

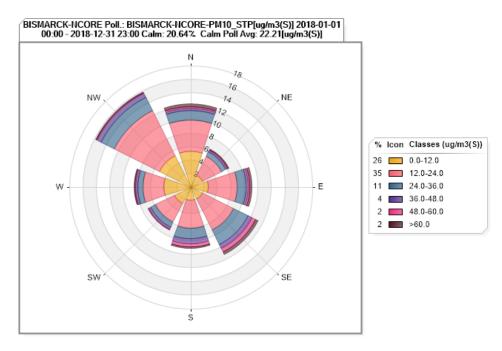
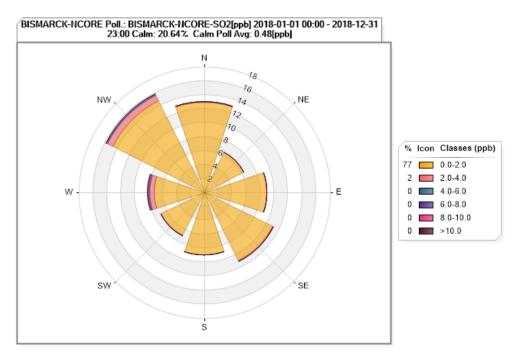
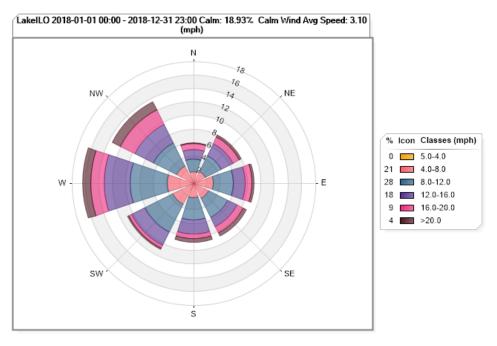
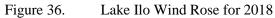
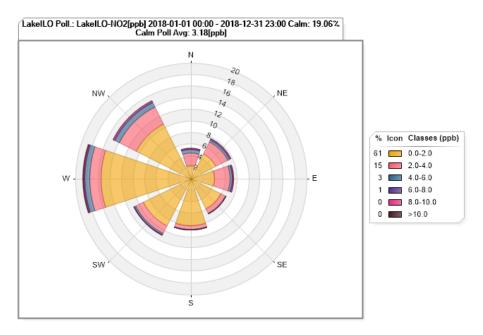
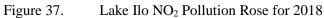


Figure 34. Bismarck PM₁₀ Pollution Rose for 2018


Figure 35. Bismarck SO₂ Pollution Rose for 2018

Site Name: Lake Ilo

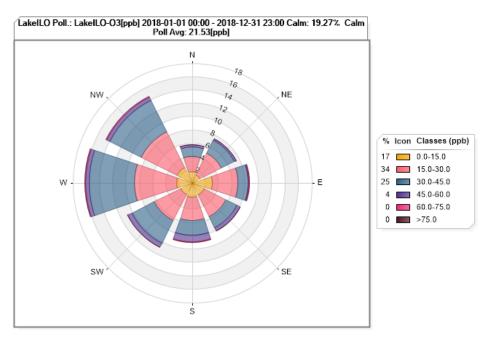


Figure 38. Lake Ilo O₃ Pollution Rose for 2018

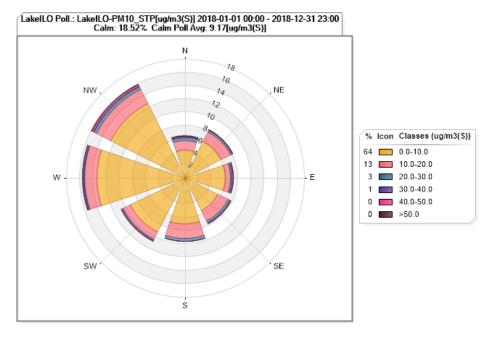


Figure 39. Lake Ilo PM₁₀ Pollution Rose for 2018

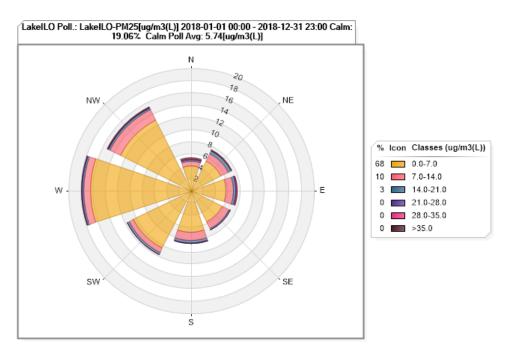


Figure 40. Lake Ilo PM_{2.5} Pollution Rose for 2018

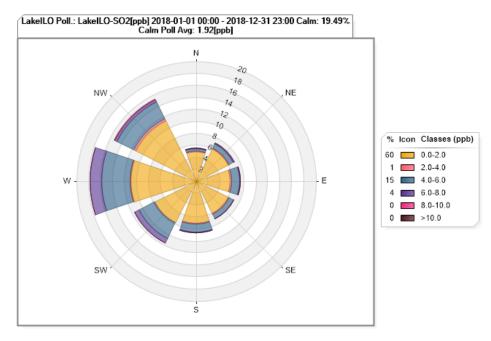
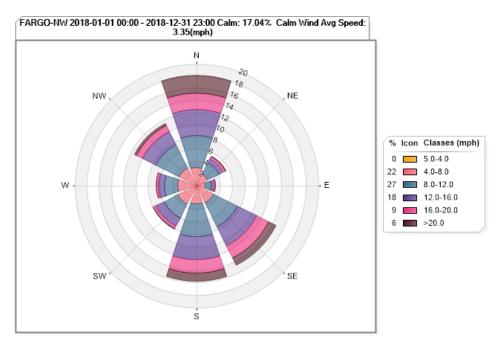
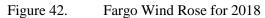




Figure 41. Lake Ilo SO₂ Pollution Rose for 2018

Site Name: Fargo NW

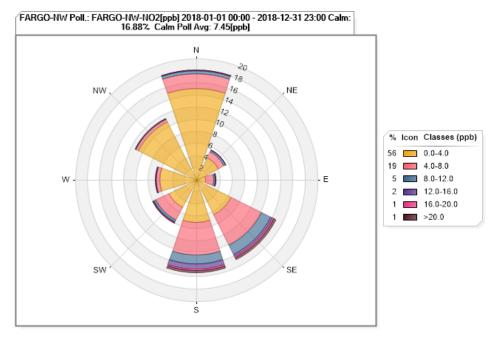


Figure 43. Fargo NO₂ Pollution Rose for 2018

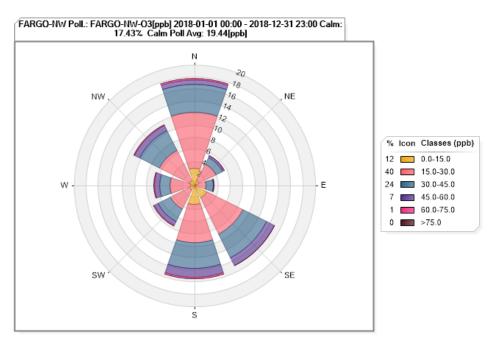


Figure 44. Fargo O₃ Pollution Rose for 2018

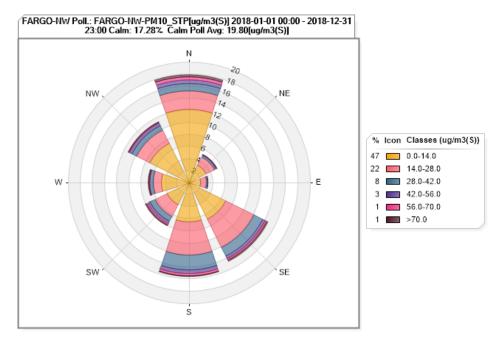


Figure 45. Fargo PM₁₀ Pollution Rose for 2018

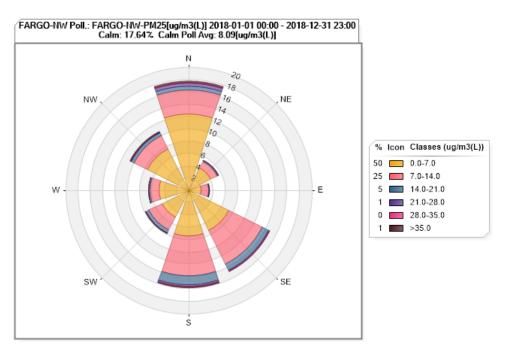


Figure 46. Fargo PM_{2.5} Pollution Rose for 2018

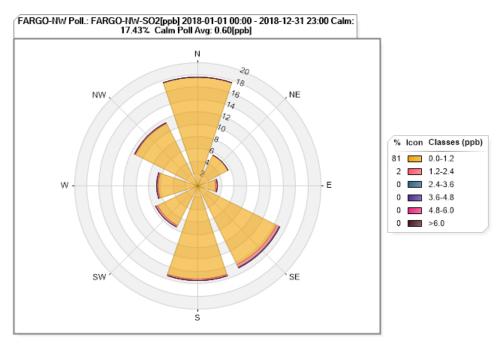


Figure 47. Fargo SO₂ Pollution Rose for 2018

Site Name: Hannover

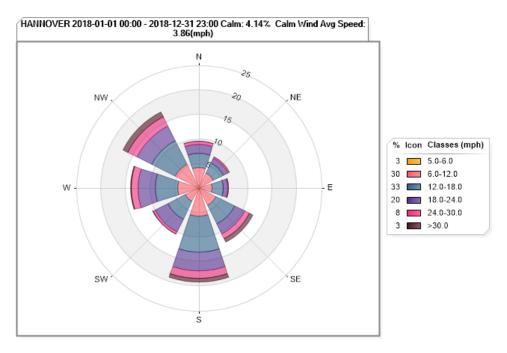


Figure 48. Hannover Wind Rose for 2018

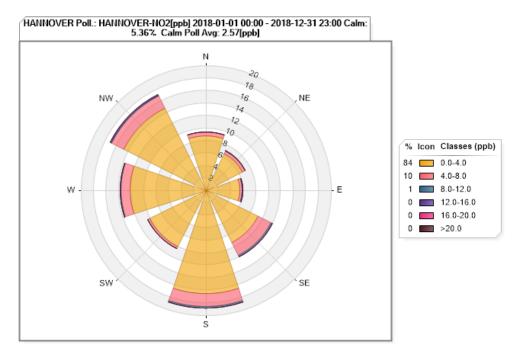


Figure 49. Hannover NO₂ Pollution Rose for 2018

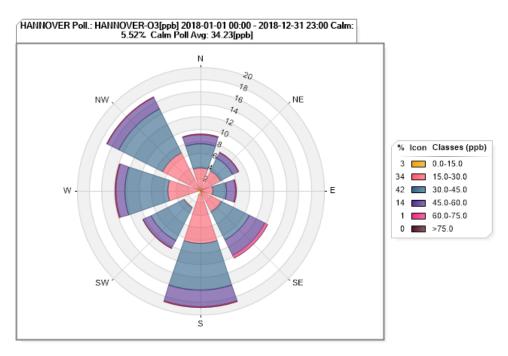


Figure 50. Hannover O₃ Pollution Rose for 2018

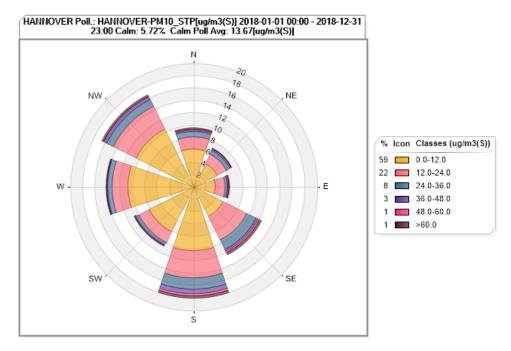


Figure 51. Hannover PM₁₀ Pollution Rose for 2018

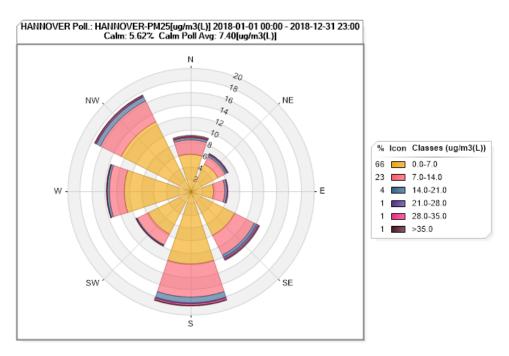


Figure 52. Hannover PM_{2.5} Pollution Rose for 2018

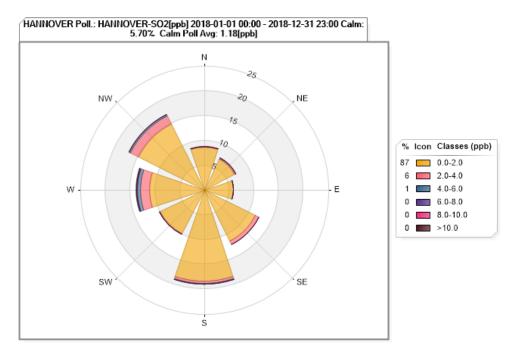


Figure 53. Hannover SO₂ Pollution Rose for 2018

Site Name: Lostwood NWR

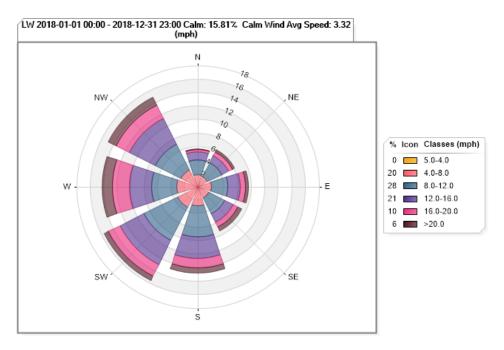
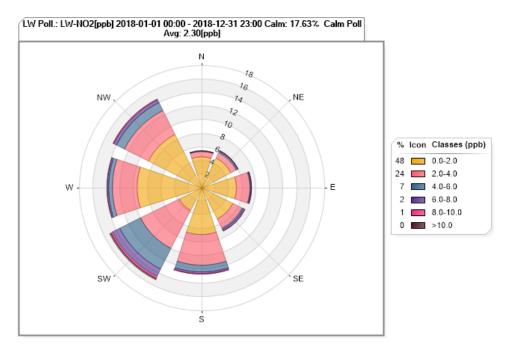



Figure 54. Lostwood Wind Rose for 2018

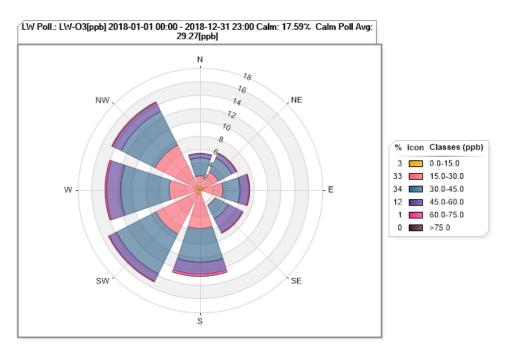


Figure 56. Lostwood O₃ Pollution Rose for 2018

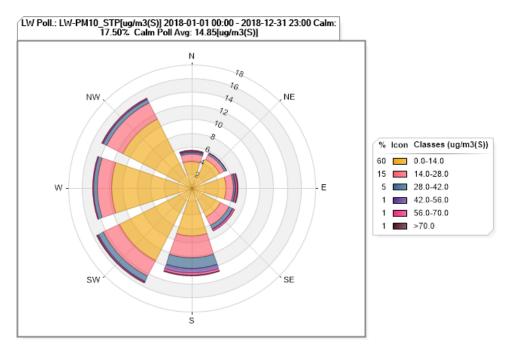


Figure 57. Lostwood PM₁₀ Pollution Rose for 2018

Figure 58. Lostwood PM_{2.5} Pollution Rose for 2018

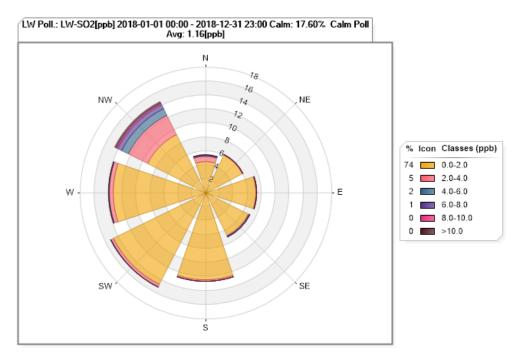
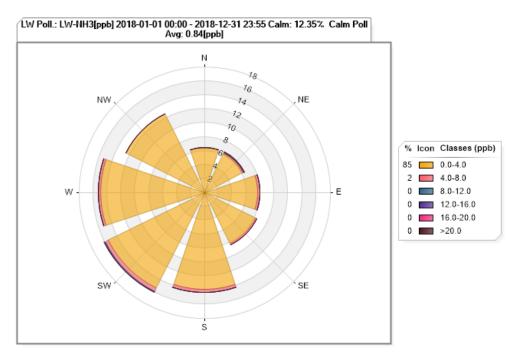
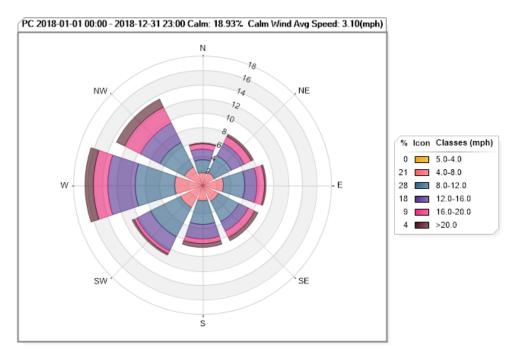
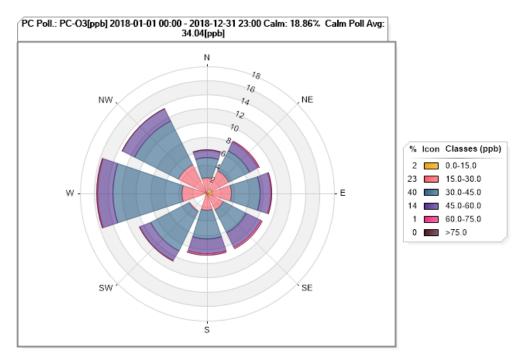
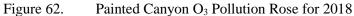
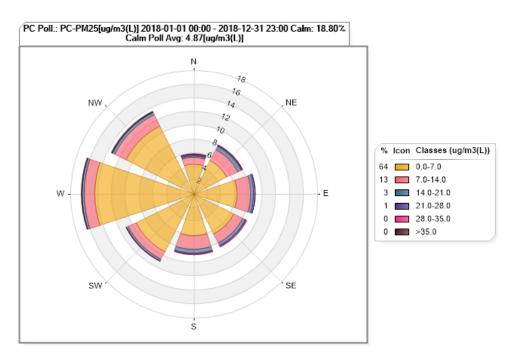
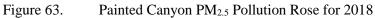


Figure 59. Lostwood SO₂ Pollution Rose for 2018


Figure 60. Lostwood NH₃ Pollution Rose for 2018


Site Name: Painted Canyon (TRNP - SU)



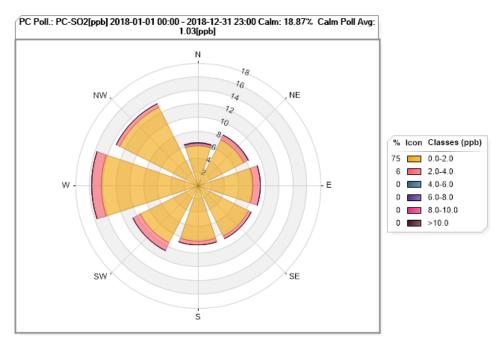


Figure 64. Painted Canyon SO₂ Pollution Rose for 2018

Site Name: TRNP-NU

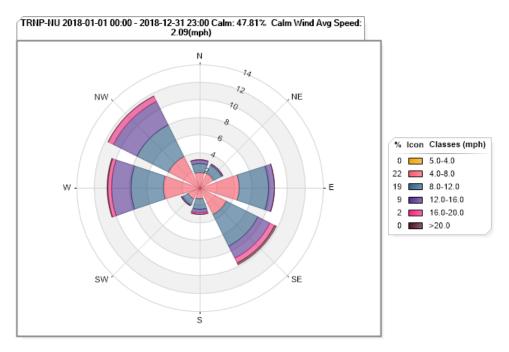
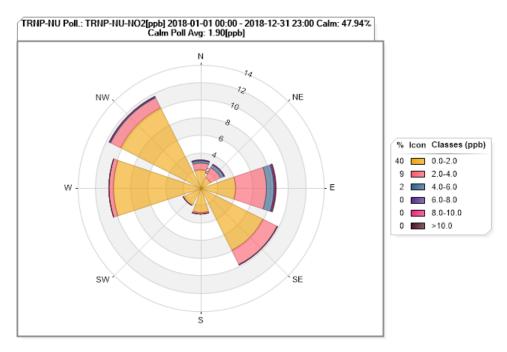
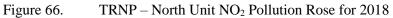




Figure 65. TRNP – North Unit Wind Rose for 2018

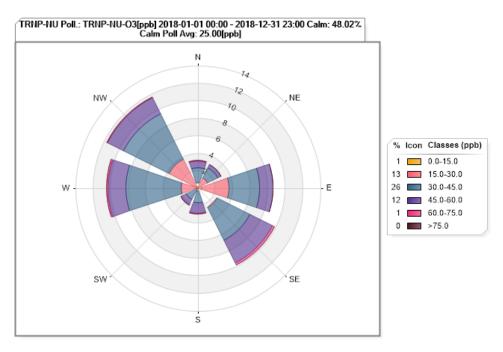


Figure 67. TRNP – North Unit O₃ Pollution Rose for 2018

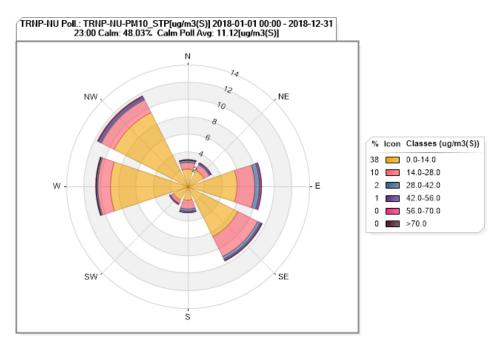


Figure 68. TRNP – North Unit PM_{10} Pollution Rose for 2018

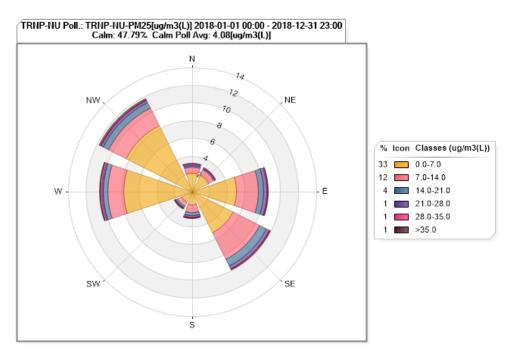


Figure 69. TRNP – North Unit PM_{2.5} Pollution Rose for 2018

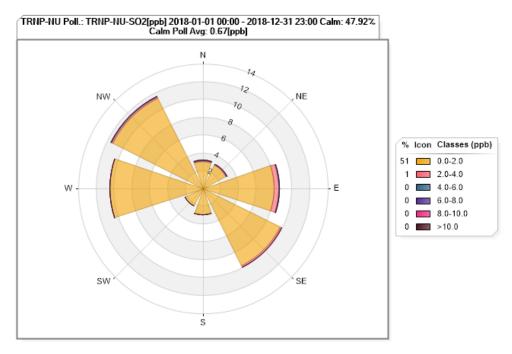
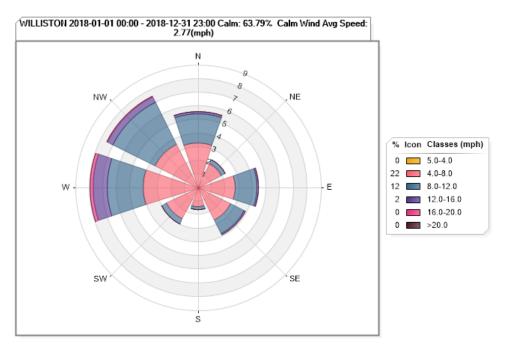
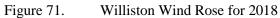




Figure 70. TRNP – North Unit SO₂ Pollution Rose for 2018

Site Name: Williston

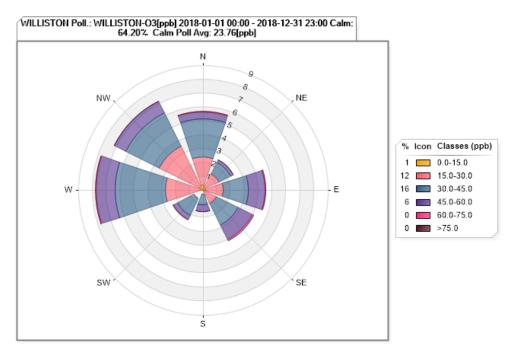


Figure 72. Williston O₃ Pollution Rose for 2018

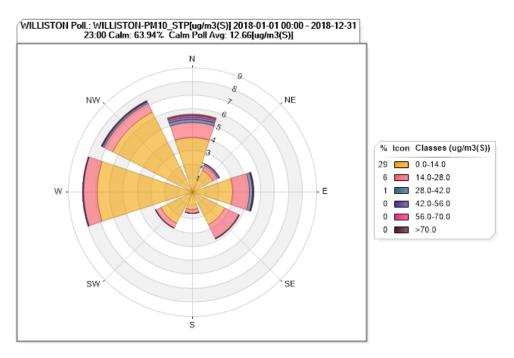


Figure 73. Williston PM₁₀ Pollution Rose for 2018

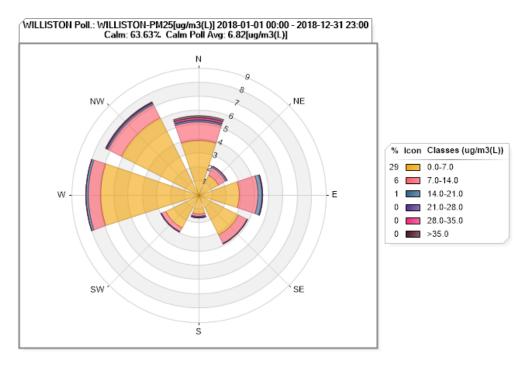


Figure 74. Williston PM_{2.5} Pollution Rose for 2018

Appendix E SO₂ Monitors for the Data Requirements Rule

Effective September 21, 2015, EPA promulgated the Data Requirements Rule (DRR) for the 2010 1-hour SO₂ standard which requires state air agencies to characterize air quality in areas with large sources of SO₂ emissions. The Hess Corporation's Tioga Gas Plant in Williams County is subject to this rule as an applicable source due to a non-regulatory monitor in the area suggesting excessive ambient concentrations of SO₂. This applicability is outlined in the March 18, 2016 DRR Response letter from EPA^{21} .

One of the pathways for a state agency to characterize air quality is to use ambient air quality monitoring by use of SLAMS or SLAMS-like monitors. The Department chose to use SLAMS-like monitors to meet this requirement. In this case a SLAMS-like monitor is operated by the regulated entity but is audited by the Department and must meet all the requirements of a SLAMS monitor as specified in 40 CFR 58²².

After a comprehensive computer air dispersion modeling analysis, the Department determined that two monitors will be used to characterize ambient air quality around the Hess Tioga Gas Plant: one in the general area identified via the modeling analysis as the location of peak SO_2 concentration (Station B – North), and one at the current location of the non-regulatory monitor that collected data that resulted in the facility being subject to the DRR (Station A - South). The following pages provide information on these sites.

²¹ Available at https://www3.epa.gov/airquality/sulfurdioxide/drr/nd-response.pdf

²² Monitors operated in a manner equivalent to SLAMS as to meet all applicable requirements of 40 CFR 58, appendices A, C, and E, and subject to the data certification and reporting requirements of 40 CFR 58.15 and 58.16.

Site Name: Hess Tioga Gas Plant - Station A South

Station Type:	SLAMS – Like	
AQS#:	38-105-0105	MSA: 0000
Address:	Tioga, ND	
Latitude:	+48.392666	Longitude: -102.910693

Site Description: This site was previously named Hess #3 – South Site. It was the non-regulatory monitor site that recorded readings suggesting excessive ambient concentrations of SO₂.

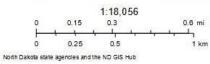
Gas/Particulate parameters:

Parameter	Sampling &	Operating	Monitoring	Spatial
	Analysis Method	Schedule	Objective	Scale
Sulfur Dioxide	Instrumental Pulsed Florescent	Continuous	Data Requirements Rule SO₂ Characterization	Source Specific

Meteorological parameters:

Parameter	Sampling & Analysis Method	Operating Schedule	Tower Height	Spatial Scale
None	N/A	N/A	N/A	N/A

There are no plans to move or remove this site.


Site Pictures: Hess Tioga Gas Plant – Station A South

North

Site Name: Hess Tioga Gas Plant - Station B Northeast

Station Type:	SLAMS – Like		
AQS#:	38-105-0106	MSA: 0000	
Address:	Tioga, ND		
Latitude:	+48.465253	Longitude:	-102.894086

Site Description: This site is located in the area where maximum modeled SO₂ concentrations were seen. The modeling was conducted in response to the requirements of the Data Requirements Rule for the 2010 1-hour SO₂ Standard.

Gas/Particulate parameters:

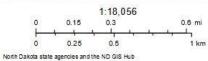
-	Sampling &	Operating	Monitoring	Spatial
Parameter	Analysis Method	Schedule	Objective	Scale
Sulfur Dioxide	Instrumental Pulsed	Continuous	Data Requirements Rule	Source
	Florescent		SO ₂ Characterization	Specific

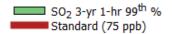
Meteorological parameters:

Parameter	Sampling &	Operating	Tower Height	Spatial
	Analysis Method	Schedule		Scale
Wind Speed	Elec. or Mach Avg. Level 1	Continuous	10 meters	Source Specific
Wind Direction	Elec. or Mach Avg. Level 1	Continuous	10 meters	Source Specific
Ambient Temperature	Elec. or Mach Avg.	Continuous	4 meters	Source Specific
T				

There are no plans to move or remove this site.

Site Pictures: Hess Tioga Gas Plant – Station B North




East

West

Hess Tioga Gas Plant - Station B North

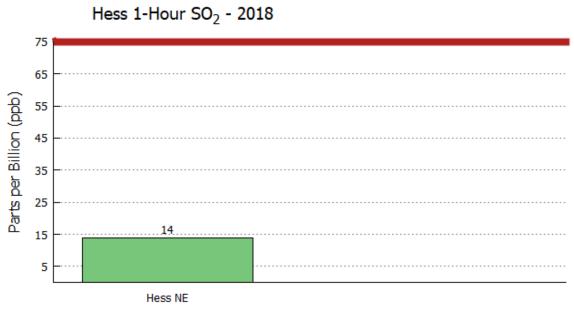


Figure 75. Tioga Gas Plant SO₂ Concentrations Compared to the 1-hour Standard