

July 14, 2025

North Dakota Department of Environmental Quality (NDDEQ) Division of Air Quality 4201 Normandy Street Bismarck, ND 58503-1324

**Re:** Permit to Construct

Hiland Partners Holdings LLC Silurian Compressor Station Williams County, North Dakota

Dear Sir or Madam,

Hiland Partners Holdings LLC (Hiland), is submitting the enclosed Permit to Construct (PTC) application to authorize the construction of the Silurian Compressor Station (Silurian CS), located in Williams County. The enclosed application includes all required technical documents as well as administrative NDDEQ forms.

If you have any questions or require additional information, please contact me at 713-420-6314 or by email at brittany\_brumley@kindermorgan.com.

Sincerely,

Brittany Brumley EHS Manager

**Enclosures** 



## **Air Quality Permit Application for Permit to Construct**

Permit: TBD

### **Silurian Compressor Station**

Williams County, North Dakota
July 2025

#### PREPARED FOR:

#### **Hiland Partners Holdings LLC**

Williams County, North Dakota

SPIRIT PROJECT: PROJ-055308

#### FOR SPIRIT ENVIRONMENTAL:

Jesse Babu

W. Scott Hyden

OFFICE: 281-664-2490 FAX: 281-664-2491

20465 State Highway 249, Suite 300 Houston, TX 77070

### **Table of Contents**

| 1.0 | Introdu | ıction1–²                                                                                                                                                                                                                                                                    | 1 |
|-----|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|     | 1.1     | Proposed Construction                                                                                                                                                                                                                                                        | 1 |
|     | 1.2     | Application1–                                                                                                                                                                                                                                                                | 1 |
|     | 1.3     | Public Notice 1–2                                                                                                                                                                                                                                                            | 2 |
|     | 1.4     | Site Location1–2                                                                                                                                                                                                                                                             | 2 |
|     | 1.5     | Site Description1–2                                                                                                                                                                                                                                                          | 2 |
| 2.0 | Proces  | ss Description2-                                                                                                                                                                                                                                                             | 1 |
| 3.0 | Emissi  | on Estimates3-´                                                                                                                                                                                                                                                              | 1 |
|     | 3.1     | Storage Tanks – Unit IDs 3 and 10                                                                                                                                                                                                                                            | 1 |
|     | 3.2     | Compressor Engines – Unit IDs 4, 5, 6, and 7                                                                                                                                                                                                                                 | 1 |
|     | 3.3     | Truck Loading – Unit ID 8                                                                                                                                                                                                                                                    | 2 |
|     | 3.4     | Flare – Unit ID 9                                                                                                                                                                                                                                                            | 2 |
|     | 3.5     | Fugitives – Unit ID 11                                                                                                                                                                                                                                                       | 3 |
|     | 3.6     | MSS Activities – Unit ID 12                                                                                                                                                                                                                                                  | 3 |
| 4.0 | Regula  | atory Applicability4–´                                                                                                                                                                                                                                                       | 1 |
|     | 4.1     | Federal Regulatory Requirements4–                                                                                                                                                                                                                                            | 1 |
|     | 4.      | 1.1 40 CFR 60, Subpart A – General Provisions4–                                                                                                                                                                                                                              | 1 |
|     | 4.      | 40 CFR 60, Subpart Kb – Standards of Performance for Volatile Organic<br>Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for<br>Which Construction, Reconstruction, or Modification Commenced After<br>July 23, 1984, and On or Before October 4, 20234– | 1 |
|     | 4.      | 1.3 40 CFR 60, Subpart Kc – Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced After October 4, 20234–                                      | 1 |
|     | 4.      | 1.4 40 CFR 60, Subpart JJJJ – Standards for Stationary Spark Ignition Internal Combustion Engines4–2                                                                                                                                                                         | 2 |
|     | 4.      | 1.5 40 CFR 60, Subpart OOOO – Standards of Performance for Crude Oil and Natural Gas Facilities for Which Construction, Modification, or                                                                                                                                     |   |

### **Table of Contents (continued)**

| Reconstruction Commenced After August 23, 2011, and on or Before September 18, 20154–2                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.1.6 40 CFR 60, Subpart OOOOa – Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification, or Reconstruction Commenced after September 18, 20154– |
| 4.1.7 40 CFR 60, Subpart OOOOb – Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification, or Reconstruction Commenced after December 6, 20224–   |
| 4.1.8 40 CFR 63, Subpart A – General Provisions4–4                                                                                                                                              |
| 4.1.9 40 CFR 63, Subpart ZZZZ – National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines                                               |
| North Dakota Regulatory Requirements4-                                                                                                                                                          |
| 4.2.1 NDAC 33.1-15-01 - General Provisions4-                                                                                                                                                    |
| 4.2.2 NDAC 33.1-15-02 - Ambient Air Quality Standards4                                                                                                                                          |
| 4.2.3 NDAC 33.1-15-03 - Restriction of Emission of Visible Air Contaminants 4-5                                                                                                                 |
| 4.2.4 NDAC 33.1-15-04 – Open Burning Restrictions4-                                                                                                                                             |
| 4.2.5 NDAC 33.1-15-05 - Emissions of Particulate Matter Restricted4-                                                                                                                            |
| 4.2.6 NDAC 33.1-15-06 - Emissions of Sulfur Compounds Restricted4-                                                                                                                              |
| 4.2.7 NDAC 33.1-15-07 - Control of Organic Compounds Emissions4-                                                                                                                                |
| 4.2.8 NDAC 33.1-15-08 - Control of Air Pollution from Vehicles and Other Internal Combustion Engines4–                                                                                          |
| 4.2.9 NDAC 33.1-15-10 - Control of Pesticides4-                                                                                                                                                 |
| 4.2.10 NDAC 33.1-15-11 – Prevention of Air Pollution Emergency Episodes4–                                                                                                                       |
| 4.2.11 NDAC 33.1-15-12 - Standards of Performance for New Stationary Sources4-                                                                                                                  |
| 4.2.12 NDAC 33.1-15-13 – Emission Standards for Hazardous Air Pollutants 4–                                                                                                                     |
| 4.2.13 NDAC 33.1-15-14 - Designated Air Contaminant Sources, Permit to Construct, Minor Source Permit to Operate, Title V Permit to Operate.4–                                                  |
| 4.2.14 NDAC 33.1-15-15 - Prevention of Significant Deterioration of Air Quality                                                                                                                 |

### **Table of Contents (continued)**

|     | 4.2.15 NDAC 33.1-15-16 - Restriction of Odorous Air Contaminants                                        | 4–7          |
|-----|---------------------------------------------------------------------------------------------------------|--------------|
|     | 4.2.16 NDAC 33.1-15-17- Restriction of Fugitive Emissions                                               | 4–7          |
|     | 4.2.17 NDAC 33.1-15-18 - Stack Heights                                                                  | 4–8          |
|     | 4.2.18 NDAC 33.1-15-22- Emissions Standards for Hazardous Air Pollutants                                | 4–8          |
|     | 4.2.19 Policy for the Control of Hazardous Air Pollutant Emissions in North  Dakota (Air Toxics Policy) | 4–8          |
| 5.0 | NDDEQ Forms5                                                                                            | <u>,</u> —1  |
| 6.0 | Appendices6                                                                                             | j <u>—</u> 1 |

### **List of Tables**

Table 3-1 Emissions Summary ......3-4

## **List of Figures**

| Figure 1-1 | Silurian Compressor Station Area Map1            | <b>–</b> 3 |
|------------|--------------------------------------------------|------------|
| Figure 1-2 | Silurian Compressor Station Facility Layout      | <b>–</b> 4 |
| Figure 2-1 | Silurian Compressor Station Process Flow Diagram | 2-2        |

#### 1.0 Introduction

Hiland Partners Holding, LLC (Hiland) is submitting this Permit To Construct application for the proposed construction of Silurian Compressor Station (CS), a natural gas compressor station located in Williams County, North Dakota. The Silurian CS compresses natural gas from nearby wells for pipeline transmission to a local gas plant. The field gas is separated into NGL and sales gas. Sales gas is compressed and routed into the sales pipeline, and NGL is sent offsite via pipeline.

On August 13, 2013, Hiland submitted a permit to construct application for the Silurian CS. Emission sources included two (2) heaters (EU 1 and EU 2) and one (1) storage tank (EU 3). On August 15, 2013, NDDEQ sent a letter to Hiland determining that Silurian CS is a minor significance source and a permit to construct is not required; thereby, authorizing Hiland to construct and operate Silurian CS as requested in the August 13, 2013 application submittal.

#### 1.1 Proposed Construction

This permit to construct request is for the construction/modification of Silurian CS which includes installation of four (4) compressor engines (EU 4-EU 7), one (1) produced water storage tank (existing tank EU 3), produced water loading operations (EU 8), one (1) flare (EU 9) for combustion of routine, maintenance, start-up and shutdown (MSS), and emergency vents, miscellaneous storage tanks (EU 10) (one (1) methanol tank, four (4) lube oil tanks, and four (4) antifreeze tanks), associated fugitive components (EU 11), and MSS emissions (EU 12). The two (2) existing heaters (EU 1-EU 2) will be removed from the site and hence are not included in this submittal. Emissions from the proposed construction/modification can be found in Appendix A. Equipment specifications can be found in Appendix B.

#### 1.2 Application

In accordance with North Dakota Division of Air Quality requirements, permit application forms have been completed and are included in Section 5.0.

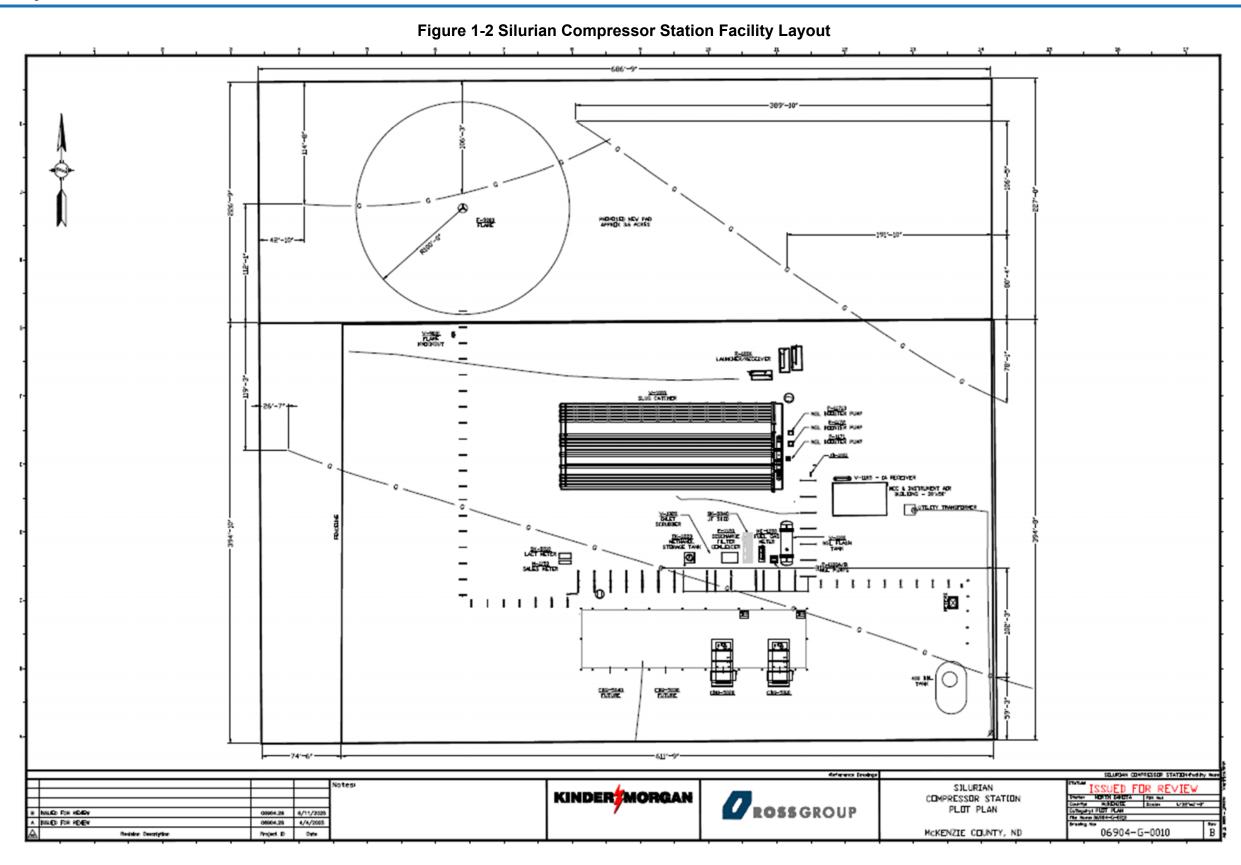
#### 1.3 Public Notice

As per North Dakota Administrative Code (NDAC) Section 33.1-15-14-02.6 – Public participation – Final action on application, Hiland will comply with any public participation procedures, as applicable.

#### 1.4 Site Location

The Silurian CS is located approximately seven (7) miles south of Tioga, in Lot 2 of Section 31, Township 156 North, Range 95 West, in Williams County, North Dakota. The general coordinates are Latitude: 48.2945° North, and Longitude: -102.9559° West. The site elevation is approximately 2,350 feet above sea level. A map of the facility location can be found in Figure 1-1. A plot plan of the facility location can be found in Figure 1-2.

#### 1.5 Site Description


The terrain surrounding the facility is characterized as flat to slightly rolling hills. The surrounding area is mainly used for agriculture and livestock grazing. The air quality classification for the area is "Better than National Standards" or unclassifiable/attainment for the National Ambient Air Quality Standards (NAAQS) for criteria pollutants [40 Code of Federal Regulations (CFR) 81.335]. There are no non-attainment areas within a reasonable distance of the site.

Silurian Compressor Station 48.294485° N, -102.955857° W 0.15 0.3 0.45 Service Layer@redits: World Imagery: Maxar Miles Figure No.: 1-1 Legend Date: 5/19/2025 SILURIAN COMPRESSOR STATION AREA MAP HILAND PARTNERS HOLDINGS, LLC WILLIAMS COUNTY, NORTH DAKOTA Project No.: PROJ-055308 Property Boundary Drawn By: EArmstrong Revision No.: 1

20465 State Highway 249, Suite 300 Houston, TX 77070

Figure 1-1 Silurian Compressor Station Area Map

Note: This is not a Property Boundary Survey



### 2.0 Process Description

The Silurian CS receives incoming field gas for separation and compression. The gas enters the site through an inlet separator where liquid portions are separated from the gas fraction. The natural gas liquids (NGL) portion from the slug catcher is sent offsite via pipeline. The water portions of the liquids from the slug catcher, flash tank, and fuel gas JT skid are routed to a produced water tank (Unit ID: 3). Liquids from the produced water storage tank are periodically removed from the site by truck loadout (Unit ID: 8). Four (4) compressors driven by four (4) natural gas-fired reciprocating internal combustion engines (RICE) (Unit IDs: 4, 5, 6, and 7) provide compression for pipeline transmission of the gas entering the site. NGL liquids from the inlet scrubber, discharge coalescer, and fuel gas JT skid are routed to a flash tank and then to the NGL liquids pipeline. The vapors from the flash tank are either collected by an electric driven Vapor Recovery Unit (VRU) compressor and routed to the compressor suction line or the flare (Unit ID: 9) for combustion. Other emission sources at the site include fugitive equipment components (Unit ID: 11), miscellaneous storage tanks (Unit ID: 10) and MSS activities (Unit ID: 12). MSS activities include blowdowns from compressors routed to the flare (Unit ID 9) and pigging operations that vent to atmosphere. Miscellaneous tanks include one (1) methanol tank, four (4) lube oil tanks, and four (4) antifreeze tanks.

A simplified process flow diagram illustrating the site process at the Silurian CS is provided as Figure 2-1.

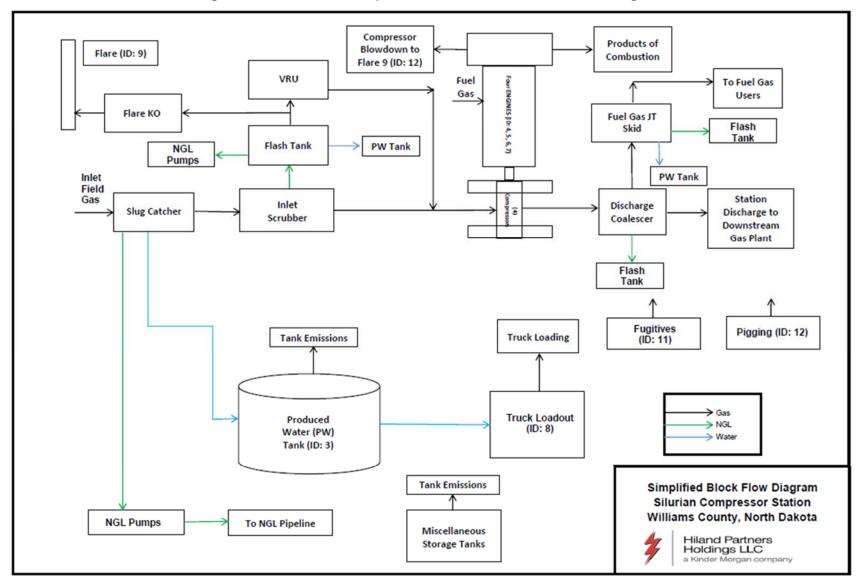



Figure 2-1 Silurian Compressor Station Process Flow Diagram

#### 3.0 Emission Estimates

Air pollutants emitted from Silurian CS include nitrogen oxides (NO<sub>X</sub>), particulate matter (PM), particulate matter less than 10 microns in diameter (PM<sub>10</sub>), particulate matter less than 2.5 microns in diameter (PM<sub>2.5</sub>), sulfur dioxide (SO<sub>2</sub>), volatile organic compounds (VOCs), carbon monoxide (CO), and various hazardous air pollutants (HAPs).

This application contains potential to emit (PTE) calculations for the proposed Silurian CS emission sources and associated fugitive emissions. Detailed emissions calculations are found in Appendix A. The proposed facility-wide emissions summary is in Table 3-1.

#### 3.1 Storage Tanks – Unit IDs 3 and 10

The 400 barrel (bbl) fixed roof API Tank (Unit ID 3) stores produced water and drain water received from the slug catcher, fuel gas JT skid, and flash tank. The content is predominately water, and the tank emissions are routed to atmosphere. Hourly and annual working and breathing losses are calculated using a ProMax model per the United States (US) Environmental Protection Agency's (EPA) AP-42 Ch. 7.1. The total emissions from the tank sums working and breathing losses.

Miscellaneous tanks (Unit ID 10) are fixed roof tanks that include one (1) 2,000 gallons methanol tank, four (4) 500 gallons lube oil tanks, and four (4) 500 gallons antifreeze tanks. As these tanks are of small volume storing low vapor pressure liquids, these tanks are grouped as one Unit ID 10. The calculation methodology from the AP-42, Section 7.1 Organic Liquids Storage Tanks (October 2024) is used to estimate the VOC emissions. The total emissions from the tank sums working and breathing losses. The worst-case hourly emissions assume a maximum fill rate of one (1) tank in one (1) hour for each tank. There are no flashing losses from these tanks. For lube oil, the properties of diesel are used, and for anti-freeze, properties of ethylene glycol are used. The vapor pressures of the material stored are determined by using a maximum liquid surface temperature of 95 degrees Fahrenheit (°F).

#### 3.2 Compressor Engines – Unit IDs 4, 5, 6, and 7

The proposed engines' emission rates of  $NO_X$ , CO, VOC, and formaldehyde are based on the engine manufacturer, catalyst vendor data, and permit or regulatory limitations. The emission factors used are higher than the emission factors provided by the catalyst vendor to accommodate

flexibility in the field operations. The calculations of PM, PM<sub>10</sub>, PM<sub>2.5</sub>, SO<sub>2</sub>, and other HAP PTE are based on emission factors in AP-42, Fifth Edition, Volume I, Chapter 3: Stationary Internal Combustion Sources, Section 3.2 Natural Gas Fired Reciprocating Engines Table 3.2-3 (October 2024) for rich burn engines. Short term (lb/hr) emissions are based on the emissions factors (g/hp-hr) and maximum design horse power (HP). Annual emissions are based on the 8,760 hours per year of operation.

#### 3.3 Truck Loading – Unit ID 8

Emissions from produced water truck loadout are estimated using US EPA's AP-42 Ch. 5.2 and assumes dedicated normal service trucks and submerged loading; therefore, a saturation factor of 0.6 is used for the truck loading calculations. The liquid vapor pressure and molecular weight are calculated by the ProMax model. Short term emissions are based on the worst case (highest) temperature and vapor pressure. Annual emissions are based on average temperature and vapor pressure. Produced water is assumed to be 99% water and 1% VOC.

#### 3.4 Flare – Unit ID 9

Routine flare emissions (Unit ID 9) are from the venting of flash tank vapors to the flare when the VRU is not in operation. MSS emissions (Unit ID 12) are from compressor blow down vents that are controlled by the flare (Unit ID 9).

The flare utilizes field gas as the pilot combustion fuel. Fuel combustion emissions are calculated based on a pilot volumetric flow rate of 90 standard cubic feet per hour (scf/hr) and pollutant emission factors outlined in US EPA AP-42, Volume I, Fifth Edition - July 1998, Tables 1.4-1 through 1.4-3.

The flash tank vapor and compressor blowdown flow rates are based on an engineering estimate. VOC,  $H_2S$ , and  $SO_2$  emissions are based on the stream composition and material balance. The emission factors (lb/MMBtu) for  $NO_X$  and CO were taken from "TCEQ Air Permit Technical Guidance for Chemical Sources: Flares and Vapor Oxidizers" for high British Thermal Units (BTU) streams. Based on the flare vendor, the flare has a VOC destruction efficiency of at least 98%.

#### 3.5 Fugitives – Unit ID 11

Fugitive component counts are estimated based on the equipment at the facility. Emissions are calculated based on the emission factors from EPA's "Protocol for Equipment Leak Emission Estimates" EPA-453/R-95-017, 11/1995, Table 2-4. The VOC emissions from the fugitive components in gas service are based on the inlet gas composition. The VOC emissions from components in light liquid service are based on assuming 100% VOC in light liquid.

#### 3.6 MSS Activities – Unit ID 12

MSS emissions are associated with compressor blowdowns and pigging operations. Compressor blowdown vents are routed to flare whereas pigging operations are vented to atmosphere.

Compressor blowdown emissions are discussed in the flare emissions section above. The compressor blowdown rates are based on an engineering estimate, and each blowdown is estimated to occur only for a few minutes. The short-term emissions are based on one (1) blowdown in any hour, and annual emissions are based on 50 blowdowns for each compressor for a total of 200 blowdowns in a year. VOC emissions are based on the blowdown vent gas composition. The controlled emissions are based on 98% control efficiency.

Pigging operations emissions are based on the estimated pigging vent rates at the pigging operating condition's pressure and temperature. VOC emissions are based on the inlet gas composition. Annual emissions are based on 12 events at each high pressure receiver and launcher and 52 events at each low pressure receiver and launcher.

Emission calculations details for all the emissions sources at the site are in Appendix A..

**Table 3-1 Emissions Summary** 

| Emission<br>Unit          | Emission Unit Description               | РМ    | SO <sub>2</sub> | NOx   | со    | voc    | CO <sub>2</sub> e | Largest HAP (Formaldehyde) | НАР   |
|---------------------------|-----------------------------------------|-------|-----------------|-------|-------|--------|-------------------|----------------------------|-------|
| Oilit                     |                                         | (tpy) | (tpy)           | (tpy) | (tpy) | (tpy)  | (tpy)             | (tpy)                      | (tpy) |
| 3                         | API Tank 400 bbls                       |       |                 |       |       | 0.004  |                   |                            |       |
| 4                         | Waukesha L7044GSI                       | 1.33  | 0.04            | 18.35 | 18.35 | 13.76  | 8,038.52          | 0.92                       | 1.69  |
| 5                         | Waukesha L7044GSI                       | 1.33  | 0.04            | 18.35 | 18.35 | 13.76  | 8,038.52          | 0.92                       | 1.69  |
| 6                         | Waukesha L5794GSI                       | 0.99  | 0.03            | 13.33 | 13.33 | 9.86   | 6,001.29          | 0.53                       | 1.31  |
| 7                         | Waukesha L5794GSI                       | 0.99  | 0.03            | 13.33 | 13.33 | 9.86   | 6,001.29          | 0.53                       | 1.31  |
| 8                         | Produced Water Truck Loading            |       |                 |       |       | 0.0003 |                   |                            |       |
| 9                         | Flare                                   | 0.003 | 0.05            | 12.58 | 25.11 | 14.29  | 10,673.32         |                            | 0.54  |
| 10 <sup>1</sup>           | Miscellaneous Storage Tanks             |       |                 |       |       | 0.034  |                   |                            |       |
| 11                        | Fugitives                               |       |                 |       |       | 4.70   |                   |                            | 0.04  |
| 12 <sup>2</sup>           | MSS                                     |       | 0.001           | 0.33  | 0.65  | 1.06   | 276.49            |                            | 0.01  |
| Total Sitewide Emissions: |                                         | 4.66  | 0.19            | 76.25 | 89.11 | 67.33  | 39,029.43         | 2.90                       | 6.59  |
|                           | Project Increases:                      | 4.66  | 0.19            | 76.25 | 89.11 | 67.33  | 39,029.43         | 2.90                       | 6.59  |
|                           | Emissions Less Than Title V Thresholds? | Yes   | Yes             | Yes   | Yes   | Yes    | N/A               | Yes                        | Yes   |

#### Notes:

<sup>1.</sup> Miscellaneous tanks include one methanol tank, four lube oil tanks, and four antifreeze tanks.

<sup>2.</sup> MSS includes blowdowns from compressors and pigging.

### 4.0 Regulatory Applicability

There are numerous federal and NDDEQ regulations and requirements applicable to the Silurian CS. All potentially applicable requirements are addressed in this section.

#### 4.1 Federal Regulatory Requirements

This section includes a discussion of potentially applicable federal regulations.

#### 4.1.1 40 CFR 60, Subpart A – General Provisions

Sources at the Silurian CS are subject to subparts in 40 CFR 60; therefore, Hiland will comply with the applicable requirements of this subpart.

# 4.1.2 40 CFR 60, Subpart Kb – Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced After July 23, 1984, and On or Before October 4, 2023

Storage vessels are subject to Subpart Kb if they were constructed, modified, or reconstructed after July 23, 1984 and on or before October 4, 2023, store volatile organic liquids (VOL), and have a capacity greater than or equal to 75 cubic meters (m³). The API Tank (Unit ID 3) was constructed in August 2013 and is not modified in this proposed project. It has a capacity of less than 75 m³; therefore, it is not subject to this subpart.

# 4.1.3 40 CFR 60, Subpart Kc – Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced After October 4, 2023

Storage vessels are subject to Subpart Kc if they were constructed, modified, or reconstructed after October 4, 2023, store volatile organic liquids (VOL), and have a capacity greater than or equal to 20,000 gallons. The Miscellaneous Tanks (Unit ID 10) are constructed after October 4, 2023. Their capacities are less than 20,000 gallons each; therefore, they are not subject to this subpart.

## 4.1.4 40 CFR 60, Subpart JJJJ – Standards for Stationary Spark Ignition Internal Combustion Engines

Owners and operators are subject to 40 CFR 60 Subpart JJJJ if construction, reconstruction, or modification of the spark ignition internal combustion engine (SI ICE) commenced after June 12, 2006, and if manufactured

- On or after July 1, 2007, for engines with a maximum engine power greater than or equal to 500 hp (except lean-burn engines with a maximum engine power greater than or equal to 500 hp and less than 1,350 hp);
- On or after January 1, 2008, for lean-burn engines with a maximum engine power greater than or equal to 500 hp and less than 1,350 hp;
- On or after July 1, 2008, for engines with a maximum engine power less than 500 hp; or
- On or after January 1, 2009, for emergency engines with a maximum engine power greater than 19 KW (25 hp).

The four (4) proposed rich burn compressor engines (Unit IDs 4, 5, 6, and 7) will be constructed after June 12, 2006, and manufactured after July 1, 2007. Therefore, Subpart JJJJ is applicable, and Hiland will comply with the applicable NSPS Subpart JJJJ requirements for these engines.

# 4.1.5 40 CFR 60, Subpart OOOO – Standards of Performance for Crude Oil and Natural Gas Facilities for Which Construction, Modification, or Reconstruction Commenced After August 23, 2011, and on or Before September 18, 2015

Owners and operators are subject to Subpart OOOO if they commence construction, modification or reconstruction of an affected facility after August 23, 2011 and on or before September 18, 2015. For a compressor station, affected facilities include centrifugal compressors, reciprocating compressors, storage vessels, and pneumatic controllers.

The API Tank (Unit ID 3), storing produced water, was constructed in August 2013. However, in this proposed project, it will be considered modified per 40 CFR 60.5365b(e)(3)(ii)(D).

# 4.1.6 40 CFR 60, Subpart OOOOa – Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification, or Reconstruction Commenced after September 18, 2015

Owners and operators are subject to Subpart OOOOa if they commence construction, modification or reconstruction of an affected facility after September 18, 2015, and on or before December 6, 2022. For a compressor station, affected facilities include centrifugal compressors, reciprocating compressors, storage vessels, pneumatic controllers, and equipment leaks.

The proposed construction at Silurian CS is not subject to NSPS Subpart OOOOa rules as the site's affected facilities are not constructed after September 15, 2015 and on or before December 6, 2022.

# 4.1.7 40 CFR 60, Subpart OOOOb – Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification, or Reconstruction Commenced after December 6, 2022

Owners and operators are subject to Subpart OOOOb if they commence construction, modification or reconstruction of an affected facility after December 6, 2022. For a compressor station, affected facilities include centrifugal compressors, reciprocating compressors, storage vessels, pneumatic controllers, pumps, and equipment leaks.

The proposed construction and modification at Silurian CS is after December 16, 2022, therefore, Subpart OOOOb is applicable to affected facilities at Silurian CS. The applicable requirements under the Subpart OOOOb (per §60.5365b) are discussed below.

The VOC and methane emissions from the API Tank (Unit ID 3) are below the 6 tons per year (tpy) and 20 tpy respectively; therefore, it is not an affected facility per 60.5365b(e). The miscellaneous tanks do not store crude oil, condensate, intermediate hydrocarbons, or produced water; therefore, they are not affected facilities.

The reciprocating compressors at this compressor station are affected facilities and will comply with the requirements of this subpart.

The collection of fugitive emission components at this compressor station is an affected facility and will comply with the requirements of this subpart.

There are no centrifugal compressors, natural gas driven pneumatic controllers, or natural gas driven pumps at Silurian CS.

Silurian CS will maintain compliance with applicable requirements within the required timeframes outlined in this subpart.

#### 4.1.8 40 CFR 63, Subpart A – General Provisions

Sources at the Silurian CS are subject to subparts in 40 CFR 63; therefore, Hiland will comply with the applicable requirements of this subpart.

## 4.1.9 40 CFR 63, Subpart ZZZZ – National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines

This regulation applies to any RICE located at a major or area source of HAP emissions. All four compressor engines (Unit IDs 4, 5, 6, and 7) were manufactured after July 1, 2007, and the Silurian CS is an area source of HAPs; therefore, all four (4) engines (Unit IDs 4, 5, 6, and 7) must meet the requirements in Maximum Achievable Control Technology (MACT) Subpart ZZZZ by meeting the requirements in New Source Performance Standard (NSPS) Subpart JJJJ.

#### 4.2 North Dakota Regulatory Requirements

This section includes a discussion of applicable state regulations as it applies to Silurian CS.

#### 4.2.1 NDAC 33.1-15-01 - General Provisions

This facility is subject to all general requirements of this section (i.e., inspection, circumvention, shutdown/malfunction, compliance, enforcement, confidentiality of records, etc.).

#### 4.2.2 NDAC 33.1-15-02 - Ambient Air Quality Standards

The air quality of the area is classified as "Better than National Standards" or unclassifiable/attainment of the NAAQS for criteria pollutants (40 CFR 81.335). There are no nonattainment areas within a reasonable distance of the site. The emission units included in this

application are located at a facility that is subject to ambient air quality standards; therefore, Hiland will abide by all standards set forth in this regulation.

## 4.2.3 NDAC 33.1-15-03 - Restriction of Emission of Visible Air Contaminants

NDAC 33.1-15-03 contains regulations governing particulate matter and opacity limits from new and existing sources. The proposed engines (Unit IDs 4, 5, 6, and 7) and the flare (Unit ID 9) are subject to 33.1-15-03-02 relating to restrictions applicable to new installations which states: No person may discharge into the ambient air from any single source of emission whatsoever any air contaminant which exhibits an opacity greater than twenty percent except that a maximum of forty percent opacity is permissible for not more than one (1) six-minute period per hour. These engines and the flare will meet the requirements of this regulation.

#### 4.2.4 NDAC 33.1-15-04 – Open Burning Restrictions

Hiland will not perform open burning of refuse, trade waste, or other combustible material except as provided for in Section 33.1-15-04-02 or 33.1-15-10-02, and will not conduct, cause, or permit the conduct of a salvage operation by open burning.

#### 4.2.5 NDAC 33.1-15-05 - Emissions of Particulate Matter Restricted

The proposed natural gas-fired stationary combustion engines (Unit IDs 4, 5, 6, and 7) and flare (Unit ID 9) will comply with the provisions of Sections 33.1-15-05-01 and 33.1-15-05-04. These engines and flare combust fuel that generates particulate matter; therefore, they are subject to allowable rate limitations that no person shall cause, suffer, allow, or permit the emission of particulate matter in any one (1) hour from any source in excess of the amount shown in 33.1-15-05-01(2)(b) Table 3: Maximum Allowable Rates of Emission of Particulate Matter from Industrial Processes. The flare is a smokeless flare; however, the particulate matter emissions are estimated for pilot fuel combustion only.

#### 4.2.6 NDAC 33.1-15-06 - Emissions of Sulfur Compounds Restricted

The proposed engines (Unit IDs 4, 5, 6, and 7) and the flare (Unit ID 9) combust natural gas with a sulfur content meeting the requirements for pipeline quality natural gas. Per Section 33.1-15-06-01, these are not subject to the regulations of this section.

#### 4.2.7 NDAC 33.1-15-07 - Control of Organic Compounds Emissions

There are no water separators at this facility. All applicable storage tanks will be equipped with submerged fill pipes. There are no truck loading facilities that handle 20,000 gallons per day or more. All rotating pumps and compressors will be equipped and will operate with properly maintained seals designed for its specific product service and operating conditions. The flare (Unit ID 9) is used to combust the vent from the flash tank when the VRU is not in operation and the compressor blowdown vents. The flare meets the requirements of this Section 33.1-15-07-02, as applicable.

## 4.2.8 NDAC 33.1-15-08 - Control of Air Pollution from Vehicles and Other Internal Combustion Engines

The proposed engines (Unit IDs 4, 5, 6, and 7) are natural gas-fired internal combustion engines and will comply with the restricted emissions regulation of Section 33.1-15-08-01.

#### 4.2.9 NDAC 33.1-15-10 - Control of Pesticides

Hiland will comply with the provisions of NDAC 33.1-15-10 should pesticides be used at this facility.

## 4.2.10 NDAC 33.1-15-11 – Prevention of Air Pollution Emergency Episodes

Hiland will comply with any applicable source curtailment regulations when notified by the Department of an Air Pollution Emergency Episode.

## 4.2.11 NDAC 33.1-15-12 - Standards of Performance for New Stationary Sources

The applicability of NSPS rules is discussed in Section 4.1.

## 4.2.12 NDAC 33.1-15-13 – Emission Standards for Hazardous Air Pollutants

This proposed facility is not an affected facility per 40 CFR 61 – NESHAP as incorporated by NDAC Chapter 33.1-15-13. HAP emission calculations indicate that potential HAP emissions at the Silurian CS do not exceed the major source thresholds of 10 tpy any individual HAP or 25 tpy of any combination of HAPs.

## 4.2.13 NDAC 33.1-15-14 - Designated Air Contaminant Sources, Permit to Construct, Minor Source Permit to Operate, Title V Permit to Operate

Hiland is submitting this application per the Permit to Construct requirements of this section to request construction authorization for the proposed emission sources as listed in Table 3-1, Emissions Summary. As shown in Table 3-1, the total facility emissions of all the criteria pollutants are less than the Title V permitting threshold of 100 tpy. Therefore, this facility is subject to the minor source operating permit program per NDAC 33.1-15-14-03. Silurian CS will comply with the applicable minor source permitting authorization requirements to operate.

## 4.2.14 NDAC 33.1-15-15 - Prevention of Significant Deterioration of Air Quality

Prevention of Significant Deterioration (PSD) permitting regulations apply to major stationary sources. A major stationary source is defined as a listed facility with the Potential To Emit (PTE) 100 tpy or more of any regulated pollutant or a non-listed facility with the PTE 250 tpy or more of any regulated pollutant and the PTE 100,000 tpy of carbon dioxide equivalents (CO<sub>2</sub>e). Since the Silurian CS is not a listed facility and does not have the PTE greater than 250 tpy of any regulated pollutant or 100,000 tpy of CO<sub>2</sub>e, PSD permitting is not applicable.

In addition, the changes in potential emissions from the existing facility do not exceed the thresholds listed in the Criteria Pollutant Modeling Requirements for a PTC memorandum; therefore, modeling is not required for this project.

#### 4.2.15 NDAC 33.1-15-16 - Restriction of Odorous Air Contaminants

Hiland will comply with all requirements concerning odorous air contaminants at the Silurian CS as applicable to sources outside a city or outside the area over which a city has exercised extraterritorial zoning as defined in North Dakota Century Code Section 40-47-01.1.

#### 4.2.16 NDAC 33.1-15-17- Restriction of Fugitive Emissions

Hiland will comply with all requirements by taking reasonable precautions to prevent fugitive emissions causing air pollution as defined in NDAC 33.1-15-01-04. Hiland will comply with the fugitive emissions standards in 40 CFR 60 Subpart OOOOb as applicable.

#### 4.2.17 NDAC 33.1-15-18 - Stack Heights

Hiland will utilize good engineering practices relating to the installation of proposed emission sources. Emissions from engines (Unit IDs 4, 5, 6, and 7) and flare (Unit ID 9) are vented from a stack height greater than or equal to 1.5 times the nearest building height.

## 4.2.18 NDAC 33.1-15-22- Emissions Standards for Hazardous Air Pollutants

The applicability of 40 CFR 63 – MACT for Source Categories is discussed in Section 4.1.

## 4.2.19 Policy for the Control of Hazardous Air Pollutant Emissions in North Dakota (Air Toxics Policy)

Proposed engines (Unit IDs 4, 5, 6, and 7) are a listed source in NDAC 33.1-15-14-01. Therefore, per the applicability section of the North Dakota Air Toxics Policy, these engines are subject to these regulations. The Dispersion Modeling Requirements, Compressor Engines and Glycol Dehydration Memorandum was rescinded on December 18, 2023.

### 5.0 NDDEQ Forms

The following forms are included in this application:

- FORM 8516 Permit Application for Air Contaminant Sources
- FORM 8891 Permit Application for Internal Combustion Engines and Turbines (Unit IDs 4, 5, 6, and 7)
- FORM 8532 Permit Application for Air Pollution Control Equipment (Unit IDs 4, 5, 6, 7, and 9)
- FORM 8329 Permit Application for HAP Sources (Unit IDs 4, 5, 6, 7, 9, 11, and 12)
- FORM 8535 Permit Application for Volatile Organic Compounds Storage Tanks (Unit ID 3)
- FORM 59652 Permit Application for Flares (Unit ID 9)

#### PERMIT APPLICATION FOR AIR CONTAMINANT SOURCES



NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF AIR QUALITY SFN 8516 (9-2021)

| SECTION A - FACILITY INFORMATION              |                                                           |           |            |                                       |             |                                                 |                                |  |  |
|-----------------------------------------------|-----------------------------------------------------------|-----------|------------|---------------------------------------|-------------|-------------------------------------------------|--------------------------------|--|--|
|                                               | Name of Firm or Organization Hiland Partners Holdings LLC |           |            |                                       |             |                                                 |                                |  |  |
| Applicant's Name<br>Alex Schmidt              |                                                           |           |            |                                       |             |                                                 |                                |  |  |
| Title                                         |                                                           |           |            | Telephone Nu                          | ımber       | E-mail Add                                      | Iress                          |  |  |
| Director of Operations                        |                                                           |           |            | (701) 833-9361                        |             |                                                 | @kindermorgan.com              |  |  |
| Brittany Brumley                              | Contact Person for Air Pollution Matters Brittany Brumley |           |            |                                       |             |                                                 |                                |  |  |
| Title<br>EHS Manager                          |                                                           |           |            | Telephone Nu<br>(713) 420-6314        | ımber       | E-mail Add                                      | lress<br>nley@kindermorgan.com |  |  |
| Mailing Address (Str<br>1001 Louisiana Street | eet & No.)                                                |           |            |                                       |             |                                                 |                                |  |  |
| City<br>Houston                               |                                                           |           |            | State<br>TX                           |             |                                                 | ZIP Code<br>77002              |  |  |
| Facility Name<br>Silurian Compressor Sta      |                                                           |           |            |                                       |             |                                                 |                                |  |  |
| Facility Address (Strong Miles South of Tioga | eet & No.)                                                |           |            |                                       |             |                                                 |                                |  |  |
| City<br>Tioga                                 |                                                           |           |            | State<br>ND                           |             |                                                 | ZIP Code<br>58852              |  |  |
| County                                        |                                                           |           |            | NAD 83 in Dec                         | cimal D     |                                                 | rth decimal degree)            |  |  |
| Williams                                      |                                                           | 48.294    |            |                                       |             | Longitude -102.9558                             | _ongitude<br>102.95585700      |  |  |
| Legal Description of                          | _                                                         | ·         |            |                                       |             | 1                                               |                                |  |  |
| Quarter<br>Lot 2                              | Quarter                                                   |           | Sect<br>31 | ion<br>                               | Town<br>156 | ship<br>                                        | Range<br>95                    |  |  |
| Land Area at Facility  6.2 Acres (or)         |                                                           | Sq. Ft.   |            | MSL Elevation at Facility<br>2350     |             |                                                 |                                |  |  |
|                                               |                                                           |           |            |                                       |             |                                                 |                                |  |  |
| SECTION B - GE                                | NERAL NA                                                  |           |            |                                       |             | T                                               |                                |  |  |
| Describe Nature of E                          | Business                                                  |           |            | ican Industry<br>on System Numl       | ber         | Standard Industrial Classification Number (SIC) |                                |  |  |
| Compressor                                    | Station                                                   |           |            | 211112                                |             | 1321                                            |                                |  |  |
|                                               |                                                           |           |            |                                       |             |                                                 |                                |  |  |
|                                               |                                                           |           |            |                                       |             |                                                 |                                |  |  |
|                                               |                                                           |           |            |                                       |             |                                                 |                                |  |  |
|                                               |                                                           |           |            |                                       |             | 1                                               |                                |  |  |
| SECTION C - GE                                |                                                           |           |            |                                       |             |                                                 |                                |  |  |
| Type of Permit?                               | Permit to Cor                                             | nstruct ( | PTC)       | ☐ Permit                              | to Ope      | rate (PTO)                                      |                                |  |  |
| If application is for a                       |                                                           | struct, p | lease      |                                       |             |                                                 |                                |  |  |
| Planned Start Construction Date 12/2025       |                                                           |           |            | Planned End Construction Date 06/2026 |             |                                                 |                                |  |  |

## SECTION D - SOURCE IDENTIFICATION AND CATEGORY OF EACH SOURCE INCLUDED ON THIS PERMIT APPLICATION

| Permit to Construct Minor Source Permit to Operate |                                                                                       |              |                                 |                              |                                       |            |                                        |                                       |                                    |                                             |                                              |       |
|----------------------------------------------------|---------------------------------------------------------------------------------------|--------------|---------------------------------|------------------------------|---------------------------------------|------------|----------------------------------------|---------------------------------------|------------------------------------|---------------------------------------------|----------------------------------------------|-------|
|                                                    |                                                                                       | Pe           | ermit to                        | Constr                       | uct                                   |            | Minor                                  | Source                                | Permi                              | t to Ope                                    | erate                                        |       |
| Your<br>Source<br>ID<br>Number                     | Source or Unit (Equipment, Machines, Devices, Boilers, Processes, Incinerators, Etc.) | New Source   | Existing Source<br>Modification | Existing Source<br>Expansion | Existing Source<br>Change of Location | New Source | Existing Source<br>Initial Application | Existing Source<br>After Modification | Existing Source<br>After Expansion | Existing Source After<br>Change of Location | Existing Source After<br>Change of Ownership | Other |
| 3                                                  | API Tank, 400 bbls                                                                    |              | <b>√</b>                        |                              |                                       |            |                                        |                                       |                                    |                                             |                                              |       |
| 4-5                                                | Waukesha L7044GSI                                                                     | $\checkmark$ |                                 |                              |                                       |            |                                        |                                       |                                    |                                             |                                              |       |
| 6-7                                                | Waukesha L5794GSI                                                                     | <b>✓</b>     |                                 |                              |                                       |            |                                        |                                       |                                    |                                             |                                              |       |
| 8                                                  | Produced Water Truck Loading                                                          |              | $\checkmark$                    |                              |                                       |            |                                        |                                       |                                    |                                             |                                              |       |
| 9                                                  | Flare                                                                                 | $\checkmark$ |                                 |                              |                                       |            |                                        |                                       |                                    |                                             |                                              |       |
| 10                                                 | Miscellaneous Storage Tanks                                                           | $\checkmark$ |                                 |                              |                                       |            |                                        |                                       |                                    |                                             |                                              |       |
| 11                                                 | Fugitives                                                                             |              | <b>✓</b>                        |                              |                                       |            |                                        |                                       |                                    |                                             |                                              |       |
| 12                                                 | MSS                                                                                   | $\checkmark$ |                                 |                              |                                       |            |                                        |                                       |                                    |                                             |                                              |       |
|                                                    | tional magazif maga                                                                   |              |                                 |                              |                                       |            |                                        |                                       |                                    |                                             |                                              |       |

Add additional pages if necessary

#### **SECTION D2 - APPLICABLE REGULATIONS**

| OLO HON DE    | ALL EIGABLE REGGEATIONS                        |
|---------------|------------------------------------------------|
| Source ID No. | Applicable Regulations (NSPS/MACT/NESHAP/etc.) |
| Facility-wide | NSPS OOOOb - Fugitives                         |
| 4-7           | NSPS OOOOb - Reciprocating Compressors         |
| 4-7           | NSPS JJJJ and MACT ZZZZ - Compressor Engines   |
|               |                                                |
|               |                                                |

#### SECTION E - TOTAL POTENTIAL EMISSIONS

| Pollutant       | Amount<br>(Tons Per Year) |
|-----------------|---------------------------|
| NO <sub>x</sub> | 76.25                     |
| СО              | 89.11                     |
| PM              | 4.66                      |

| Pollutant                                      | Amount<br>(Tons Per Year) |
|------------------------------------------------|---------------------------|
| PM <sub>10</sub> (filterable and condensable)  | 4.66                      |
| PM <sub>2.5</sub> (filterable and condensable) | 4.66                      |
| SO <sub>2</sub>                                | 0.19                      |
| VOC                                            | 67.33                     |
| GHG (as CO <sub>2</sub> e)                     | 39029.43                  |
| Largest Single HAP                             | 2.90                      |
| Total HAPS                                     | 6.59                      |

<sup>\*</sup>If performance test results are available for the unit, submit a copy of test with this application. If manufacturer guarantee is used provide spec sheet.

#### **SECTION F1 - ADDITIONAL FORMS**

|      | SECTION 1 1 - ADDITIONAL I ONNIO                                                   |  |                                          |  |  |  |  |  |
|------|------------------------------------------------------------------------------------|--|------------------------------------------|--|--|--|--|--|
| Indi | ndicate which of the following forms are attached and made part of the application |  |                                          |  |  |  |  |  |
|      | Air Pollution Control Equipment                                                    |  | Fuel Burning Equipment Used for Indirect |  |  |  |  |  |
|      | (SFN 8532)                                                                         |  | Heating (SFN 8518)                       |  |  |  |  |  |
|      | Construct/Operate Incinerators                                                     |  | Hazardous Air Pollutant (HAP) Sources    |  |  |  |  |  |
|      | (SFN 8522)                                                                         |  | (SFN 8329)                               |  |  |  |  |  |
|      | Natural Gas Processing Plants                                                      |  | Manufacturing or Processing Equipment    |  |  |  |  |  |
|      | (SFN 11408)                                                                        |  | (SFN 8520)                               |  |  |  |  |  |
|      | Glycol Dehydration Units                                                           |  | Volatile Organic Compounds Storage Tank  |  |  |  |  |  |
|      | (SFN 58923)                                                                        |  | (SFN 8535)                               |  |  |  |  |  |
|      | Flares                                                                             |  | Internal Combustion Engines and Turbines |  |  |  |  |  |
|      | (SFN 59652)                                                                        |  | (SFN 8891)                               |  |  |  |  |  |
|      | Grain, Feed, and Fertilizer Operations                                             |  | Oil/Gas Production Facility Registration |  |  |  |  |  |
|      | (SFN 8524)                                                                         |  | (SFN 14334)                              |  |  |  |  |  |

## SECTION F2 – OTHER ATTACHMENTS INCLUDED AS PART OF THIS APPLICATION

| 1. | Application Report     | 4. | ProMax Report |
|----|------------------------|----|---------------|
| 2. | Emissions Calculations | 5. |               |
| 3. | Spec Sheets            | 6. |               |

I, the undersigned applicant, am fully aware that statements made in this application and the attached exhibits and statements constitute the application for Permit(s) to Construct and/or Operate Air Contaminant sources from the North Dakota Department of Environmental Quality and certify that the information in this application is true, correct and complete to the best of my knowledge and belief. Further, I agree to comply with the provisions of Chapter 23.1-06 of the North Dakota Century Code and all rules and regulations of the Department, or revisions thereof. I also understand the permit is nontransferable and, if granted a permit, I will promptly notify the Department upon sale or legal transfer of this permitted establishment.

| Signature | 10-15-60-4   | Date    |
|-----------|--------------|---------|
|           | Alex Schmidt | 7/23/25 |

#### PERMIT APPLICATION FOR INTERNAL COMBUSTION ENGINES AND TURBINES

NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF AIR QUALITY SFN 8891 (9-2021)

NOTE: READ INSTRUCTIONS BEFORE COMPLETING THIS FORM.

- Must include SFN 8516 or SFN 52858

| SECTION A -                         | <u>- GENERAL INF</u>       | FORMATION          |                                       |                        |  |  |
|-------------------------------------|----------------------------|--------------------|---------------------------------------|------------------------|--|--|
| Name of Firm o                      |                            |                    | Facility Name                         |                        |  |  |
| Hiland Partners Ho                  | oldings LLC                |                    | Silurian Compressor Station           |                        |  |  |
|                                     |                            |                    |                                       |                        |  |  |
|                                     | - FACILITY AND             |                    | IATION                                |                        |  |  |
| Source ID Num<br> 4                 | ber (From form SF          | N 8516)            |                                       |                        |  |  |
| Type of Unit                        | Stationary Natu            | ral Gas-Fired Eng  | ne Emerg                              | ency Use Only          |  |  |
| (check all                          |                            | el and Dual Fuel E |                                       | mergency Use           |  |  |
| that apply)                         | Stationary Gaso            |                    | Peakin                                |                        |  |  |
|                                     | <del></del>                | ral Gas-Fired Turb | ine   📙 Demar                         | nd Response            |  |  |
|                                     | Other – Specify            | <b>':</b>          |                                       |                        |  |  |
|                                     |                            |                    |                                       |                        |  |  |
| SECTION C -                         | - MANUFACTUI               | RER DATA           |                                       |                        |  |  |
| Make                                |                            | Model              |                                       | Date of Manufacture    |  |  |
| Waukesha                            |                            | L7044 GSI          |                                       |                        |  |  |
|                                     | nternal Combustior         |                    | _                                     |                        |  |  |
| Spark Ignition                      |                            | ression Ignition   | Lean Burn                             |                        |  |  |
| 4 Stroke                            | 2 Strok                    | ke 📕               | Rich Burn                             | (                      |  |  |
| Maximum Ratin<br>  1900 HP @ 1200 I | ng (BHP @ rpm)<br>RPM      |                    | Operating Capaci<br>1900 HP @ 1200 RP | ty (BHP @ rpm)<br>M    |  |  |
| Engine Subject                      | to:                        |                    |                                       |                        |  |  |
|                                     | R 60, Subpart IIII         |                    |                                       |                        |  |  |
|                                     | R 60, Subpart JJJJ         |                    |                                       |                        |  |  |
|                                     | R 63, Subpart ZZZ          |                    |                                       |                        |  |  |
|                                     | R 60, Subpart OOC          |                    |                                       |                        |  |  |
|                                     | R 60, Subpart OOC          | Oa (for compress   | ors)                                  |                        |  |  |
| Turbine Dry Low Emiss               | sions?                     | □No                |                                       |                        |  |  |
| Heat Input (MM                      |                            | um Rating (HP)     | 75% Rating (HP)                       | Efficiency             |  |  |
| Tieat Input (IVIIVI                 | Did/iii) Iviaxiiiii        | um rading (m.)     | 1070 Rating (Till )                   |                        |  |  |
| Turbine Subject                     | t to:                      |                    |                                       |                        |  |  |
|                                     |                            | 40 CFR 60, Subpa   | art KKKK                              |                        |  |  |
|                                     |                            |                    |                                       |                        |  |  |
|                                     | - FUELS USED               |                    |                                       |                        |  |  |
| Natural Gas (10                     | ) <sup>6</sup> cu ft/year) |                    | Percent Sulfur                        | Percent H₂S            |  |  |
| 109.49                              |                            |                    | Negligible                            | Negligible             |  |  |
| Oil (gal/year)                      |                            |                    | Percent Sulfur Grade No.              |                        |  |  |
| LP Gas (gal/year)                   |                            |                    | Other – Specify:                      |                        |  |  |
|                                     |                            |                    |                                       |                        |  |  |
| SECTION F -                         | - NORMAL OPE               | RATING SCHE        | DIII F                                |                        |  |  |
| Hours Per Day                       |                            | Weeks Per Year     |                                       | Peak Production Season |  |  |
| 24                                  | 7                          | 52                 | 8760                                  | (if any)               |  |  |
|                                     |                            | I.                 | 1                                     | 1.7                    |  |  |
| SECTION F -                         | - STACK PARA               | METERS             |                                       |                        |  |  |

| Emission Point ID Number 4        |                       | Stack Height Above Ground Level (feet) 1.5 x Building Height (approximately 45 feet) |                    |  |
|-----------------------------------|-----------------------|--------------------------------------------------------------------------------------|--------------------|--|
| Stack Diameter (feet at top) 1.33 | Gas Discharged (SCFM) | Exit Temp (°F)                                                                       | Gas Velocity (FPS) |  |
|                                   | 2941                  | 1143                                                                                 | 104.89             |  |

#### **SECTION G - EMISSION CONTROL EQUIPMENT**

| Is any emission control of | equipment installed on this unit?       |
|----------------------------|-----------------------------------------|
| ☐ No [                     | Yes – Complete and attach form SFN 8532 |

#### **SECTION H - MAXIMUM AIR CONTAMINANTS EMITTED**

| Pollutant                                            | Maximum<br>Pounds Per<br>Hour | Amount<br>(Tons Per<br>Year) | Basis of Estimate*             |
|------------------------------------------------------|-------------------------------|------------------------------|--------------------------------|
| NOx                                                  | 4.19                          | 18.35                        | Vendor Data                    |
| СО                                                   | 4.19                          | 18.35                        | Vendor Data                    |
| PM                                                   | 0.30                          | 1.33                         | AP-42, Table 3.2-3             |
| PM <sub>10</sub><br>(filterable and<br>condensable)  | 0.30                          | 1.33                         | AP-42, Table 3.2-3             |
| PM <sub>2.5</sub><br>(filterable and<br>condensable) | 0.30                          | 1.33                         | AP-42, Table 3.2-3             |
| SO <sub>2</sub>                                      | 0.01                          | 0.04                         | AP-42, Table 3.2-3             |
| VOC                                                  | 3.14                          | 13.76                        | Vendor Data                    |
| GHG (as CO <sub>2</sub> e)                           | 1,835                         | 8,039                        | AP-42, Table 3.2-3             |
| Largest Single HAP                                   | 0.21                          | 0.92                         | AP-42, Table 3.2-3             |
| Total HAPS                                           | 0.39                          | 1.69                         | Vendor Data/AP-42, Table 3.2-3 |

<sup>\*</sup> If performance test results are available for the unit, submit a copy of test with this application, if manufacture data used, submit manufacturers specification sheets.

| IS THIS UNIT IN COMPLIANCE WITH ALL APPLICABLE AIR POLLUTION RULES AND REGULATIONS? | If "NO" a Compliance Schedule (SFN 61008) must be completed and attached. |  |  |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|--|
| ■ YES □ NO                                                                          |                                                                           |  |  |

Attach and label separate sheet(s) if you need more space to explain any system or answers or to provide complete listings of Emissions, Contaminants, or other items.

#### SEND COMPLETED APPLICATION AND ALL ATTACHMENTS TO:

North Dakota Department of Environmental Quality Division of Air Quality 4201 Normandy Street, 2<sup>nd</sup> Floor Bismarck, ND 58503-1324 (701) 328-5188

#### PERMIT APPLICATION FOR INTERNAL COMBUSTION ENGINES AND TURBINES

NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF AIR QUALITY SFN 8891 (9-2021)

NOTE: READ INSTRUCTIONS BEFORE COMPLETING THIS FORM.

- Must include SFN 8516 or SFN 52858

| SECTION A -                       | - GENERAL INF                            | ORMATION           |                              |                                        |  |
|-----------------------------------|------------------------------------------|--------------------|------------------------------|----------------------------------------|--|
| Name of Firm o                    |                                          |                    | Facility Name                |                                        |  |
| Hiland Partners Ho                | oldings LLC                              |                    | Silurian Compressor Station  |                                        |  |
|                                   |                                          |                    |                              |                                        |  |
|                                   | - FACILITY AND                           |                    | IATION                       |                                        |  |
| Source ID Num<br> 5               | ber (From form SF                        | N 8516)            |                              |                                        |  |
| Type of Unit                      | Stationary Natu                          | ral Gas-Fired Engi | ne 🔲 Emerg                   | ency Use Only                          |  |
| (check all                        |                                          | el and Dual Fuel E |                              | mergency Use                           |  |
| that apply)                       | Stationary Gaso                          |                    | Peakin                       |                                        |  |
|                                   |                                          | ral Gas-Fired Turb | ine   📙 Demar                | nd Response                            |  |
|                                   | Other – Specify                          | •                  |                              |                                        |  |
| L                                 |                                          |                    |                              |                                        |  |
|                                   | - MANUFACTU                              | RER DATA           |                              |                                        |  |
| Make                              |                                          | Model              |                              | Date of Manufacture                    |  |
| Waukesha                          |                                          | L7044 GSI          |                              |                                        |  |
|                                   | nternal Combustion                       |                    | <b>.</b>                     |                                        |  |
| Spark Ignition                    |                                          | ession Ignition    | Lean Burn                    |                                        |  |
| 4 Stroke                          | 2 Strol                                  | Ke 📕               | Rich Burn                    | ( (DLID ())                            |  |
| Maximum Ratin<br>  1900 HP @ 1200 | ig (BHP @ rpm)<br>RPM                    |                    | Operating Capacit            | ty (BHP @ rpm)<br>M                    |  |
| Engine Subject                    | to:                                      |                    |                              |                                        |  |
| ■ 40 CFI                          | R 60, Subpart IIII<br>R 60, Subpart JJJJ |                    |                              |                                        |  |
|                                   | R 63, Subpart ZZZ                        |                    |                              |                                        |  |
|                                   | R 60, Subpart OO                         |                    |                              |                                        |  |
|                                   | R 60, Subpart OOC                        | Oa (for compress   | ors)                         |                                        |  |
| Turbine                           | :2                                       | □ Na               |                              |                                        |  |
| Dry Low Emiss                     |                                          | No No              | 750/ Dating (UD)             | □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □  |  |
| Heat Input (MM                    | Blu/fir)   Maximi                        | um Rating (HP)     | 75% Rating (HP) Efficiency   |                                        |  |
| Turbine Subject                   |                                          | 40.050.00          |                              |                                        |  |
| ☐ 40 CFR 60                       | , Subpart GG                             | 40 CFR 60, Subpa   | art KKKK                     |                                        |  |
|                                   | - FUELS USED                             |                    |                              |                                        |  |
| Natural Gas (10<br>109.49         | ) <sup>6</sup> cu ft/year)               |                    | Percent Sulfur<br>Negligible | Percent H <sub>2</sub> S<br>Negligible |  |
| Oil (gal/year)                    |                                          |                    | Percent Sulfur               | Grade No.                              |  |
| Oil (gail/year)                   |                                          |                    |                              |                                        |  |
| LP Gas (gal/year)                 |                                          |                    | Other – Specify:             |                                        |  |
| SECTION E                         | - NORMAL OPE                             | BATING SCUE        | DIII E                       |                                        |  |
| Hours Per Day                     |                                          | Weeks Per Year     |                              | Peak Production Season                 |  |
| 24                                | 7                                        | 52                 | 8760                         | (if any)                               |  |
|                                   | •                                        | •                  | •                            |                                        |  |
| SECTION F -                       | - STACK PARA                             | METERS             |                              |                                        |  |

| Emission Point ID Number 5                              |  | Stack Height Above Ground Level (feet) 1.5 x Building Height (approximately 45 feet) |                              |  |
|---------------------------------------------------------|--|--------------------------------------------------------------------------------------|------------------------------|--|
| Stack Diameter (feet at top) Gas Discharged (SCFM) 1.33 |  | Exit Temp (°F)<br>1143                                                               | Gas Velocity (FPS)<br>104.89 |  |

#### **SECTION G - EMISSION CONTROL EQUIPMENT**

| Is any emission control of | equipment installed on this unit?       |
|----------------------------|-----------------------------------------|
| ☐ No [                     | Yes – Complete and attach form SFN 8532 |

#### **SECTION H - MAXIMUM AIR CONTAMINANTS EMITTED**

| Pollutant                                            | Maximum<br>Pounds Per<br>Hour | Amount<br>(Tons Per<br>Year) | Basis of Estimate*             |
|------------------------------------------------------|-------------------------------|------------------------------|--------------------------------|
| NOx                                                  | 4.19                          | 18.35                        | Vendor Data                    |
| СО                                                   | 4.19                          | 18.35                        | Vendor Data                    |
| PM                                                   | 0.30                          | 1.33                         | AP-42, Table 3.2-3             |
| PM <sub>10</sub><br>(filterable and<br>condensable)  | 0.30                          | 1.33                         | AP-42, Table 3.2-3             |
| PM <sub>2.5</sub><br>(filterable and<br>condensable) | 0.30                          | 1.33                         | AP-42, Table 3.2-3             |
| SO <sub>2</sub>                                      | 0.01                          | 0.04                         | AP-42, Table 3.2-3             |
| VOC                                                  | 3.14                          | 13.76                        | Vendor Data                    |
| GHG (as CO <sub>2</sub> e)                           | 1,835                         | 8,039                        | AP-42, Table 3.2-3             |
| Largest Single HAP                                   | 0.21                          | 0.92                         | AP-42, Table 3.2-3             |
| Total HAPS                                           | 0.39                          | 1.69                         | Vendor Data/AP-42, Table 3.2-3 |

<sup>\*</sup> If performance test results are available for the unit, submit a copy of test with this application, if manufacture data used, submit manufacturers specification sheets.

| IS THIS UNIT IN COMPLIANCE WITH ALL APPLICABLE AIR POLLUTION RULES AND REGULATIONS? | If "NO" a Compliance Schedule (SFN 61008) must be completed and attached. |  |  |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|--|
| ■ YES □ NO                                                                          |                                                                           |  |  |

Attach and label separate sheet(s) if you need more space to explain any system or answers or to provide complete listings of Emissions, Contaminants, or other items.

#### SEND COMPLETED APPLICATION AND ALL ATTACHMENTS TO:

North Dakota Department of Environmental Quality Division of Air Quality 4201 Normandy Street, 2<sup>nd</sup> Floor Bismarck, ND 58503-1324 (701) 328-5188

#### PERMIT APPLICATION FOR INTERNAL COMBUSTION ENGINES AND TURBINES

NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF AIR QUALITY SFN 8891 (9-2021)

NOTE: READ INSTRUCTIONS BEFORE COMPLETING THIS FORM.

- Must include SFN 8516 or SFN 52858

| SECTION A - GENERAL INFORMAT                                                                                                                                                                                                                                                                                                                                                               | ION                                     |                             |                                        |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------|----------------------------------------|--|--|--|
| Name of Firm or Organization Facility Name                                                                                                                                                                                                                                                                                                                                                 |                                         |                             |                                        |  |  |  |
| Hiland Partners Holdings LLC Silurian Compressor Station                                                                                                                                                                                                                                                                                                                                   |                                         |                             |                                        |  |  |  |
| SECTION B – FACILITY AND UNIT INFORMATION Source ID Number (From form SFN 8516)                                                                                                                                                                                                                                                                                                            |                                         |                             |                                        |  |  |  |
| Type of Unit (check all that apply)  Stationary Natural Gas-Fired Engine Stationary Diesel and Dual Fuel Engine Stationary Gasoline Engine Stationary Natural Gas-Fired Turbine  Other – Specify:  Emergency Use Only Non-Emergency Use Peaking Demand Response                                                                                                                            |                                         |                             |                                        |  |  |  |
| SECTION C - MANUFACTURER DA                                                                                                                                                                                                                                                                                                                                                                |                                         |                             | DetectMoniforting                      |  |  |  |
| Make Moo<br>Waukesha L579                                                                                                                                                                                                                                                                                                                                                                  | dei<br>14 GSI                           |                             | Date of Manufacture                    |  |  |  |
| Reciprocating Internal Combustion Engine                                                                                                                                                                                                                                                                                                                                                   |                                         |                             |                                        |  |  |  |
| ■ Spark Ignition ☐ Compression Igr<br>■ 4 Stroke ☐ 2 Stroke                                                                                                                                                                                                                                                                                                                                | nition                                  |                             |                                        |  |  |  |
| Maximum Rating (BHP @ rpm)<br>1380 HP @ 1200 RPM                                                                                                                                                                                                                                                                                                                                           |                                         | ating Capaci<br>P @ 1200 RP | ty (BHP @ rpm)<br>M                    |  |  |  |
| Engine Subject to:  40 CFR 60, Subpart IIII  40 CFR 60, Subpart JJJJ  40 CFR 63, Subpart ZZZZ  40 CFR 60, Subpart OOOO (for column 40 CFR 60, Subpart OOOOa (for column 40 CFR 60, Subpart OOOOa) |                                         |                             |                                        |  |  |  |
| Turbine                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                             |                                        |  |  |  |
| Dry Low Emissions? Yes No Heat Input (MMBtu/hr) Maximum Rating                                                                                                                                                                                                                                                                                                                             |                                         | Rating (HP)                 | Efficiency                             |  |  |  |
| Turbine Subject to:  ☐ 40 CFR 60, Subpart GG ☐ 40 CFR 6                                                                                                                                                                                                                                                                                                                                    | 0, Subpart KKK                          | K                           |                                        |  |  |  |
| SECTION D - FUELS USED                                                                                                                                                                                                                                                                                                                                                                     | , , , ================================= |                             |                                        |  |  |  |
| Natural Gas (10 <sup>6</sup> cu ft/year)<br>81.74                                                                                                                                                                                                                                                                                                                                          | Perce<br>Negligi                        | nt Sulfur                   | Percent H <sub>2</sub> S<br>Negligible |  |  |  |
| Oil (gal/year)                                                                                                                                                                                                                                                                                                                                                                             |                                         |                             |                                        |  |  |  |
| LP Gas (gal/year) Other – Specify:                                                                                                                                                                                                                                                                                                                                                         |                                         |                             |                                        |  |  |  |
| SECTION E – NORMAL OPERATING SCHEDULE                                                                                                                                                                                                                                                                                                                                                      |                                         |                             |                                        |  |  |  |
| Hours Per Day Days Per Week Weeks F 7 52                                                                                                                                                                                                                                                                                                                                                   | Per Year Hour<br>8760                   | s Per Year                  | Peak Production Season (if any)        |  |  |  |
| SECTION F – STACK PARAMETERS                                                                                                                                                                                                                                                                                                                                                               | <b>:</b>                                |                             |                                        |  |  |  |

| Emission Point ID Number 6                              |  | Stack Height Above Ground Level (feet) 1.5 x Building Height (approximately 45 feet) |                             |  |
|---------------------------------------------------------|--|--------------------------------------------------------------------------------------|-----------------------------|--|
| Stack Diameter (feet at top) Gas Discharged (SCFM) 2181 |  | Exit Temp (°F)<br>1176                                                               | Gas Velocity (FPS)<br>138.3 |  |

#### **SECTION G - EMISSION CONTROL EQUIPMENT**

| Is any emission control of | equipment installed on this unit?       |
|----------------------------|-----------------------------------------|
| ☐ No [                     | Yes – Complete and attach form SFN 8532 |

#### **SECTION H - MAXIMUM AIR CONTAMINANTS EMITTED**

| Pollutant                                            | Maximum<br>Pounds Per<br>Hour | Amount<br>(Tons Per<br>Year) | Basis of Estimate*             |  |
|------------------------------------------------------|-------------------------------|------------------------------|--------------------------------|--|
| NOx                                                  | 3.04                          | 13.33                        | Vendor Data                    |  |
| СО                                                   | 3.04                          | 13.33                        | Vendor Data                    |  |
| PM                                                   | 0.23                          | 0.99                         | AP-42, Table 3.2-3             |  |
| PM <sub>10</sub><br>(filterable and<br>condensable)  | 0.23                          | 0.99                         | AP-42, Table 3.2-3             |  |
| PM <sub>2.5</sub><br>(filterable and<br>condensable) | 0.23                          | 0.99                         | AP-42, Table 3.2-3             |  |
| SO <sub>2</sub>                                      | 0.01                          | 0.03                         | AP-42, Table 3.2-3             |  |
| VOC                                                  | 2.25                          | 9.86                         | Vendor Data                    |  |
| GHG (as CO <sub>2</sub> e)                           | 1370.2                        | 6001.3                       | AP-42, Table 3.2-3             |  |
| Largest Single HAP                                   | 0.12                          | 0.53                         | AP-42, Table 3.2-3             |  |
| Total HAPS                                           | 0.30                          | 1.31                         | Vendor Data/AP-42, Table 3.2-3 |  |

<sup>\*</sup> If performance test results are available for the unit, submit a copy of test with this application, if manufacture data used, submit manufacturers specification sheets.

| IS THIS UNIT IN COMPLIANCE WITH ALL APPLICABLE AIR POLLUTION RULES AND REGULATIONS? | If "NO" a Compliance Schedule (SFN 61008) must be completed and attached. |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| ■ YES □ NO                                                                          |                                                                           |

Attach and label separate sheet(s) if you need more space to explain any system or answers or to provide complete listings of Emissions, Contaminants, or other items.

#### SEND COMPLETED APPLICATION AND ALL ATTACHMENTS TO:

North Dakota Department of Environmental Quality Division of Air Quality 4201 Normandy Street, 2<sup>nd</sup> Floor Bismarck, ND 58503-1324 (701) 328-5188

# CALAL SELL

#### PERMIT APPLICATION FOR INTERNAL COMBUSTION ENGINES AND TURBINES

NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF AIR QUALITY SFN 8891 (9-2021)

NOTE: READ INSTRUCTIONS BEFORE COMPLETING THIS FORM.

- Must include SFN 8516 or SFN 52858

| SECTION A – GENERAL INFORMATION                   |                        |                               |                             |                         |                                        |                     |
|---------------------------------------------------|------------------------|-------------------------------|-----------------------------|-------------------------|----------------------------------------|---------------------|
| Name of Firm or Organization Facility Name        |                        |                               |                             |                         |                                        |                     |
| Hiland Partners Holdings LL                       | С                      |                               | Silurian Compressor Station |                         |                                        |                     |
|                                                   |                        |                               |                             | _                       |                                        |                     |
| SECTION B - FACIL                                 |                        |                               | <u>IATION</u>               |                         |                                        |                     |
| Source ID Number (From                            | n form SFI             | N 8516)                       |                             |                         |                                        |                     |
| <u> </u>                                          | nary Natu              | ral Gas-Fired Eng             | ine                         | ☐ Emero                 | ency Us                                | e Only              |
|                                                   |                        | el and Dual Fuel E            |                             |                         |                                        |                     |
|                                                   |                        |                               |                             |                         |                                        | , , , , , ,         |
|                                                   |                        | ral Gas-Fired Tur             | oine                        |                         | nd Resp                                | onse                |
| ☐ Other                                           | r – Specify            | •                             |                             |                         |                                        |                     |
|                                                   |                        |                               |                             |                         |                                        |                     |
|                                                   |                        |                               |                             |                         |                                        |                     |
| SECTION C - MANU                                  | <u>JFACTUF</u>         |                               |                             |                         |                                        | T =                 |
| Make                                              |                        | Model<br>L5794 GSI            |                             |                         |                                        | Date of Manufacture |
| Waukesha                                          | a mala v a ti a m      | 1                             |                             |                         |                                        |                     |
| Reciprocating Internal C  Spark Ignition          |                        | Engine<br>ession Ignition     | Lean E                      | Rurn                    |                                        |                     |
| 4 Stroke                                          | 2 Strok                |                               | ☐ Rich B                    |                         |                                        |                     |
|                                                   |                        |                               |                             | ng Capacity (BHP @ rpm) |                                        |                     |
| 1380 HP @ 1200 ŘPM                                |                        |                               |                             |                         |                                        |                     |
| Engine Subject to:                                |                        |                               |                             |                         |                                        |                     |
| 40 CFR 60, Su                                     |                        |                               |                             |                         |                                        |                     |
| 40 CFR 60, Su                                     | opart JJJJ             | 7                             |                             |                         |                                        |                     |
| 40 CFR 63, Su                                     |                        | <u>′</u><br>IO (for compresso | arc)                        |                         |                                        |                     |
|                                                   |                        | O (for compress)              |                             |                         |                                        |                     |
| Turbine                                           | <u> </u>               | ou (ioi compress              | ,,,,                        |                         |                                        |                     |
| Dry Low Emissions?                                | ☐ Yes                  | ☐ No                          |                             |                         |                                        |                     |
| Heat Input (MMBtu/hr)                             | Maximu                 | ım Rating (HP)                | 75% R                       | Rating (HP)             |                                        | Efficiency          |
|                                                   |                        |                               |                             |                         |                                        |                     |
| Turbine Subject to:                               | ٠                      | 40.0ED.00.0                   |                             | ,                       |                                        |                     |
| 40 CFR 60, Subpar                                 | i GG 📋                 | 40 CFR 60, Subp               | art KKKr                    | (                       |                                        |                     |
| OFOTION D. FUEL                                   | 0.11055                |                               |                             |                         |                                        |                     |
|                                                   | SECTION D - FUELS USED |                               |                             |                         |                                        |                     |
| Natural Gas (10 <sup>6</sup> cu ft/year)<br>81.74 |                        | Percent Sulfur<br>Negligible  |                             |                         | Percent H <sub>2</sub> S<br>Negligible |                     |
|                                                   |                        |                               |                             | Percent Sulfur          |                                        | Grade No.           |
| Grade No.                                         |                        |                               |                             |                         |                                        |                     |
| LP Gas (gal/year)                                 |                        | Other – Specify:              |                             |                         |                                        |                     |
|                                                   |                        |                               |                             |                         |                                        |                     |
|                                                   |                        |                               |                             |                         |                                        |                     |
| SECTION E – NORMAL OPERATING SCHEDULE             |                        |                               |                             |                         |                                        |                     |
|                                                   | Per Week               | Weeks Per Year                |                             | s Per Year              |                                        | Production Season   |
| 24 7                                              |                        | 52                            | 8760                        |                         | (if any                                | )                   |
|                                                   |                        |                               |                             |                         |                                        |                     |
| SECTION F - STAC                                  | K PARAI                | METERS                        |                             |                         |                                        |                     |

| Emission Point ID Number 7                              |  | Stack Height Above Ground Level (feet) 1.5 x Building Height (approximately 45 feet) |                             |  |
|---------------------------------------------------------|--|--------------------------------------------------------------------------------------|-----------------------------|--|
| Stack Diameter (feet at top) Gas Discharged (SCFM) 2181 |  | Exit Temp (°F)<br>1176                                                               | Gas Velocity (FPS)<br>138.3 |  |

### **SECTION G - EMISSION CONTROL EQUIPMENT**

| Is any emission control of | equipment installed on this unit?       |
|----------------------------|-----------------------------------------|
| ☐ No [                     | Yes – Complete and attach form SFN 8532 |

#### **SECTION H - MAXIMUM AIR CONTAMINANTS EMITTED**

| Pollutant                                            | Maximum<br>Pounds Per<br>Hour | Amount<br>(Tons Per<br>Year) | Basis of Estimate*             |
|------------------------------------------------------|-------------------------------|------------------------------|--------------------------------|
| NOx                                                  | 3.04                          | 13.33                        | Vendor Data                    |
| СО                                                   | 3.04                          | 13.33                        | Vendor Data                    |
| PM                                                   | 0.23                          | 0.99                         | AP-42, Table 3.2-3             |
| PM <sub>10</sub><br>(filterable and<br>condensable)  | 0.23                          | 0.99                         | AP-42, Table 3.2-3             |
| PM <sub>2.5</sub><br>(filterable and<br>condensable) | 0.23                          | 0.99                         | AP-42, Table 3.2-3             |
| SO <sub>2</sub>                                      | 0.01                          | 0.03                         | AP-42, Table 3.2-3             |
| VOC                                                  | 2.25                          | 9.86                         | Vendor Data                    |
| GHG (as CO <sub>2</sub> e)                           | 1370.2                        | 6001.3                       | AP-42, Table 3.2-3             |
| Largest Single HAP                                   | 0.12                          | 0.53                         | AP-42, Table 3.2-3             |
| Total HAPS                                           | 0.30                          | 1.31                         | Vendor Data/AP-42, Table 3.2-3 |

<sup>\*</sup> If performance test results are available for the unit, submit a copy of test with this application, if manufacture data used, submit manufacturers specification sheets.

| IS THIS UNIT IN COMPLIANCE WITH ALL APPLICABLE AIR POLLUTION RULES AND REGULATIONS? | If "NO" a Compliance Schedule (SFN 61008) must be completed and attached. |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| ■ YES □ NO                                                                          |                                                                           |

Attach and label separate sheet(s) if you need more space to explain any system or answers or to provide complete listings of Emissions, Contaminants, or other items.

#### SEND COMPLETED APPLICATION AND ALL ATTACHMENTS TO:

North Dakota Department of Environmental Quality Division of Air Quality 4201 Normandy Street, 2<sup>nd</sup> Floor Bismarck, ND 58503-1324 (701) 328-5188

NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF AIR QUALITY SFN 8532 (9-2021)

NOTE: READ INSTRUCTIONS BEFORE COMPLETING THIS FORM.

- Must also include forms SFN 8516 or SFN 52858

# SECTION A – GENERAL INFORMATION

| Hiland Partners Holdings LLC                | Silurian Comp          |                  |                  |                   |  |  |
|---------------------------------------------|------------------------|------------------|------------------|-------------------|--|--|
| Source ID No. of Equipment being Controlled |                        |                  |                  |                   |  |  |
| SECTION B - EQUIPM                          | MENT                   |                  |                  |                   |  |  |
| Type:                                       | ☐ Multiclo             | ne 🗌 Baghou      | se 🗌 Electrost   | atic Precipitator |  |  |
| ☐ Wet Scrubl                                | ber 🔲 Spray 🗅          | Oryer ☐ Flare/Co | ombustor         |                   |  |  |
| ■ Other – Specify:  NSCR                    |                        |                  |                  |                   |  |  |
| Name of Manufacturer<br>Waukesha            | Model Nui<br>L7044 GSI | mber             | Date to Be Inst  | talled            |  |  |
| Application: Boiler                         | ] Kiln                 | Engine           | Other – Specify: |                   |  |  |
| Pollutants Removed                          | NOx                    | СО               | VOC              |                   |  |  |
| Design Efficiency (%)                       | 91.50%                 | 89.8%            | 0.00%            |                   |  |  |
| Operating Efficiency (%) TBD                |                        | TBD              | TBD              |                   |  |  |
| Describe method used to                     | determine operating    | efficiency:      |                  |                   |  |  |

|                                                        | OAO OONDING         |                                 | 11.4  | 0.41.4 |
|--------------------------------------------------------|---------------------|---------------------------------|-------|--------|
| Gas Conditions                                         |                     |                                 | Inlet | Outlet |
| Gas Volume (SCFN                                       | И; 68°F; 14.7 psia) |                                 | 2941  |        |
| Gas Temperature (°F)                                   |                     |                                 |       | 1143   |
| Gas Pressure (in. h                                    | H <sub>2</sub> O)   |                                 |       |        |
| Gas Velocity (ft/sec)                                  |                     |                                 |       | 104.89 |
| Pollutant Concentration (Specify Pollutant and Unit of | Pollutant           | Unit of Concentration           |       |        |
|                                                        | NOx                 | g/hp-hr                         | 11.70 | 1.00   |
| Concentration)                                         | CO                  | g/hp-hr                         | 9.80  | 1.00   |
|                                                        | VOC                 | g/hp-hr                         | 0.05  | 0.70   |
|                                                        | HCHO g/hp-hr        |                                 | 0.05  | 0.05   |
| Pressure Drop Thro                                     | ough Gas Cleaning   | g Device (in. H <sub>2</sub> O) |       |        |

NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF AIR QUALITY SFN 8532 (9-2021)

NOTE: READ INSTRUCTIONS BEFORE COMPLETING THIS FORM.

- Must also include forms SFN 8516 or SFN 52858

#### **SECTION A – GENERAL INFORMATION**

| Name of Firm or Organization<br>Hiland Partners Holdings LLC |                                             |          |                        | Facility Nam<br>Silurian Comp |            | r Station |                |                   |
|--------------------------------------------------------------|---------------------------------------------|----------|------------------------|-------------------------------|------------|-----------|----------------|-------------------|
| Source ID                                                    | Source ID No. of Equipment being Controlled |          |                        |                               |            |           |                |                   |
| SECTIO                                                       | N B – EQUIPN                                | MENT     |                        |                               |            |           |                |                   |
| Type:                                                        | ☐ Cyclone                                   |          | ☐ Multiclo             | ne                            | ☐ Baghou   | se        | ☐ Electrost    | atic Precipitator |
|                                                              | ☐ Wet Scrubb                                | oer      | ☐ Spray D              | ryer                          | ☐ Flare/Co | ombu      | ıstor          |                   |
|                                                              | Other – Sp                                  |          | NSCR                   |                               |            |           |                |                   |
| Name of I<br>Waukesha                                        | Manufacturer                                |          | Model Nui<br>L5794 GSI | mber                          |            |           | Date to Be Ins | talled            |
| Application Boiler                                           |                                             | ] Kiln   |                        | Engin                         | e 🔲        | Othe      | er – Specify:  |                   |
| Pollutants                                                   | Removed                                     | NOx      |                        | СО                            |            | V         | OC             |                   |
| Design Ef                                                    | fficiency (%)                               | 92.60    | 0%                     | 90.5                          | 0%         | 0.0       | 00%            |                   |
| Operating                                                    | Efficiency (%)                              | TBD      |                        | TBD                           | 1          | TE        | BD             |                   |
| Describe                                                     | method used to                              | determin | e operating            | efficie                       | ncy:       | •         |                |                   |
|                                                              |                                             |          |                        |                               |            |           |                |                   |
|                                                              |                                             |          |                        |                               |            |           |                |                   |

| Gas Conditions                 | OAO OONDIIIC                       |                               | Inlet | Outlet |
|--------------------------------|------------------------------------|-------------------------------|-------|--------|
|                                | M: 68°F: 14 7 psia                 |                               | miot  |        |
| Gas volume (SCI I              | Gas Volume (SCFM; 68°F; 14.7 psia) |                               |       | 2181   |
| Gas Temperature (°F)           |                                    |                               |       | 4470   |
| ,                              | ,                                  |                               |       | 1176   |
| Gas Pressure (in. I            | H <sub>2</sub> O)                  |                               |       |        |
|                                |                                    |                               |       |        |
| Gas Velocity (ft/sec           | <b>c</b> )                         |                               |       | 138.3  |
| Pollutant                      | Pollutant                          | Unit of Concentration         |       | 100.0  |
| Concentration                  | Poliularii                         | Office of Concentration       |       |        |
|                                | _                                  | _                             |       |        |
| (Specify Pollutant and Unit of | NOx                                | g/hp-hr                       | 13.5  | 1.00   |
| Concentration)                 | CO                                 | g/hp-hr                       | 10.5  | 1.00   |
|                                | 00                                 | 9/110-111                     | 10.5  | 1.00   |
|                                | VOC                                | g/hp-hr                       | 0.28  | 0.70   |
|                                |                                    | 9,                            | 0.20  | 00     |
|                                | HCHO                               | g/hp-hr                       | 0.04  | 0.04   |
| Pressure Drop Thro             | ough Gas Cleaning                  | Device (in. H <sub>2</sub> O) | •     | •      |
| TBD                            |                                    |                               |       |        |

NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF AIR QUALITY SFN 8532 (9-2021)

NOTE: READ INSTRUCTIONS BEFORE COMPLETING THIS FORM.

- Must also include forms SFN 8516 or SFN 52858

# SECTION A – GENERAL INFORMATION Name of Firm or Organization Facility No.

| Hiland Partners Holdings LLC                | Silurian Comp          |             |                  |                   |  |  |
|---------------------------------------------|------------------------|-------------|------------------|-------------------|--|--|
| Source ID No. of Equipment being Controlled |                        |             |                  |                   |  |  |
| SECTION B - EQUIPM                          | MENT                   |             |                  |                   |  |  |
| Type:                                       | ☐ Multiclo             | ne 🗌 Baghou | se 🗌 Electrost   | atic Precipitator |  |  |
| ☐ Wet Scrubt                                | per ☐ Spray □          | Dryer       |                  |                   |  |  |
| Other – Specify:  NSCR                      |                        |             |                  |                   |  |  |
| Name of Manufacturer<br>Waukesha            | Model Nui<br>L5794 GSI | mber        | Date to Be Inst  | talled            |  |  |
| Application:  Boiler                        | ] Kiln                 | Engine      | Other – Specify: |                   |  |  |
| Pollutants Removed                          | NOx                    | СО          | VOC              |                   |  |  |
| Design Efficiency (%)                       | 92.60%                 | 90.50%      | 0.00%            |                   |  |  |
| Operating Efficiency (%) TBD                |                        | TBD         | TBD              |                   |  |  |
| Describe method used to d                   | determine operating    | efficiency: |                  |                   |  |  |

| Gas Conditions                 | OAO OONDIIIC                       |                               | Inlet | Outlet |
|--------------------------------|------------------------------------|-------------------------------|-------|--------|
|                                | M: 68°F: 14 7 psia                 |                               | miot  |        |
| Gas volume (SCI I              | Gas Volume (SCFM; 68°F; 14.7 psia) |                               |       | 2181   |
| Gas Temperature (°F)           |                                    |                               |       | 4470   |
| ,                              | ,                                  |                               |       | 1176   |
| Gas Pressure (in. I            | H <sub>2</sub> O)                  |                               |       |        |
|                                |                                    |                               |       |        |
| Gas Velocity (ft/sec           | <b>c</b> )                         |                               |       | 138.3  |
| Pollutant                      | Pollutant                          | Unit of Concentration         |       | 100.0  |
| Concentration                  | Poliularii                         | Office of Concentration       |       |        |
|                                | _                                  | _                             |       |        |
| (Specify Pollutant and Unit of | NOx                                | g/hp-hr                       | 13.5  | 1.00   |
| Concentration)                 | CO                                 | g/hp-hr                       | 10.5  | 1.00   |
|                                | 00                                 | 9/110-111                     | 10.5  | 1.00   |
|                                | VOC                                | g/hp-hr                       | 0.28  | 0.70   |
|                                |                                    | 9,                            | 0.20  | 00     |
|                                | HCHO                               | g/hp-hr                       | 0.04  | 0.04   |
| Pressure Drop Thro             | ough Gas Cleaning                  | Device (in. H <sub>2</sub> O) | •     | •      |
| TBD                            |                                    |                               |       |        |



NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF AIR QUALITY SFN 8532 (9-2021)

NOTE: READ INSTRUCTIONS BEFORE COMPLETING THIS FORM.

- Must also include forms SFN 8516 or SFN 52858

#### **SECTION A – GENERAL INFORMATION**

| Name of Firm or Organiza<br>Hiland Partners Holdings LLC | tion     |                                     |           | Facility Nam<br>Silurian Compr |        | Station                |                   |
|----------------------------------------------------------|----------|-------------------------------------|-----------|--------------------------------|--------|------------------------|-------------------|
| Source ID No. of Equipme 9,12                            | nt being | Controlled                          |           |                                |        |                        |                   |
| SECTION B - EQUIPM                                       | /IENT    |                                     |           |                                |        |                        |                   |
| Type:                                                    |          | ☐ Multiclor                         | ne        | Baghous                        | se     | ☐ Electrost            | atic Precipitator |
| ☐ Wet Scrubl                                             | oer      | ☐ Spray D                           | ryer      | ■ Flare/Co                     | ombus  | stor                   |                   |
| ☐ Other – Sp                                             |          |                                     |           |                                |        |                        |                   |
|                                                          |          |                                     |           |                                |        |                        |                   |
| Name of Manufacturer<br>Cimarron                         |          | Model Nun<br>Sonic Flare w/ Model X |           | ark Retractable Ignition       | System | Date to Be Ins<br>2025 | talled            |
| Application: Boiler                                      | ] Kiln   |                                     | Engine    |                                | Othe   | r – Specify:           |                   |
| Pollutants Removed                                       | VOC      |                                     |           |                                |        |                        |                   |
| Design Efficiency (%)                                    | 98%      |                                     |           |                                |        |                        |                   |
| Operating Efficiency (%)                                 | TBD      |                                     |           |                                |        |                        |                   |
| Describe method used to                                  | determin | e operating                         | efficienc | y:                             | •      |                        |                   |
| Manufacturer specifica                                   | ation    |                                     |           |                                |        |                        |                   |
|                                                          |          |                                     |           |                                |        |                        |                   |
|                                                          |          |                                     |           |                                |        |                        |                   |

| Gas Conditions                                                        | CAC CONDITIO                       |                                 | Inlet | Outlet    |
|-----------------------------------------------------------------------|------------------------------------|---------------------------------|-------|-----------|
|                                                                       | Gas Volume (SCFM; 68°F; 14.7 psia) |                                 |       | 261.5     |
| Gas Temperature (                                                     | °F)                                |                                 |       |           |
|                                                                       | Cas remperature ( 1 )              |                                 |       | 1832      |
| Gas Pressure (in. H <sub>2</sub> O)                                   |                                    |                                 |       |           |
| Gas Velocity (ft/sec)                                                 |                                    |                                 |       | 22.2      |
| Pollutant Concentration (Specify Pollutant and Unit of Concentration) | Pollutant                          | Unit of Concentration           |       |           |
|                                                                       | NOx                                | lb/MMBTU                        |       | 0.138     |
|                                                                       | CO                                 | lb/MMBTU                        |       | 0.2755    |
|                                                                       | VOC                                |                                 |       | See Calcs |
|                                                                       | PM                                 | lb/MMscf                        |       |           |
| Pressure Drop Thro                                                    | ough Gas Cleanin                   | g Device (in. H <sub>2</sub> O) |       |           |



# PERMIT APPLICATION FOR HAZARDOUS AIR POLLUTANT (HAP) SOURCES NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY

NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF AIR QUALITY SFN 8329 (9-2021)

| SECTION A1 - APPLICANT II                                    | NFORMATION                     |                           |                   |                                   |           |         |
|--------------------------------------------------------------|--------------------------------|---------------------------|-------------------|-----------------------------------|-----------|---------|
| Name of Firm or Organization<br>Hiland Partners Holdings LLC |                                |                           |                   |                                   |           |         |
| Applicant's Name<br>Alex Schmidt                             |                                |                           |                   |                                   |           |         |
| Title Director of Operations                                 |                                | Telephone<br>(701) 833-93 |                   | E-mail Addr                       |           | com     |
| Mailing Address (Street & No.)<br>1667 Cole Blvd. Suite 300  |                                | (101) 000-90              | <del>,</del>      | alex_sellillatekill               | dermorgan | 1.00111 |
| City<br>Lakewood                                             |                                | State<br>CO               |                   | ZIP Code<br>80401                 |           |         |
| SECTION A2 - FACILITY INF                                    | ORMATION                       |                           |                   |                                   |           |         |
| Contact Person for Air Pollution Ma<br>Brittany Brumley      |                                |                           |                   |                                   |           |         |
| Title EHS Manager                                            |                                | Telephone<br>(713) 420-63 |                   | E-mail Addr<br>brittany_brumley@k |           | n.com   |
| Facility Address (Street & No. or La 7 Miles South of Tioga  | at/Long to Nearest Se          | econd)                    |                   | 1                                 |           |         |
| City<br>Tioga                                                |                                | State<br>ND               |                   | ZIP Code<br>58852                 |           |         |
| County<br>Williams                                           | N<br>2                         | lumber of Empl            | oyees at Lo       | cation                            |           |         |
| Land Area at Plant Site<br>6.2 Acres (or)                    | Sq. Ft.                        |                           | evation at P      | lant                              |           |         |
| Describe Nature of Business/Proce                            | •                              |                           |                   |                                   |           |         |
| Compressor Station                                           |                                |                           |                   |                                   |           |         |
|                                                              |                                |                           |                   |                                   |           |         |
|                                                              |                                |                           |                   |                                   |           |         |
|                                                              |                                |                           |                   |                                   |           |         |
|                                                              |                                |                           |                   |                                   |           |         |
| SECTION B – STACK DATA Inside Diameter (ft)                  | Height Above Grad              | o (ft)                    |                   |                                   |           |         |
| 1.33                                                         | 1.5 x Building Height (app     |                           |                   |                                   |           |         |
| Gas Temperature at Exit (°F) 1143                            | Gas Velocity at Exit<br>104.89 | t (ft/sec)                | Gas Volun<br>2941 | ne (scfm)                         |           |         |
| Basis of any Estimates (attach sep                           | arate sheet if necess          | ary)                      |                   |                                   |           |         |
|                                                              |                                |                           |                   |                                   |           |         |
|                                                              |                                |                           |                   |                                   |           |         |
|                                                              |                                |                           |                   |                                   |           |         |
| Are Emission Control Devices in Pl                           | ace? If YES – Comp             | lete SFN 8532             | <u> </u>          | Yes                               | N         | No      |
| Nearest Residences or Building Residence                     | Distance (ft)<br>4000          |                           | Direction<br>SE   |                                   |           |         |
| Nearest Property Line                                        | Distance (ft)                  |                           | Direction         |                                   |           |         |

#### **SECTION C - EMISSION STREAM DATA**

| Source ID Number<br>SFN 8516 4  | Mean Particle Diameter (um) Unknown         |
|---------------------------------|---------------------------------------------|
| Flow Rate (scfm)<br>2941        | Drift Velocity (ft/sec) Unknown             |
| Stream Temperature (°F)<br>1143 | Particulate Concentration (gr/dscf) Unknown |
| Moisture Content (%) Unknown    | Halogens or Metals Present? Unknown         |
| Pressure (in. Hg)<br>749.9      | Organic Content (ppmv) Unknown              |
| Heat Content (Btu/scfm) Unknown | O <sub>2</sub> Content (%)<br>Unknown       |

### SECTION D - POLLUTANT SPECIFIC DATA

(Complete One Box for Each Pollutant in Emission Stream)

| Pollutant Emitted Formaldehyde                                                             | Chemical Abstract Services (CAS) Number 50-00-0                                        |
|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Proposed Emission Rate (lb/hr) 0.21                                                        | Emission Source (describe) 1900 HP Compressor Engine #4                                |
| Source Classification<br>(process point, process fugitive, area fugitive)<br>Process point | Pollutant Class and Form<br>(organic/inorganic - particulate/vapor)<br>Organic - Vapor |
| Concentration in Emission Stream (ppmv) Unknown                                            | Vapor Pressure (in. Hg @ °F)<br>Unknown                                                |
| Solubility<br>Unknown                                                                      | Molecular Weight (lb/lb-mole) 30.04                                                    |
| Absorptive Properties<br>Unknown                                                           |                                                                                        |

| Pollutant Emitted See calculation tables for other HAPs                | Chemical Abstract Services (CAS) Number                             |
|------------------------------------------------------------------------|---------------------------------------------------------------------|
| Proposed Emission Rate (lb/hr)                                         | Emission Source (describe)                                          |
| Source Classification (process point, process fugitive, area fugitive) | Pollutant Class and Form<br>(organic/inorganic - particulate/vapor) |
| Concentration in Emission Stream (ppmv)                                | Vapor Pressure (in. Hg @ °F)                                        |
| Solubility                                                             | Molecular Weight (lb/lb-mole)                                       |
| Absorptive Properties                                                  | •                                                                   |

(Add additional pages if necessary)

| Signature of Applicant | Date    |
|------------------------|---------|
| Alex Schmidt           | 7/23/25 |

#### SEND COMPLETED APPLICATION AND ALL ATTACHMENTS TO:

North Dakota Department of Environmental Quality Division of Air Quality 4201 Normandy Street, 2nd Floor Bismarck, ND 58503-1324 (701) 328-5188



# PERMIT APPLICATION FOR HAZARDOUS AIR POLLUTANT (HAP) SOURCES NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY

NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF AIR QUALITY SFN 8329 (9-2021)

| SECTION A1 - APPLICANT II                                    | NFORMATION                     |                           |                   |                                   |           |         |
|--------------------------------------------------------------|--------------------------------|---------------------------|-------------------|-----------------------------------|-----------|---------|
| Name of Firm or Organization<br>Hiland Partners Holdings LLC |                                |                           |                   |                                   |           |         |
| Applicant's Name<br>Alex Schmidt                             |                                |                           |                   |                                   |           |         |
| Title Director of Operations                                 |                                | Telephone<br>(701) 833-93 |                   | E-mail Addr                       |           | com     |
| Mailing Address (Street & No.)<br>1667 Cole Blvd. Suite 300  |                                | (101) 000-90              | <del>,</del>      | alex_sellillatekill               | dermorgan | 1.00111 |
| City<br>Lakewood                                             |                                | State<br>CO               |                   | ZIP Code<br>80401                 |           |         |
| SECTION A2 - FACILITY INF                                    | ORMATION                       |                           |                   |                                   |           |         |
| Contact Person for Air Pollution Ma<br>Brittany Brumley      |                                |                           |                   |                                   |           |         |
| Title<br>EHS Manager                                         |                                | Telephone<br>(713) 420-63 |                   | E-mail Addr<br>brittany_brumley@k |           | n.com   |
| Facility Address (Street & No. or La 7 Miles South of Tioga  | at/Long to Nearest Se          | econd)                    |                   | 1                                 |           |         |
| City<br>Tioga                                                |                                | State<br>ND               |                   | ZIP Code<br>58852                 |           |         |
| County<br>Williams                                           | N<br>2                         | lumber of Empl            | oyees at Lo       | cation                            |           |         |
| Land Area at Plant Site<br>6.2 Acres (or)                    | Sq. Ft.                        |                           | evation at P      | lant                              |           |         |
| Describe Nature of Business/Proce                            | •                              |                           |                   |                                   |           |         |
| Compressor Station                                           |                                |                           |                   |                                   |           |         |
|                                                              |                                |                           |                   |                                   |           |         |
|                                                              |                                |                           |                   |                                   |           |         |
|                                                              |                                |                           |                   |                                   |           |         |
|                                                              |                                |                           |                   |                                   |           |         |
| SECTION B – STACK DATA Inside Diameter (ft)                  | Height Above Grad              | o (ft)                    |                   |                                   |           |         |
| 1.33                                                         | 1.5 x Building Height (app     |                           |                   |                                   |           |         |
| Gas Temperature at Exit (°F) 1143                            | Gas Velocity at Exit<br>104.89 | t (ft/sec)                | Gas Volun<br>2941 | ne (scfm)                         |           |         |
| Basis of any Estimates (attach sep                           | arate sheet if necess          | ary)                      |                   |                                   |           |         |
|                                                              |                                |                           |                   |                                   |           |         |
|                                                              |                                |                           |                   |                                   |           |         |
|                                                              |                                |                           |                   |                                   |           |         |
| Are Emission Control Devices in Pl                           | ace? If YES – Comp             | lete SFN 8532             | <u> </u>          | Yes                               | N         | No      |
| Nearest Residences or Building Residence                     | Distance (ft)<br>4000          |                           | Direction<br>SE   |                                   |           |         |
| Nearest Property Line                                        | Distance (ft)                  |                           | Direction         |                                   |           |         |

#### SECTION C - EMISSION STREAM DATA

| Source ID Number<br>SFN 8516 5  | Mean Particle Diameter (um) Unknown         |
|---------------------------------|---------------------------------------------|
| Flow Rate (scfm)<br>2941        | Drift Velocity (ft/sec) Unknown             |
| Stream Temperature (°F) 1143    | Particulate Concentration (gr/dscf) Unknown |
| Moisture Content (%)<br>Unknown | Halogens or Metals Present? Unknown         |
| Pressure (in. Hg)<br>749.9      | Organic Content (ppmv) Unknown              |
| Heat Content (Btu/scfm) Unknown | O <sub>2</sub> Content (%)<br>Unknown       |

#### SECTION D - POLLUTANT SPECIFIC DATA

(Complete One Box for Each Pollutant in Emission Stream)

| (Complete Chie Box 101 Each 1 chatant in 1       | <u> </u>                                        |
|--------------------------------------------------|-------------------------------------------------|
| Pollutant Emitted Formaldehyde                   | Chemical Abstract Services (CAS) Number 50-00-0 |
| romaidenyde                                      | 30-00-0                                         |
| Proposed Emission Rate (lb/hr)                   | Emission Source (describe)                      |
| 0.21                                             | 1900 HP Compressor Engine #5                    |
| Source Classification                            | Pollutant Class and Form                        |
| (process point, process fugitive, area fugitive) | (organic/inorganic - particulate/vapor)         |
| Process point                                    | Organic - Vapor                                 |
| · · · · · · · · · · · · · · · · · · ·            |                                                 |
| Concentration in Emission Stream (ppmv)          | Vapor Pressure (in. Hg @ ∘F)                    |
| Unknown                                          | Unknown                                         |
| Solubility                                       | Molecular Weight (lb/lb-mole)                   |
| Unknown                                          | 30.04                                           |
| Absorptive Properties                            |                                                 |
| Unknown                                          |                                                 |
|                                                  |                                                 |

| Pollutant Emitted See calculation tables for other HAPs                | Chemical Abstract Services (CAS) Number                          |
|------------------------------------------------------------------------|------------------------------------------------------------------|
| Proposed Emission Rate (lb/hr)                                         | Emission Source (describe)                                       |
| Source Classification (process point, process fugitive, area fugitive) | Pollutant Class and Form (organic/inorganic - particulate/vapor) |
| Concentration in Emission Stream (ppmv)                                | Vapor Pressure (in. Hg @ °F)                                     |
| Solubility                                                             | Molecular Weight (lb/lb-mole)                                    |
| Absorptive Properties                                                  |                                                                  |

(Add additional pages if necessary)

| Signature of Applicant | Date |
|------------------------|------|
|                        |      |

#### SEND COMPLETED APPLICATION AND ALL ATTACHMENTS TO:

North Dakota Department of Environmental Quality Division of Air Quality 4201 Normandy Street, 2nd Floor Bismarck, ND 58503-1324 (701) 328-5188



# PERMIT APPLICATION FOR HAZARDOUS AIR POLLUTANT (HAP) SOURCES NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY

NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF AIR QUALITY SFN 8329 (9-2021)

| SECTION A1 - APPLICANT I                                     | NFORMATION                 |           |                           |                   |                   |          |                |
|--------------------------------------------------------------|----------------------------|-----------|---------------------------|-------------------|-------------------|----------|----------------|
| Name of Firm or Organization<br>Hiland Partners Holdings LLC |                            |           |                           |                   |                   |          |                |
| Applicant's Name<br>Alex Schmidt                             |                            |           |                           |                   |                   |          |                |
| Title Director of Operations                                 |                            |           | Telephone<br>(701) 833-93 |                   | E-mail Add        |          | nan com        |
| Mailing Address (Street & No.)<br>1667 Cole Blvd. Suite 300  |                            |           | (101) 000-90              | 01                | alex_serimida@k   | <u> </u> | <u>gan.com</u> |
| City<br>Lakewood                                             |                            |           | State<br>CO               |                   | ZIP Code<br>80401 |          |                |
| SECTION A2 - FACILITY INF                                    | ORMATION                   |           |                           |                   |                   |          |                |
| Contact Person for Air Pollution Ma<br>Brittany Brumley      |                            |           |                           |                   |                   |          |                |
| Title<br>EHS Manager                                         |                            |           | Telephone<br>(713) 420-63 |                   | E-mail Add        |          | rgan.com       |
| Facility Address (Street & No. or La 7 Miles South of Tioga  | at/Long to Nearest         | Secor     | nd)                       |                   |                   |          |                |
| City<br>Tioga                                                |                            |           | State<br>ND               |                   | ZIP Code<br>58852 |          |                |
| County<br>Williams                                           |                            | Numl<br>2 | ber of Empl               | oyees at Lo       | cation            |          |                |
| Land Area at Plant Site<br>6.2 Acres (or)                    | Sq. I                      | Ft.       | MSL El<br>2350            | evation at F      | Plant             |          |                |
| Describe Nature of Business/Proce                            | •                          |           | 1                         |                   |                   |          |                |
| Compressor Station                                           | ,,,,                       |           |                           |                   |                   |          |                |
| '                                                            |                            |           |                           |                   |                   |          |                |
|                                                              |                            |           |                           |                   |                   |          |                |
|                                                              |                            |           |                           |                   |                   |          |                |
|                                                              |                            |           |                           |                   |                   |          |                |
| SECTION B - STACK DATA                                       |                            |           |                           |                   |                   |          |                |
| Inside Diameter (ft)                                         | Height Above Gra           |           |                           |                   |                   |          |                |
| Gas Temperature at Exit (°F) 1176                            | Gas Velocity at E<br>138.3 | xit (ft/  | sec)                      | Gas Volur<br>2181 | me (scfm)         |          |                |
| Basis of any Estimates (attach sep                           | arate sheet if nece        | ssary)    | )                         |                   |                   |          |                |
|                                                              |                            |           |                           |                   |                   |          |                |
|                                                              |                            |           |                           |                   |                   |          |                |
| Are Emission Control Devices in P                            | lace? If YES – Con         | nplete    | SFN 8532                  |                   | Yes               |          | No             |
| Nearest Residences or Building Residence                     | Distance (ft)<br>4000      |           |                           | Direction<br>SE   |                   |          |                |
| Nearest Property Line                                        | Distance (ft)              |           |                           | Direction         |                   |          |                |

#### SECTION C - EMISSION STREAM DATA

| Source ID Number<br>SFN 8516 6  | Mean Particle Diameter (um) Unknown         |
|---------------------------------|---------------------------------------------|
| Flow Rate (scfm)<br>2181        | Drift Velocity (ft/sec) Unknown             |
| Stream Temperature (°F)<br>1176 | Particulate Concentration (gr/dscf) Unknown |
| Moisture Content (%) Unknown    | Halogens or Metals Present? Unknown         |
| Pressure (in. Hg)<br>749.9      | Organic Content (ppmv) Unknown              |
| Heat Content (Btu/scfm) Unknown | O <sub>2</sub> Content (%)<br>Unknown       |

### SECTION D - POLLUTANT SPECIFIC DATA

(Complete One Box for Each Pollutant in Emission Stream)

| (Somplete One Box for Eden i Shatant in E                                                  |                                                                                        |
|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Pollutant Emitted Formaldehyde                                                             | Chemical Abstract Services (CAS) Number 50-00-0                                        |
| Proposed Emission Rate (lb/hr) 0.12                                                        | Emission Source (describe)<br>1380 HP Compressor Engine #6                             |
| Source Classification<br>(process point, process fugitive, area fugitive)<br>Process point | Pollutant Class and Form<br>(organic/inorganic - particulate/vapor)<br>Organic - Vapor |
| Concentration in Emission Stream (ppmv) Unknown                                            | Vapor Pressure (in. Hg @ °F)<br>Unknown                                                |
| Solubility<br>Unknown                                                                      | Molecular Weight (lb/lb-mole)<br>30.04                                                 |
| Absorptive Properties Unknown                                                              |                                                                                        |

| Pollutant Emitted See calculation tables for other HAPs | Chemical Abstract Services (CAS) Number |
|---------------------------------------------------------|-----------------------------------------|
| Proposed Emission Rate (lb/hr)                          | Emission Source (describe)              |
| Source Classification                                   | Pollutant Class and Form                |
| (process point, process fugitive, area fugitive)        | (organic/inorganic - particulate/vapor) |
| Concentration in Emission Stream (ppmv)                 | Vapor Pressure (in. Hg @ °F)            |
| Solubility                                              | Molecular Weight (lb/lb-mole)           |
| Absorptive Properties                                   |                                         |

(Add additional pages if necessary)

| Signature of Applicant | Date |
|------------------------|------|
|                        |      |

## SEND COMPLETED APPLICATION AND ALL ATTACHMENTS TO:

North Dakota Department of Environmental Quality Division of Air Quality 4201 Normandy Street, 2nd Floor Bismarck, ND 58503-1324 (701) 328-5188



# PERMIT APPLICATION FOR HAZARDOUS AIR POLLUTANT (HAP) SOURCES NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY

NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF AIR QUALITY SFN 8329 (9-2021)

| SECTION A1 - APPLICANT II                                    | NFORMATION                                        |                           |                   |                                   |               |
|--------------------------------------------------------------|---------------------------------------------------|---------------------------|-------------------|-----------------------------------|---------------|
| Name of Firm or Organization<br>Hiland Partners Holdings LLC |                                                   |                           |                   |                                   |               |
| Applicant's Name<br>Alex Schmidt                             |                                                   |                           |                   |                                   |               |
| Title Director of Operations                                 |                                                   | Telephone<br>(701) 833-93 |                   | E-mail Addr                       |               |
| Mailing Address (Street & No.)<br>1667 Cole Blvd. Suite 300  |                                                   | (101) 000-00              | 001               | alex_sellillat@kill               | dermorgan.com |
| City<br>Lakewood                                             |                                                   | State<br>CO               |                   | ZIP Code<br>80401                 |               |
| SECTION A2 - FACILITY INF                                    | ORMATION                                          |                           |                   |                                   |               |
| Contact Person for Air Pollution Ma<br>Brittany Brumley      |                                                   |                           |                   |                                   |               |
| Title EHS Manager                                            |                                                   | Telephone<br>(713) 420-63 |                   | E-mail Addr<br>brittany_brumley@k |               |
| Facility Address (Street & No. or La 7 miles south of Tioga  | at/Long to Nearest Se                             | econd)                    |                   | 1                                 |               |
| City<br>Tioga                                                |                                                   | State<br>ND               |                   | ZIP Code<br>58852                 |               |
| County<br>Williams                                           | N 2                                               | umber of Empl             | oyees at Lo       | cation                            |               |
| Land Area at Plant Site<br>6.2 Acres (or)                    | Sq. Ft.                                           | MSL EI<br>2350            | evation at P      | lant                              |               |
| Describe Nature of Business/Proce                            | •                                                 | -                         |                   |                                   |               |
| Compressor Station                                           |                                                   |                           |                   |                                   |               |
|                                                              |                                                   |                           |                   |                                   |               |
|                                                              |                                                   |                           |                   |                                   |               |
|                                                              |                                                   |                           |                   |                                   |               |
|                                                              |                                                   |                           |                   |                                   |               |
| SECTION B - STACK DATA                                       |                                                   |                           |                   |                                   |               |
| Inside Diameter (ft)                                         | Height Above Grade<br>1.5 x Building Height (appr |                           |                   |                                   |               |
| Gas Temperature at Exit (°F) 1176                            | Gas Velocity at Exit<br>138.3                     | (ft/sec)                  | Gas Volun<br>2181 | ne (scfm)                         |               |
| Basis of any Estimates (attach sep                           | arate sheet if necess                             | ary)                      | •                 |                                   |               |
|                                                              |                                                   |                           |                   |                                   |               |
|                                                              |                                                   |                           |                   |                                   |               |
| Are Emission Control Devises in DI                           | and If VEC. Commi                                 | lete CEN 0522             |                   | V/00                              |               |
| Are Emission Control Devices in Pl                           | acerii 1E5 - Compi                                | ELE OFIN 8032             | <b>\</b>          | 168                               | ☐ No          |
| Nearest Residences or Building Residence                     | Distance (ft)<br>4000                             |                           | Direction<br>SE   |                                   |               |
| Nearest Property Line                                        | Distance (ft)                                     |                           | Direction         |                                   |               |

#### **SECTION C - EMISSION STREAM DATA**

| Source ID Number<br>SFN 8516 7  | Mean Particle Diameter (um) Unknown         |
|---------------------------------|---------------------------------------------|
| Flow Rate (scfm)<br>2181        | Drift Velocity (ft/sec)<br>Unknown          |
| Stream Temperature (°F) 1176    | Particulate Concentration (gr/dscf) Unknown |
| Moisture Content (%)<br>Unknown | Halogens or Metals Present?<br>Unknown      |
| Pressure (in. Hg)<br>749.9      | Organic Content (ppmv) Unknown              |
| Heat Content (Btu/scfm) Unknown | O <sub>2</sub> Content (%)<br>Unknown       |

#### SECTION D - POLLUTANT SPECIFIC DATA

(Complete One Box for Each Pollutant in Emission Stream)

| (Somplete Sile Box let Eden I endtant in         | ,                                               |
|--------------------------------------------------|-------------------------------------------------|
| Pollutant Emitted Formaldehyde                   | Chemical Abstract Services (CAS) Number 50-00-0 |
|                                                  |                                                 |
| Proposed Emission Rate (lb/hr)                   | Emission Source (describe)                      |
| 0.12                                             | 1380 HP Compressor Engine #7                    |
| Source Classification                            | Pollutant Class and Form                        |
| (process point, process fugitive, area fugitive) | (organic/inorganic - particulate/vapor)         |
|                                                  |                                                 |
| Process point                                    | Organic - Vapor                                 |
| Concentration in Emission Stream (ppmv)          | Vapor Pressure (in. Hg @ °F)                    |
| Unknown                                          | Unknown                                         |
|                                                  |                                                 |
| Solubility                                       | Molecular Weight (lb/lb-mole)                   |
| Unknown                                          | 30.04                                           |
| Absorptive Properties                            | •                                               |
| Unknown                                          |                                                 |
| Olikilowii                                       |                                                 |

| Pollutant Emitted See calculation tables for other HAPs | Chemical Abstract Services (CAS) Number |
|---------------------------------------------------------|-----------------------------------------|
| Proposed Emission Rate (lb/hr)                          | Emission Source (describe)              |
| Source Classification                                   | Pollutant Class and Form                |
| (process point, process fugitive, area fugitive)        | (organic/inorganic - particulate/vapor) |
| Concentration in Emission Stream (ppmv)                 | Vapor Pressure (in. Hg @ °F)            |
| Solubility                                              | Molecular Weight (lb/lb-mole)           |
| Absorptive Properties                                   |                                         |

(Add additional pages if necessary)

| Signature of Applicant | Date    |
|------------------------|---------|
| Alex Schmidt           | 7/23/25 |

### SEND COMPLETED APPLICATION AND ALL ATTACHMENTS TO:

North Dakota Department of Environmental Quality Division of Air Quality 4201 Normandy Street, 2nd Floor Bismarck, ND 58503-1324 (701) 328-5188



# PERMIT APPLICATION FOR HAZARDOUS AIR POLLUTANT (HAP) SOURCES NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY

NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF AIR QUALITY SFN 8329 (9-2021)

| SECTION A1 - APPLICANT II                                      | NFORMATION                |           |                           |                    |                             |      |
|----------------------------------------------------------------|---------------------------|-----------|---------------------------|--------------------|-----------------------------|------|
| Name of Firm or Organization<br>Hiland Partners Holdings LLC   |                           |           |                           |                    |                             |      |
| Applicant's Name<br>Alex Schmidt                               |                           |           |                           |                    |                             |      |
| Title Director of Operations                                   |                           |           | Telephone<br>(701) 833-93 |                    | E-mail Add alex_schmidt@kir |      |
| Mailing Address (Street & No.)<br>1667 Cole Blvd. Suite 300    |                           |           |                           |                    | 1                           |      |
| City<br>Lakewood                                               |                           |           | State<br>CO               |                    | ZIP Code<br>80401           |      |
| SECTION A2 - FACILITY INF                                      | ORMATION                  |           | J.                        |                    | Į.                          |      |
| Contact Person for Air Pollution Ma<br>Brittany Brumley        |                           |           |                           |                    |                             |      |
| Title EHS Manager                                              |                           |           | Telephone<br>(713) 420-63 |                    | E-mail Add                  |      |
| Facility Address (Street & No. or La<br>7 miles south of Tioga | at/Long to Nearest        | Seco      | , ,                       |                    |                             |      |
| City<br>Tioga                                                  |                           |           | State<br>ND               |                    | ZIP Code<br>58852           |      |
| County<br>Williams                                             |                           | Num<br>2  | ber of Emplo              | oyees at Lo        | cation                      |      |
| Land Area at Plant Site<br>6.2 Acres (or)                      | Sq. l                     |           | MSL Ele                   | evation at P       | lant                        |      |
|                                                                |                           | -         |                           |                    |                             |      |
| Describe Nature of Business/Proce                              | ess                       |           |                           |                    |                             |      |
| Compressor Station                                             |                           |           |                           |                    |                             |      |
|                                                                |                           |           |                           |                    |                             |      |
|                                                                |                           |           |                           |                    |                             |      |
|                                                                |                           |           |                           |                    |                             |      |
| SECTION B – STACK DATA                                         |                           |           |                           |                    |                             |      |
| Inside Diameter (ft)                                           | Height Above Gra          | ade (f    | t)                        |                    |                             |      |
| 0.5                                                            | 30                        | `         | ,                         |                    |                             |      |
| Gas Temperature at Exit (°F) 1832                              | Gas Velocity at E<br>22.2 | :xit (ft/ | sec)                      | Gas Volur<br>261.5 | ne (scfm)                   |      |
| Basis of any Estimates (attach sep                             | arate sheet if nece       | ssary     | )                         |                    |                             |      |
|                                                                |                           |           |                           |                    |                             |      |
|                                                                |                           |           |                           |                    |                             |      |
|                                                                |                           |           |                           |                    |                             |      |
| Are Emission Control Devices in Pl                             | ace? If YES – Cor         | nplete    | SFN 8532                  |                    | Yes                         | ☐ No |
| Nearest Residences or Building Residence                       | Distance (ft)<br>4000     |           |                           | Direction<br>SE    |                             |      |
| Nearest Property Line<br>Property Line                         | Distance (ft)             |           |                           | Direction          |                             |      |

#### SECTION C - EMISSION STREAM DATA

| Source ID Number<br>SFN 8516 9  | Mean Particle Diameter (um) Unknown         |
|---------------------------------|---------------------------------------------|
| Flow Rate (scfm)<br>261.5       | Drift Velocity (ft/sec) Unknown             |
| Stream Temperature (°F)<br>1832 | Particulate Concentration (gr/dscf) Unknown |
| Moisture Content (%)<br>Unknown | Halogens or Metals Present?<br>Unknown      |
| Pressure (in. Hg)<br>Unknown    | Organic Content (ppmv) Unknown              |
| Heat Content (Btu/scfm) Unknown | O <sub>2</sub> Content (%)<br>Unknown       |

#### SECTION D - POLLUTANT SPECIFIC DATA

(Complete One Box for Each Pollutant in Emission Stream)

| (Somplete Sile Box for Edon for Siletant in                                          |                                                                                        |
|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Pollutant Emitted n-hexane                                                           | Chemical Abstract Services (CAS) Number 110-54-3                                       |
| Proposed Emission Rate (lb/hr) 0.08                                                  | Emission Source (describe)<br>Flare                                                    |
| Source Classification (process point, process fugitive, area fugitive) Process point | Pollutant Class and Form<br>(organic/inorganic - particulate/vapor)<br>Organic - Vapor |
| Concentration in Emission Stream (ppmv) Unknown                                      | Vapor Pressure (in. Hg @ °F)<br>Unknown                                                |
| Solubility<br>Unknown                                                                | Molecular Weight (lb/lb-mole)<br>86.18                                                 |
| Absorptive Properties Unknown                                                        |                                                                                        |

| Pollutant Emitted See calculation tables for other HAPs | Chemical Abstract Services (CAS) Number |
|---------------------------------------------------------|-----------------------------------------|
| Proposed Emission Rate (lb/hr)                          | Emission Source (describe)              |
| Source Classification                                   | Pollutant Class and Form                |
| (process point, process fugitive, area fugitive)        | (organic/inorganic - particulate/vapor) |
| Concentration in Emission Stream (ppmv)                 | Vapor Pressure (in. Hg @ °F)            |
| Solubility                                              | Molecular Weight (lb/lb-mole)           |
| Absorptive Properties                                   |                                         |

(Add additional pages if necessary)

| Signature of Applicant | Date    |
|------------------------|---------|
| Alex Schmidt           | 7/23/25 |

### SEND COMPLETED APPLICATION AND ALL ATTACHMENTS TO:

North Dakota Department of Environmental Quality Division of Air Quality 4201 Normandy Street, 2nd Floor Bismarck, ND 58503-1324 (701) 328-5188



# PERMIT APPLICATION FOR HAZARDOUS AIR POLLUTANT (HAP) SOURCES NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY

NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF AIR QUALITY SFN 8329 (9-2021)

| SECTION A1 - APPLICANT II                                      | NFORMATION                 |          |                           |                 |                             |   |      |
|----------------------------------------------------------------|----------------------------|----------|---------------------------|-----------------|-----------------------------|---|------|
| Name of Firm or Organization<br>Hiland Partners Holdings LLC   |                            |          |                           |                 |                             |   |      |
| Applicant's Name<br>Alex Schmidt                               |                            |          |                           |                 |                             |   |      |
| Title Director of Operations                                   |                            |          | Telephone<br>(701) 833-93 |                 | E-mail Add alex_schmidt@kii |   | .com |
| Mailing Address (Street & No.)<br>1667 Cole Blvd. Suite 300    |                            |          | ,                         |                 |                             |   |      |
| City<br>Lakewood                                               |                            |          | State<br>CO               |                 | ZIP Code<br>80401           |   |      |
| SECTION A2 - FACILITY INF                                      | ORMATION                   |          |                           |                 |                             |   |      |
| Contact Person for Air Pollution Ma<br>Brittany Brumley        |                            |          |                           |                 |                             |   |      |
| Title EHS Manager                                              |                            |          | Telephone<br>(713) 420-63 |                 | E-mail Add                  |   | .com |
| Facility Address (Street & No. or La<br>7 miles south of Tioga | at/Long to Nearest         | Seco     | , ,                       |                 |                             |   |      |
| City<br>Tioga                                                  |                            |          | State<br>ND               |                 | ZIP Code<br>58852           |   |      |
| County<br>Williams                                             |                            | Num<br>2 | ber of Emplo              | yees at Lo      | cation                      |   |      |
| Land Area at Plant Site<br>6.2 Acres (or)                      | Sq. l                      | Ft       | MSL Ele                   | evation at P    | lant                        |   |      |
|                                                                |                            |          |                           |                 |                             |   |      |
| Describe Nature of Business/Proce                              | ess                        |          |                           |                 |                             |   |      |
| Compressor Station                                             |                            |          |                           |                 |                             |   |      |
|                                                                |                            |          |                           |                 |                             |   |      |
|                                                                |                            |          |                           |                 |                             |   |      |
|                                                                |                            |          |                           |                 |                             |   |      |
| SECTION B – STACK DATA                                         |                            |          |                           |                 |                             |   |      |
| Inside Diameter (ft)                                           | Height Above Gra           | ade (f   | t)                        |                 |                             |   |      |
| 0.001                                                          | 3                          |          |                           |                 | ( )                         |   |      |
| Gas Temperature at Exit (°F) Ambient                           | Gas Velocity at E<br>0.001 | •        | ŕ                         | Gas Volun       | ne (scfm)                   |   |      |
| Basis of any Estimates (attach sep                             | arate sheet if nece        | ssary    | )                         |                 |                             |   |      |
|                                                                |                            |          |                           |                 |                             |   |      |
|                                                                |                            |          |                           |                 |                             |   |      |
|                                                                |                            |          |                           |                 |                             |   |      |
| Are Emission Control Devices in Pl                             | ace? If YES – Cor          | nplete   | SFN 8532                  | <u> </u>        | Yes                         | N | lo   |
| Nearest Residences or Building Residence                       | Distance (ft)<br>4000      |          |                           | Direction<br>SE |                             |   |      |
| Nearest Property Line<br>Property Line                         | Distance (ft)              |          |                           | Direction       |                             |   |      |

#### **SECTION C - EMISSION STREAM DATA**

| Source ID Number<br>SFN 8516 11 | Mean Particle Diameter (um) Unknown         |
|---------------------------------|---------------------------------------------|
| Flow Rate (scfm) Unknown        | Drift Velocity (ft/sec) Unknown             |
| Stream Temperature (°F) Ambient | Particulate Concentration (gr/dscf) Unknown |
| Moisture Content (%)<br>Unknown | Halogens or Metals Present?<br>Unknown      |
| Pressure (in. Hg)<br>Unknown    | Organic Content (ppmv) Unknown              |
| Heat Content (Btu/scfm) Unknown | O <sub>2</sub> Content (%)<br>Unknown       |

#### SECTION D - POLLUTANT SPECIFIC DATA

(Complete One Box for Each Pollutant in Emission Stream)

| (Somplete Sile Box 101 Edon 1 Siletant III                                           |                                                                                        |
|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Pollutant Emitted n-hexane                                                           | Chemical Abstract Services (CAS) Number 110-54-3                                       |
| Proposed Emission Rate (lb/hr) 0.006                                                 | Emission Source (describe) Fugitives                                                   |
| Source Classification (process point, process fugitive, area fugitive) area fugitive | Pollutant Class and Form<br>(organic/inorganic - particulate/vapor)<br>Organic - Vapor |
| Concentration in Emission Stream (ppmv) Unknown                                      | Vapor Pressure (in. Hg @ °F)<br>Unknown                                                |
| Solubility<br>Unknown                                                                | Molecular Weight (lb/lb-mole)<br>86.18                                                 |
| Absorptive Properties Unknown                                                        |                                                                                        |

| Pollutant Emitted See calculation tables for other HAPs | Chemical Abstract Services (CAS) Number |
|---------------------------------------------------------|-----------------------------------------|
| Proposed Emission Rate (lb/hr)                          | Emission Source (describe)              |
| Source Classification                                   | Pollutant Class and Form                |
| (process point, process fugitive, area fugitive)        | (organic/inorganic - particulate/vapor) |
| Concentration in Emission Stream (ppmv)                 | Vapor Pressure (in. Hg @ °F)            |
| Solubility                                              | Molecular Weight (lb/lb-mole)           |
| Absorptive Properties                                   |                                         |

(Add additional pages if necessary)

| Signature of Applicant | Date    |
|------------------------|---------|
| Alex Schmidt           | 7/23/25 |

#### SEND COMPLETED APPLICATION AND ALL ATTACHMENTS TO:

North Dakota Department of Environmental Quality Division of Air Quality 4201 Normandy Street, 2nd Floor Bismarck, ND 58503-1324 (701) 328-5188



# PERMIT APPLICATION FOR HAZARDOUS AIR POLLUTANT (HAP) SOURCES NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY

NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF AIR QUALITY SFN 8329 (9-2021)

| SECTION A1 - APPLICANT II                                    | NFORMATION                |          |                           |                   |                   |                            |
|--------------------------------------------------------------|---------------------------|----------|---------------------------|-------------------|-------------------|----------------------------|
| Name of Firm or Organization<br>Hiland Partners Holdings LLC |                           |          |                           |                   |                   |                            |
| Applicant's Name<br>Alex Schmidt                             |                           |          |                           |                   |                   |                            |
| Title Director of Operations                                 |                           |          | Telephone<br>(701) 833-93 |                   | E-mail Add        | dress<br>indermorgan.com   |
| Mailing Address (Street & No.)<br>1667 Cole Blvd. Suite 300  |                           |          |                           |                   |                   |                            |
| City<br>Lakewood                                             |                           |          | State<br>CO               |                   | ZIP Code<br>80401 |                            |
| SECTION A2 - FACILITY INF                                    | ORMATION                  |          | J.                        |                   |                   |                            |
| Contact Person for Air Pollution Ma<br>Brittany Brumley      |                           |          |                           |                   |                   |                            |
| Title<br>EHS Manager                                         |                           |          | Telephone<br>(713) 420-63 |                   | E-mail Add        | dress<br>Dkindermorgan.com |
| Facility Address (Street & No. or La 7 miles south of Tioga  | at/Long to Nearest        | Seco     | , ,                       |                   |                   |                            |
| City<br>Tioga                                                |                           |          | State<br>ND               |                   | ZIP Code<br>58852 |                            |
| County<br>Williams                                           |                           | Num<br>2 | ber of Empl               | oyees at Lo       | cation            |                            |
| Land Area at Plant Site<br>6.2 Acres (or)                    | Sq. I                     | Ft.      | MSL Ele<br>2350           | evation at F      | Plant             |                            |
| Describe Nature of Business/Proce                            | •                         |          | •                         |                   |                   |                            |
| Compressor Station                                           | 735                       |          |                           |                   |                   |                            |
|                                                              |                           |          |                           |                   |                   |                            |
|                                                              |                           |          |                           |                   |                   |                            |
|                                                              |                           |          |                           |                   |                   |                            |
|                                                              |                           |          |                           |                   |                   |                            |
| SECTION B – STACK DATA                                       |                           |          |                           |                   |                   |                            |
| Inside Diameter (ft)<br>Vary                                 | Height Above Gra          | ade (f   | t)                        |                   |                   |                            |
| Gas Temperature at Exit (°F) Vary                            | Gas Velocity at E<br>Vary | xit (ft/ | /sec)                     | Gas Volur<br>Vary | me (scfm)         |                            |
| Basis of any Estimates (attach sep                           | arate sheet if nece       | ssary    | )                         |                   |                   |                            |
| Compressor blowdowns are of                                  | controlled by the         | e flar   | e (Source                 | ID: 9). Pi        | gging activi      | ties are                   |
| released to the atmosphere.                                  |                           |          |                           |                   |                   |                            |
|                                                              |                           |          |                           |                   |                   |                            |
| Are Emission Control Devices in P                            | ace? If YES – Con         | nplete   | SFN 8532                  |                   | Yes               | ☐ No                       |
| Nearest Residences or Building Residence                     | Distance (ft)<br>4000     |          |                           | Direction<br>SE   |                   |                            |
| Nearest Property Line<br>Property Line                       | Distance (ft)<br>100      |          |                           | Direction         |                   |                            |

#### SECTION C - EMISSION STREAM DATA

| Source ID Number<br>SFN 8516 12 | Mean Particle Diameter (um) Unknown         |
|---------------------------------|---------------------------------------------|
| Flow Rate (scfm)<br>Vary        | Drift Velocity (ft/sec)<br>Unknown          |
| Stream Temperature (°F)<br>Vary | Particulate Concentration (gr/dscf) Unknown |
| Moisture Content (%)<br>Unknown | Halogens or Metals Present?<br>Unknown      |
| Pressure (in. Hg)<br>Unknown    | Organic Content (ppmv) Unknown              |
| Heat Content (Btu/scfm) Unknown | O <sub>2</sub> Content (%)<br>Unknown       |

#### SECTION D - POLLUTANT SPECIFIC DATA

(Complete One Box for Each Pollutant in Emission Stream)

| (Complete Chie Box 101 Edon 1 Chatant III )                                          |                                                                                        |
|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Pollutant Emitted Formaldehyde                                                       | Chemical Abstract Services (CAS) Number                                                |
| Proposed Emission Rate (lb/hr)<br>0.003                                              | Emission Source (describe) MSS                                                         |
| Source Classification (process point, process fugitive, area fugitive) Process point | Pollutant Class and Form<br>(organic/inorganic - particulate/vapor)<br>Organic - Vapor |
| Concentration in Emission Stream (ppmv) Unknown                                      | Vapor Pressure (in. Hg @ °F)<br>Unknown                                                |
| Solubility<br>Unknown                                                                | Molecular Weight (lb/lb-mole)<br>86.18                                                 |
| Absorptive Properties Unknown                                                        |                                                                                        |

| Pollutant Emitted See calculation tables for other HAPs                | Chemical Abstract Services (CAS) Number                          |
|------------------------------------------------------------------------|------------------------------------------------------------------|
| Proposed Emission Rate (lb/hr)                                         | Emission Source (describe)                                       |
| Source Classification (process point, process fugitive, area fugitive) | Pollutant Class and Form (organic/inorganic - particulate/vapor) |
| Concentration in Emission Stream (ppmv)                                | Vapor Pressure (in. Hg @ °F)                                     |
| Solubility                                                             | Molecular Weight (lb/lb-mole)                                    |
| Absorptive Properties                                                  |                                                                  |

(Add additional pages if necessary)

| Signature of Applicant | Date    |
|------------------------|---------|
| Alex Schmidt           | 7/23/25 |
|                        | 1       |

#### SEND COMPLETED APPLICATION AND ALL ATTACHMENTS TO:

North Dakota Department of Environmental Quality Division of Air Quality 4201 Normandy Street, 2nd Floor Bismarck, ND 58503-1324 (701) 328-5188



#### PERMIT APPLICATION FOR VOLATILE ORGANIC COMPOUNDS STORAGE TANK

NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF AIR QUALITY SFN 8535 (9-2021)

NOTE: READ INSTRUCTIONS BEFORE COMPLETING THIS FORM.

- Must include SFN 8516 or SFN 52858

# SECTION A – GENERAL INFORMATION

|                            | me of Firm or Organization Facility Name nd Partners Holdings LLC Silurian Compressor Station                                                                                                |                      |                    |                                      |                     |  |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------|--------------------------------------|---------------------|--|
| Tillaliu Faltileis         | Silurian Compressor Station                                                                                                                                                                  |                      |                    |                                      |                     |  |
| SECTION B                  | SECTION B – TANK DATA                                                                                                                                                                        |                      |                    |                                      |                     |  |
|                            | mber (From SFN 8516)                                                                                                                                                                         |                      |                    |                                      |                     |  |
| Capacity                   | Barrels<br>400                                                                                                                                                                               |                      | Gallon<br>16,800   | IS                                   |                     |  |
| Dimensions                 | Diameter<br>12                                                                                                                                                                               | Height<br>20         | Length             | ٦                                    | Width               |  |
| Shape                      | Cylindrical                                                                                                                                                                                  | ☐ Sp                 | herical            | Other –                              | Specify:            |  |
| Materials of Construction  | (i.e., steel) Steel                                                                                                                                                                          |                      |                    |                                      |                     |  |
| Construction               | Riveted                                                                                                                                                                                      | ■ We                 | elded              | Other –                              | Specify:            |  |
| Color<br>Tan               |                                                                                                                                                                                              |                      |                    |                                      |                     |  |
| Condition                  | Good                                                                                                                                                                                         | <b>■</b> Fa          | ir                 | ☐ Poor                               |                     |  |
| Status                     | ☐ New Constru                                                                                                                                                                                | ction                | eration            | Existing (Give Date 01/12/2012       | Constructed):       |  |
| Type of                    | Fixed Roof                                                                                                                                                                                   |                      | E                  | External Floatin                     | g                   |  |
| Tank                       | ☐ Variable Vap<br>☐ Pressure (lov                                                                                                                                                            |                      |                    | nternal Floating<br>Other – Specify: |                     |  |
| Type of Roof               | ☐ Pan ☐                                                                                                                                                                                      | Double Deck          | ☐ Pontoo           | n Othe                               | er – Specify:       |  |
| Type of Seal               | Metallic Shoe Seal                                                                                                                                                                           | Liquid N<br>Resilier | Mounted<br>it Seal |                                      | Mounted<br>ent Seal |  |
|                            | ☐ Primary Seal Only ☐ With Rim Mounted Seal ☐ With Shoe Mounted Secondary Seal ☐ With Weather Shield |                      |                    | th Rim Mounted Seal                  |                     |  |
| SECTION C                  | - TANK CONTENT                                                                                                                                                                               | S                    |                    |                                      |                     |  |
|                            | ds, vapors, gases, or mi<br>lbs per gal) or A.P.I.                                                                                                                                           | xtures of such m     | aterials to be     | stored in the tar                    | nk.                 |  |
| Produced W                 | /ater                                                                                                                                                                                        |                      |                    |                                      |                     |  |
|                            |                                                                                                                                                                                              |                      |                    |                                      |                     |  |
|                            |                                                                                                                                                                                              |                      |                    |                                      |                     |  |
|                            |                                                                                                                                                                                              |                      |                    |                                      |                     |  |
| SECTION D – VAPOR DISPOSAL |                                                                                                                                                                                              |                      |                    |                                      |                     |  |
| Atmosphe                   |                                                                                                                                                                                              |                      | e 🗌 Enclose        | d Combustor                          | Other – Specify:    |  |

#### **SECTION E – VAPOR PRESSURE DATA**

| psia                              |                             |
|-----------------------------------|-----------------------------|
| Maximum True Vapor Pressure 13.72 | Maximum Reid Vapor Pressure |
| 13.72                             |                             |

#### SECTION F - OPERATIONAL DATA

| Maximum Filling Rate                                                       | Vapor Space Outage                 |
|----------------------------------------------------------------------------|------------------------------------|
| (barrels per hour or gallons per hour)                                     | (See AP-42, 7.1-92, Equation 1-15) |
| 16.5 bbls/hr                                                               | 10.125 feet                        |
| Average Throughput<br>(barrels per day or gallons per day)<br>396 bbls/day | Tank Turnovers per Year 1          |

#### **SECTION G – SOLUTION STORAGE**

| If material stored is a solution, supply the following information:         |                            |  |
|-----------------------------------------------------------------------------|----------------------------|--|
| Name of Solvent                                                             | Name of Material Dissolved |  |
|                                                                             |                            |  |
| Concentration of Material Dissolved (% by weight or % by volume or lbs/gal) |                            |  |
|                                                                             |                            |  |

### **SECTION H - AIR CONTAMINANATS EMITTED**

| Pollutant* | Maximum Pounds<br>Per Hour | Tons Per Year | Basis and Calculations for Quantities (Attach separate sheet if needed) |
|------------|----------------------------|---------------|-------------------------------------------------------------------------|
| VOC        | 0.001                      | 0.004         | AP-42, Section 7.1                                                      |
|            |                            |               |                                                                         |
|            |                            |               |                                                                         |
|            |                            |               |                                                                         |

<sup>\*</sup> Include an estimate of greenhouse gas emissions (CO<sub>2</sub>e)

#### **SECTION I – STANDARDS OF PERFORMANCE**

| Tank subject to: 40 CFR 60, Subpart K 40 CFR 60, Subpart Ka 40 CFR 60, Subpart Kb                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ☐ 40 CFR 60, Subpart OOOO ☐ 40 CFR 60, Subpart OOOOa                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Are the standards of performance for new stationary sources; petroleum liquid storage vessels, 40 CFR Part 60, Subparts K, Ka, and Kb, OOOO, OOOOa being adhered to, where applicable?  Performance for new stationary sources; petroleum liquid storage vessels, 40 CFR Part 60, Subparts K, Ka, and Kb, OOOO, OOOOa being adhered to, where applicable?  Performance for new stationary sources; petroleum liquid storage vessels, 40 CFR Part 60, Subparts K, Ka, and Kb, OOOO, OOOOa being adhered to, where applicable? |
| This 400 barrel (16,800 gallons) storage tank was constructed in August 2013. This tank is storing produced water with negligible emissions (0.004 TPY).                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

#### SEND COMPLETED APPLICATION AND ALL ATTACHMENTS TO:

North Dakota Department of Environmental Quality Division of Air Quality 4201 Normandy Street, 2<sup>nd</sup> Floor Bismarck, ND 58503-1324 (701) 328-5188



#### PERMIT APPLICATION FOR FLARES

NORTH DAKOTA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF AIR QUALITY SFN 59652 (9-2021)

NOTE: READ INSTRUCTIONS BEFORE COMPLETING THIS FORM.
- Must include SFN 8516 or SFN 52858

**SECTION A – GENERAL INFORMATION** 

| Name of Firm or Organization              |                       | Facility Name               |                                      |              |
|-------------------------------------------|-----------------------|-----------------------------|--------------------------------------|--------------|
| Hiland Partners Holdings LLC              |                       | Silurian Compressor Station |                                      |              |
| SECTION B - FLARE INFORI                  | MATION                |                             |                                      |              |
| Use: Emergency Pro                        | cess 🔳 Both           | Subject to NS               | PS (40 CFR 60.18) o \                | Yes ● No     |
| Emission Point ID Height Above Gr<br>9 30 |                       | ound Level (ft.)            | Diameter at Top (ft.) 0.50           |              |
| Flame Monitor: Thermocouple Other:        |                       | Ultraviolet                 | Acoustic                             |              |
| Ignition: Automatic Other:                | Continuo              | ous Burning Pilo            | t                                    |              |
| Average Btu/1000 scf                      |                       |                             | Maximum Hourly Flow R<br>15,690 SCFH | ate to Flare |
| List source ID numbers controlled 9, 12   | by this unit, if any: | ·                           |                                      |              |

#### SECTION C - AIR CONTAMINANTS EMITTED

| Pollutant                                      | Amount<br>(Tons Per Year) | Basis of Estimate <sup>*</sup>                          |
|------------------------------------------------|---------------------------|---------------------------------------------------------|
| NO <sub>x</sub>                                | 12.58                     | TCEQ Technical Guidance for Flares and Vapor Combustors |
| CO                                             | 25.11                     | TCEQ Technical Guidance for Flares and Vapor Combustors |
| PM                                             | 0.003                     | AP-42, Table 1.4-2 (07/98)                              |
| PM <sub>10</sub> (filterable and condensable)  | 0.003                     | AP-42, Table 1.4-2 (07/98)                              |
| PM <sub>2.5</sub> (filterable and condensable) | 0.003                     | AP-42, Table 1.4-2 (07/98)                              |
| SO <sub>2</sub>                                | 0.05                      | Mass Balance                                            |
| VOC                                            | 14.29                     | Mass Balance                                            |
| GHG (as CO <sub>2</sub> e)                     | 10,673                    | 40 CFR 98, Subpart C                                    |
| Largest Single HAP                             | 0.33                      | Mass Balance                                            |
| Total HAPS                                     | 0.54                      | Mass Balance                                            |

<sup>\*</sup>If performance test results are available for the unit, submit a copy of test with this application. If manufacturer guarantee are used provide spec sheet.

| Will flaring of gas comply with applicable Ambient Air Qua                                  | ality Standards? ■ Yes □ No                                               |
|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| IS THIS UNIT IN COMPLIANCE WITH ALL APPLICABLE AIR POLLUTION CONTROL RULES AND REGULATIONS? | If "NO" a Compliance Schedule (SFN 61008) must be completed and attached. |
| ■ YES □ NO                                                                                  |                                                                           |

Attach and label separate sheet(s) if you need more space to explain any system or answers or to provide complete listings of Emissions, Contaminants or other items.

#### SEND COMPLETED APPLICATION AND ALL ATTACHMENTS TO:

North Dakota Department of Environmental Quality Division of Air Quality 4201 Normandy Street, 2<sup>nd</sup> Floor Bismarck, ND 58503-1324 (701)328-5188

# 6.0 Appendices

- Appendix A Supporting Emission Calculations
- Appendix B Manufacturer Specifications

# **APPENDIX A**

# Silurian Compressor Station API Tank 400 bbls Produced Water Storage Tank Emissions

**Equipment Data:** 

| Emission Unit (EU): |                   |
|---------------------|-------------------|
| Emission Unit Name: | API Tank 400 bbls |

#### **Emissions Data:**

Tank Contents = Produced Water
Tank Type = Vertical Fixed Roof

Tank Capacity = 16,800 gallons

Annual Throughput = 396 bbl/year per tank
Annual Throughput = 16,632 gallons/year per tank

| Emission Unit | Standing Losses | Working Losses | Total Losses + 20 % | Standing Losses | Working Losses | Total Losses + 20 % |
|---------------|-----------------|----------------|---------------------|-----------------|----------------|---------------------|
|               | (lb/hr)         | (lb/hr)        | (lb/hr)             | (ton/yr)        | (ton/yr)       | (ton/yr)            |
| 3             | 0.001           | 0.0001         | 0.0009              | 0.0029          | 0.0003         | 0.0039              |

#### Notes:

1. Emissions calculated using ProMax model.

2. The liquid stored is essentially water. To be conservative, an additional 20 % safety factor was added to the emissions calculated via ProMax.

## Silurian Compressor Station Engine 4 Emissions

### **Equipment Data:**

| Emission Unit (EU): | 4                 |
|---------------------|-------------------|
| Emission Unit Name: | Waukesha L7044GSI |
| Engine Type:        | 4SRB              |

### **Emissions Data:**

Fuel Usage = 109.49 MMscf/yr (Calculated value based on max fuel combustion rate)

Horsepower = 1,900 bhp
Speed = 1,200 rpm
Hours of Operation = 8,760 hr/yr
Max. Fuel Combustion Rate (HHV) = 8,249 Btu/bhp-hr
Fuel Heating Value (HHV) = 1,254 MMBtu/MMscf
Max. Heat Rate (HHV) = 15.67 MMBtu/hr

| Pollutant                     | Emission Factor | Units    | Emission Factor<br>Reference | Hourly Emissions<br>(lb/hr) | Annual Emissions<br>(tpy) |
|-------------------------------|-----------------|----------|------------------------------|-----------------------------|---------------------------|
| PM <sub>10</sub> <sup>2</sup> | 0.01941         | lb/MMBtu | AP-42                        | 0.30                        | 1.33                      |
| NOx <sup>1</sup>              | 1.0             | g/bhp-hr | Vendor Data                  | 4.19                        | 18.35                     |
| CO <sup>1</sup>               | 1.0             | g/bhp-hr | Vendor Data                  | 4.19                        | 18.35                     |
| SO₂                           | 5.88E-04        | lb/MMBtu | AP-42                        | 0.01                        | 0.04                      |
| VOC <sup>1,3</sup>            | 0.70            | g/bhp-hr | Vendor Data                  | 3.14                        | 13.76                     |
| Total HAPs                    |                 |          | AP-42                        | 0.39                        | 1.69                      |
| Formaldehyde                  | 0.05            | g/bhp-hr | Vendor Data                  | 0.21                        | 0.92                      |
| Pollutant                     | Emission Factor | Units    | Emission Factor<br>Reference | Hourly Emissions<br>(lb/hr) | Annual Emissions<br>(tpy) |
| CO₂e                          |                 |          |                              | 1,835                       | 8,039                     |
| GHG                           |                 |          |                              | 1,833                       | 8,030                     |
| CO <sub>2</sub>               | 117             | lb/MMBtu | AP-42                        | 1,833                       | 8,030                     |
| CH₄                           | 0.0022          | lb/MMBtu | AP-42                        | 0.03                        | 0.15                      |
| N <sub>2</sub> O              | 0.0002          | lb/MMBtu | AP-42                        | 0.0035                      | 0.02                      |

# Notes:

## Sample Calculation:

| $PM_{10}$ Emissions (ton/yr) = $PM_{10}$ Emissions (ton/yr) = | (Emission Factor, Ib/MMBtu) x (Max Heat Input Rate (HHV), MMBtu/hr) x (Hours of Operation, hr/yr) / $(2,000 \text{ lb/ton})$ (0.01941 lb/MMBtu) x (15.67 MMBtu/hr) x (8,760 hr/yr) / $(2,000 \text{ lb/ton})$ = 1.33 ton/yr                              |
|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VOC Emissions (ton/yr) = VOC Emissions (ton/yr) =             | (Emission Factor, g/bhp-hr) x (Horsepower, bhp) x (Hours of Operation, hr/yr) / $(2,000 \text{ lb/ton})$ / $(453.59 \text{ grams/1 lb})$ (0.7 g/bhp-hr) x (1900 bhp) x (8,760 hr/yr) / $(2,000 \text{ lb/ton})$ / $(453.59 \text{ g/lb})$ = 13.76 ton/yr |
| $CO_2$ e Emissions (ton/yr) = $CO_2$ e Emissions (ton/yr) =   | $(CO_2 \text{ emissions x 1}) + (CH_4 \text{ emissions x 25}) + (N_2O \text{ emissions x 298})$<br>((8030.27  ton/yr x 1) + (0.15  ton/yr x 28) + (0.02  ton/yr x 265)) = 8038.52  ton/yr                                                                |
| GHG Emissions (ton/yr) =<br>GHG Emissions (ton/yr) =          | $(CO_2 \text{ emissions}) + (CH_4 \text{ emissions}) + (N_2O \text{ emissions})$<br>(8030.27 ton/yr) + (0.15 ton/yr) + (0.02 ton/yr) = 8030.43 ton/yr                                                                                                    |

<sup>1.</sup>  $NO_{x_1}$  CO, and VOC emissions based on data from the catalyst vendor indicating a post-catalyst emission rate which meets 40 CFR 60 Subpart JJJJ standards. Formaldehyde emissions are based on manufacturer data.  $PM/PM_{10}$  and  $SO_2$  emissions based on AP-42 Table 3.2-3.

<sup>2.</sup> Per AP-42, all particulate is considered to be less than 1.0 micrometer in diameter.

<sup>3.</sup> VOC emissions include formaldehyde.

# Silurian Compressor Station Engine 4 HAP Emissions

| Engine | Horsepower<br>(hp) | Operating<br>Hours | Heat Input<br>(MMBtu/hr) | Heat Input<br>(MMBtu/yr) | Fuel Input<br>(MMScf/yr) |
|--------|--------------------|--------------------|--------------------------|--------------------------|--------------------------|
| 4      | 1,900              | 8,760              | 16                       | 137,296                  | 109.487                  |

| НАР                       | Emission<br>Factor<br>(lb/MMBtu) <sup>1</sup> | Emission<br>Factor (g/bhp-<br>hr) | Control<br>Efficiency<br>(%) | Total<br>Emissions<br>(lb/hr) | Total Emissions<br>(tpy) |
|---------------------------|-----------------------------------------------|-----------------------------------|------------------------------|-------------------------------|--------------------------|
| 1,3-Butadiene             | 6.63E-04                                      |                                   | 0                            | 0.0104                        | 0.0455                   |
| Acetaldehyde              | 2.79E-03                                      |                                   | 0                            | 0.0437                        | 0.1915                   |
| Acrolein                  | 2.63E-03                                      |                                   | 0                            | 0.0412                        | 0.1805                   |
| Benzene                   | 1.58E-03                                      |                                   | 0                            | 0.0248                        | 0.1085                   |
| Formaldehyde <sup>2</sup> |                                               | 0.05                              | 0                            | 0.2094                        | 0.9173                   |
| Methanol                  | 3.06E-03                                      |                                   | 0                            | 0.0480                        | 0.2101                   |
| Toluene                   | 5.58E-04                                      |                                   | 0                            | 0.0087                        | 0.0383                   |
| Total HAP Emissions       |                                               |                                   |                              | 0.39                          | 1.69                     |

#### Notes:

1. Emission factors from AP-42 Table 3.2-3, Uncontrolled Emission Factors for 4-Stroke Rich-Burn Engines (July 2000).

2. Formaldehyde emission factor is from manufacturer's information.

# Silurian Compressor Station Engine 5 Emissions

### **Equipment Data:**

| Equipment Butu.     |                   |
|---------------------|-------------------|
| Emission Unit (EU): | 5                 |
| Emission Unit Name: | Waukesha L7044GSI |
| Engine Type:        | 4SRB              |

### **Emissions Data:**

Fuel Usage = 109.49 MMscf/yr (Calculated value based on max fuel combustion rate)

Horsepower = 1,900 bhp
Speed = 1,200 rpm
Hours of Operation = 8,760 hr/yr
Max. Fuel Combustion Rate (HHV) = 8,249 Btu/bhp-hr
Fuel Heating Value (HHV) = 1,254 MMBtu/MMscf
Max. Heat Rate (HHV) = 15.67 MMBtu/hr

| Pollutant                     | Emission Factor | Units    | Emission Factor<br>Reference | Hourly Emissions<br>(lb/hr) | Annual Emissions<br>(tpy) |
|-------------------------------|-----------------|----------|------------------------------|-----------------------------|---------------------------|
| PM <sub>10</sub> <sup>2</sup> | 0.01941         | lb/MMBtu | AP-42                        | 0.30                        | 1.33                      |
| NOx <sup>1</sup>              | 1.0             | g/bhp-hr | Vendor Data                  | 4.19                        | 18.35                     |
| CO <sup>1</sup>               | 1.0             | g/bhp-hr | Vendor Data                  | 4.19                        | 18.35                     |
| SO₂                           | 5.88E-04        | lb/MMBtu | AP-42                        | 0.01                        | 0.04                      |
| VOC <sup>1,3</sup>            | 0.70            | g/bhp-hr | Vendor Data                  | 3.14                        | 13.76                     |
| Total HAPs                    |                 |          | AP-42                        | 0.39                        | 1.69                      |
| Formaldehyde                  | 0.05            | g/bhp-hr | Vendor Data                  | 0.21                        | 0.92                      |
| Pollutant                     | Emission Factor | Units    | Emission Factor<br>Reference | Hourly Emissions<br>(lb/hr) | Annual Emissions<br>(tpy) |
| CO₂e                          |                 |          |                              | 1,835                       | 8,039                     |
| GHG                           |                 |          |                              | 1,833                       | 8,030                     |
| CO <sub>2</sub>               | 117             | lb/MMBtu | AP-42                        | 1,833                       | 8,030                     |
| CH₄                           | 0.0022          | lb/MMBtu | AP-42                        | 0.03                        | 0.15                      |
| N <sub>2</sub> O              | 0.0002          | lb/MMBtu | AP-42                        | 0.0035                      | 0.02                      |

### **Notes**

- 2. Per AP-42, all particulate is considered to be less than 1.0 micrometer in diameter.
- ${\it 3. \ VOC\ emissions\ include\ formal dehyde.}$

# **Sample Calculation:**

| $PM_{10}$ Emissions (ton/yr) =                    | (Emission Factor, lb/MMBtu) x (Max Heat Input Rate (HHV), MMBtu/hr) x (Hours of Operation, hr/yr) / (2,000 lb/ton)                                                                                               |
|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $PM_{10}$ Emissions (ton/yr) =                    | $(0.01941 \text{ lb/MMBtu}) \times (15.67 \text{ MMBtu/hr}) \times (8,760 \text{ hr/yr}) / (2,000 \text{ lb/ton}) = 1.33 \text{ ton/yr}$                                                                         |
| VOC Emissions (ton/yr) = VOC Emissions (ton/yr) = | (Emission Factor, g/bhp-hr) x (Horsepower, bhp) x (Hours of Operation, hr/yr) / (2,000 lb/ton) / (453.59 grams/1 lb) (0.7 g/bhp-hr) x (1900 bhp) x (8,760 hr/yr) / (2,000 lb/ton) / (453.59 g/lb) = 13.76 ton/yr |
| CO₂e Emissions (ton/yr) =                         | (CO <sub>2</sub> emissions x 1) + (CH <sub>4</sub> emissions x 25) + (N <sub>2</sub> O emissions x 298)                                                                                                          |
| $CO_2$ e Emissions (ton/yr) =                     | $((8030.27 \text{ ton/yr} \times 1) + (0.15 \text{ ton/yr} \times 28) + (0.02 \text{ ton/yr} \times 265)) = 8038.52 \text{ ton/yr}$                                                                              |
| GHG Emissions (ton/yr) =                          | (CO <sub>2</sub> emissions) + (CH <sub>4</sub> emissions) + (N <sub>2</sub> O emissions)                                                                                                                         |
| GHG Emissions (ton/yr) =                          | (8030.27  ton/yr) + (0.15  ton/yr) + (0.02  ton/yr) = 8030.43  ton/yr                                                                                                                                            |

<sup>1.</sup>  $NO_{x, CO}$ , and VOC emissions based on data from the catalyst vendor indicating a post-catalyst emission rate which meets 40 CFR 60 Subpart JJJJ standards. Formaldehyde emissions are based on manufacturer data.  $PM/PM_{10}$  and  $SO_2$  emissions based on AP-42 Table 3.2-3.

# Silurian Compressor Station Engine 5 HAP Emissions

| Engine | Horsepower | Operating | Heat Input | Heat Input | Fuel Input |
|--------|------------|-----------|------------|------------|------------|
|        | (hp)       | Hours     | (MMBtu/hr) | (MMBtu/yr) | (MMScf/yr) |
| 5      | 1,900      | 8,760     | 16         | 137,296    | 109.487    |

| НАР                       | Emission<br>Factor<br>(lb/MMBtu) <sup>1</sup> | Emission<br>Factor (g/bhp-<br>hr) | Control<br>Efficiency<br>(%) | Total<br>Emissions<br>(lb/hr) | Total Emissions (tpy) |
|---------------------------|-----------------------------------------------|-----------------------------------|------------------------------|-------------------------------|-----------------------|
| 1,3-Butadiene             | 6.63E-04                                      |                                   | 0                            | 0.0104                        | 0.0455                |
| Acetaldehyde              | 2.79E-03                                      |                                   | 0                            | 0.0437                        | 0.1915                |
| Acrolein                  | 2.63E-03                                      |                                   | 0                            | 0.0412                        | 0.1805                |
| Benzene                   | 1.58E-03                                      |                                   | 0                            | 0.0248                        | 0.1085                |
| Formaldehyde <sup>2</sup> |                                               | 0.05                              | 0                            | 0.2094                        | 0.9173                |
| Methanol                  | 3.06E-03                                      |                                   | 0                            | 0.0480                        | 0.2101                |
| Toluene                   | 5.58E-04                                      |                                   | 0                            | 0.0087                        | 0.0383                |
| Total HAP Emissions       |                                               |                                   |                              |                               | 1.69                  |

#### Notes:

<sup>1.</sup> Emission factors from AP-42 Table 3.2-3, Uncontrolled Emission Factors for 4-Stroke Rich-Burn Engines (July 2000).

<sup>2.</sup> Formaldehyde emission factor is from manufacturer's information.

# Silurian Compressor Station Engine 6 Emissions

#### **Equipment Data:**

| Emission Unit (EU): | 6                 |
|---------------------|-------------------|
| Emission Unit Name: | Waukesha L5794GSI |
| Engine Type:        | 4SRB              |

#### **Emissions Data:**

Fuel Usage = 81.74 MMscf/yr (Calculated value based on max fuel combustion rate)

Horsepower = 1,380 bhp
Speed = 1,200 rpm
Hours of Operation = 8,760 hr/yr
Max. Fuel Combustion Rate (HHV) = 8,479 Btu/bhp-hr
Fuel Heating Value (HHV) = 1,254 MMBtu/MMscf
Max. Heat Rate (HHV) = 11.70 MMBtu/hr

| Pollutant                     | Emission Factor | Units    | Emission Factor<br>Reference | Hourly Emissions<br>(lb/hr) | Annual Emissions<br>(tpy) |
|-------------------------------|-----------------|----------|------------------------------|-----------------------------|---------------------------|
| PM <sub>10</sub> <sup>2</sup> | 0.01941         | lb/MMBtu | AP-42                        | 0.23                        | 0.99                      |
| NOx <sup>1</sup>              | 1.0             | g/bhp-hr | Vendor Data                  | 3.04                        | 13.33                     |
| CO <sup>1</sup>               | 1.0             | g/bhp-hr | Vendor Data                  | 3.04                        | 13.33                     |
| SO <sub>2</sub>               | 5.88E-04        | lb/MMBtu | AP-42                        | 0.01                        | 0.03                      |
| VOC <sup>1,3</sup>            | 0.70            | g/bhp-hr | Vendor Data                  | 2.25                        | 9.86                      |
| Total HAPs                    |                 |          | AP-42                        | 0.30                        | 1.31                      |
| Formaldehyde                  | 0.04            | g/bhp-hr | Vendor Data                  | 0.12                        | 0.53                      |
| Pollutant                     | Emission Factor | Units    | Emission Factor<br>Reference | Hourly Emissions<br>(lb/hr) | Annual Emissions<br>(tpy) |
| CO₂e                          |                 |          |                              | 1,370                       | 6,001                     |
| GHG                           |                 |          |                              | 1,369                       | 5,995                     |
| CO <sub>2</sub>               | 117             | lb/MMBtu | AP-42                        | 1,369                       | 5,995                     |
| CH₄                           | 0.0022          | lb/MMBtu | AP-42                        | 0.03                        | 0.11                      |
| N <sub>2</sub> O              | 0.0002          | lb/MMBtu | AP-42                        | 0.003                       | 0.01                      |

### Notes:

- 1. NO<sub>x</sub>, CO, and VOC emissions based on data from the catalyst vendor indicating a post-catalyst emission rate which meets 40 CFR 60 Subpart JJJJ standards. Formaldehyde emissions are based on manufacturer data. PM/PM<sub>10</sub> and SO<sub>2</sub> emissions based on AP-42 Table 3.2-3.
- 2. Per AP-42, all particulate is considered to be less than 1.0 micrometer in diameter.
- 3. VOC emissions include formaldehyde.

## Sample Calculation:

 $PM_{10}$  Emissions (ton/yr) = (Emission Factor, lb/MMBtu) x (Max Heat Input Rate (HHV), MMBtu/hr) x (Hours of Operation, hr/yr) / (2,000 lb/ton)  $PM_{10}$  Emissions (ton/yr) =  $(0.01941 \text{ lb/MMBtu}) \times (11.7 \text{ MMBtu/hr}) \times (8,760 \text{ hr/yr}) / (2,000 \text{ lb/ton}) = 0.99 \text{ ton/yr}$ VOC Emissions (ton/yr) = (Emission Factor, g/bhp-hr) x (Horsepower, bhp) x (Hours of Operation, hr/yr) / (2,000 lb/ton) / (453.59 grams/1 lb) VOC Emissions (ton/yr) =  $(0.7 \text{ g/bhp-hr}) \times (1380 \text{ bhp}) \times (8,760 \text{ hr/yr}) / (2,000 \text{ lb/ton}) / (453.59 \text{ g/lb}) = 9.86 \text{ ton/yr}$ (CO<sub>2</sub> emissions x 1) + (CH<sub>4</sub> emissions x 25) + (N<sub>2</sub>O emissions x 298)  $CO_2e$  Emissions (ton/yr) =  $CO_2$ e Emissions (ton/yr) =  $((5995.13 \text{ ton/yr} \times 1) + (0.11 \text{ ton/yr} \times 28) + (0.01 \text{ ton/yr} \times 265)) = 6001.29 \text{ ton/yr}$ (CO<sub>2</sub> emissions) + (CH<sub>4</sub> emissions) + (N<sub>2</sub>O emissions) GHG Emissions (ton/yr) = GHG Emissions (ton/yr) = (5995.13 ton/yr) + (0.11 ton/yr) + (0.01 ton/yr) = 5995.26 ton/yr

# Silurian Compressor Station Engine 6 HAP Emissions

| Engines | Horsepower | Operating | Heat Input | Heat Input | Fuel Input |
|---------|------------|-----------|------------|------------|------------|
|         | (hp)       | Hours     | (MMBtu/yr) | (MMBtu/yr) | (MMScf/yr) |
| 6       | 1,380      | 8,760     | 16         | 137,296    | 81.739     |

| НАР                       | Emission<br>Factor<br>(lb/MMBtu) <sup>1</sup> | Emission<br>Factor (g/bhp-<br>hr) | Control<br>Efficiency<br>(%) | Total<br>Emissions<br>(lb/hr) | Total Emissions<br>(tpy) |
|---------------------------|-----------------------------------------------|-----------------------------------|------------------------------|-------------------------------|--------------------------|
| 1,3-Butadiene             | 6.63E-04                                      |                                   | 0                            | 0.0104                        | 0.0455                   |
| Acetaldehyde              | 2.79E-03                                      |                                   | 0                            | 0.0437                        | 0.1915                   |
| Acrolein                  | 2.63E-03                                      |                                   | 0                            | 0.0412                        | 0.1805                   |
| Benzene                   | 1.58E-03                                      |                                   | 0                            | 0.0248                        | 0.1085                   |
| Formaldehyde <sup>2</sup> |                                               | 0.04                              | 0                            | 0.1217                        | 0.5330                   |
| Methanol                  | 3.06E-03                                      |                                   | 0                            | 0.0480                        | 0.2101                   |
| Toluene                   | 5.58E-04                                      |                                   | 0                            | 0.0087                        | 0.0383                   |
| Total HAP Emissions       |                                               |                                   |                              |                               | 1.31                     |

#### Notes:

<sup>1.</sup> Emission factors from AP-42 Table 3.2-3, Uncontrolled Emission Factors for 4-Stroke Rich-Burn Engines (July 2000).

<sup>2.</sup> Formaldehyde emission factor is from manufacturer's information.

# Silurian Compressor Station Engine 7 Emissions

### **Equipment Data:**

| <u> Equipinont Bata:</u> |                   |
|--------------------------|-------------------|
| Emission Unit (EU):      | 7                 |
| Emission Unit Name:      | Waukesha L5794GSI |
| Engine Type:             | 4SRB              |

### **Emissions Data:**

Fuel Usage = 81.74 MMscf/yr (Calculated value based on max fuel combustion rate)

Horsepower = 1,380 bhp
Speed = 1,200 rpm
Hours of Operation = 8,760 hr/yr
Max. Fuel Combustion Rate (HHV) = 8,479 Btu/bhp-hr
Fuel Heating Value (HHV) = 1,254 MMBtu/MMscf
Max. Heat Rate (HHV) = 11.70 MMBtu/hr

| Pollutant                     | Emission Factor | Units    | Emission Factor<br>Reference | Hourly Emissions<br>(lb/hr) | Annual Emissions<br>(tpy) |  |
|-------------------------------|-----------------|----------|------------------------------|-----------------------------|---------------------------|--|
| PM <sub>10</sub> <sup>2</sup> | 0.01941         | lb/MMBtu | AP-42                        | 0.23                        | 0.99                      |  |
| NOx <sup>1</sup>              | 1.0             | g/bhp-hr | Vendor Data                  | 3.04                        | 13.33                     |  |
| CO <sup>1</sup>               | 1.0             | g/bhp-hr | Vendor Data                  | 3.04                        | 13.33                     |  |
| SO <sub>2</sub>               | 5.88E-04        | lb/MMBtu | AP-42                        | 0.01                        | 0.03                      |  |
| VOC <sup>1,3</sup>            | 0.70            | g/bhp-hr | Vendor Data                  | 2.25                        | 9.86                      |  |
| Total HAPs                    |                 |          | AP-42                        | 0.30                        | 1.31                      |  |
| Formaldehyde                  | 0.04            | g/bhp-hr | Vendor Data                  | 0.12                        | 0.53                      |  |
| Pollutant                     | Emission Factor | Units    | nission Factor Referer       | Hourly Emissions            | Annual Emissions          |  |
| CO <sub>2</sub> e             |                 |          |                              | 1,370.2                     | 6,001.3                   |  |
| GHG                           |                 |          |                              | 1,369                       | 5,995                     |  |
| CO <sub>2</sub>               | 117             | lb/MMBtu | AP-42                        | 1,369                       | 5,995                     |  |
| CH₄                           | 0.0022          | lb/MMBtu | AP-42                        | 0.026                       | 0.11                      |  |
| N <sub>2</sub> O              | 0.0002          | lb/MMBtu | AP-42                        | 0.003                       | 0.0113                    |  |

### **Notes**

- 2. Per AP-42, all particulate is considered to be less than 1.0 micrometer in diameter.
- 3. VOC emissions include formaldehyde.

# **Sample Calculation:**

| $PM_{10}$ Emissions (ton/yr) =         | (Emission Factor, lb/MMBtu) x (Max Heat Input Rate (HHV), MMBtu/hr) x (Hours of Operation, hr/yr) / (2,000 lb/ton)                                     |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| $PM_{10}$ Emissions (ton/yr) =         | $(0.01941 \text{ lb/MMBtu}) \times (11.7 \text{ MMBtu/hr}) \times (8,760 \text{ hr/yr}) / (2,000 \text{ lb/ton}) = 0.99 \text{ ton/yr}$                |
| VOC Emissions (ton/yr) =               | (Emission Factor, g/bhp-hr) x (Horsepower, bhp) x (Hours of Operation, hr/yr) / (2,000 lb/ton) / (453.59 grams/1 lb)                                   |
| VOC Emissions (ton/yr) =               | $(0.7 \text{ g/bhp-hr}) \times (1380 \text{ bhp}) \times (8,760 \text{ hr/yr}) / (2,000 \text{ lb/ton}) / (453.59 \text{ g/lb}) = 9.86 \text{ ton/yr}$ |
| CO <sub>2</sub> e Emissions (ton/yr) = | (CO <sub>2</sub> emissions x 1) + (CH <sub>4</sub> emissions x 25) + (N <sub>2</sub> O emissions x 298)                                                |
| CO₂e Emissions (ton/yr) =              | $((5995.13 \text{ ton/yr} \times 1) + (0.11 \text{ ton/yr} \times 28) + (0.01 \text{ ton/yr} \times 265)) = 6001.29 \text{ ton/yr}$                    |
| GHG Emissions (ton/yr) =               | (CO <sub>2</sub> emissions) + (CH <sub>4</sub> emissions) + (N <sub>2</sub> O emissions)                                                               |
| GHG Emissions (ton/yr) =               | (5995.13  ton/yr) + (0.11  ton/yr) + (0.01  ton/yr) = 5995.26  ton/yr                                                                                  |

<sup>1.</sup>  $NO_{x, CO_1}$  and VOC emissions based on data from the catalyst vendor indicating a post-catalyst emission rate which meets 40 CFR 60 Subpart JJJJ standards. Formaldehyde emissions are based on manufacturer data.  $PM/PM_{10}$  and  $SO_2$  emissions based on AP-42 Table 3.2-3.

# Silurian Compressor Station Engine 7 HAP Emissions

| Engine | Horsepower | Operating | Heat Input | Heat Input | Fuel Input |
|--------|------------|-----------|------------|------------|------------|
|        | (hp)       | Hours     | (MMBtu/yr) | (MMBtu/yr) | (MMScf/yr) |
| 7      | 1,380      | 8,760     | 16         | 137,296    | 81.739     |

| НАР                       | Emission<br>Factor<br>(lb/MMBtu) <sup>1</sup> | Emission<br>Factor (g/bhp-<br>hr) | Control<br>Efficiency<br>(%) | Total<br>Emissions<br>(lb/hr) | Total Emissions<br>(tpy) |
|---------------------------|-----------------------------------------------|-----------------------------------|------------------------------|-------------------------------|--------------------------|
| 1,3-Butadiene             | 6.63E-04                                      |                                   | 0                            | 0.0104                        | 0.0455                   |
| Acetaldehyde              | 2.79E-03                                      |                                   | 0                            | 0.0437                        | 0.1915                   |
| Acrolein                  | 2.63E-03                                      |                                   | 0                            | 0.0412                        | 0.1805                   |
| Benzene                   | 1.58E-03                                      |                                   | 0                            | 0.0248                        | 0.1085                   |
| Formaldehyde <sup>2</sup> |                                               | 0.04                              | 0                            | 0.1217                        | 0.5330                   |
| Methanol                  | 3.06E-03                                      |                                   | 0                            | 0.0480                        | 0.2101                   |
| Toluene                   | 5.58E-04                                      |                                   | 0                            | 0.0087                        | 0.0383                   |
| Total HAP Emissions       |                                               |                                   |                              |                               | 1.31                     |

#### Notes:

<sup>1.</sup> Emission factors from AP-42 Table 3.2-3, Uncontrolled Emission Factors for 4-Stroke Rich-Burn Engines (July 2000).

<sup>2.</sup> Formaldehyde emission factor is from manufacturer's information.

#### **Silurian Compressor Station**

### **Produced Water Truck Loading**

| Parameter EU 8                                 |                  |  |  |  |  |
|------------------------------------------------|------------------|--|--|--|--|
| Product                                        | Produced Water   |  |  |  |  |
| Saturation Factor, S <sup>1</sup>              | 0.6              |  |  |  |  |
| Vapor MW <sup>2</sup>                          | 18.05 lb/lb-mol  |  |  |  |  |
| Maximum Vapor Pressure                         | 13.72 psia       |  |  |  |  |
| Average Vapor Pressure                         | 12.37 psia       |  |  |  |  |
| Max Temperature                                | 85.0 °F          |  |  |  |  |
| Average Temperature                            | 75.3 °F          |  |  |  |  |
| Short-Term Loading Loss Factor <sup>4, 5</sup> | 3.40 lb/1000 gal |  |  |  |  |
| Annual Loading Loss Factor <sup>4, 5</sup>     | 3.12 lb/1000 gal |  |  |  |  |
| Hourly Throughput                              | 1,000 gal/hr     |  |  |  |  |
| Annual Throughput                              | 16,632 gal/yr    |  |  |  |  |
| Water Content Reduction (%) <sup>7</sup>       | 99%              |  |  |  |  |

| Fugitive Losses             |            |
|-----------------------------|------------|
| Hourly Losses               | 3.40 lb/hr |
| Annual Losses               | 0.03 tpy   |
| Hourly Losses (minus water) | 0.03 lb/hr |
| Annual Losses (minus water) | 0.0003 tpy |

#### Notes:

1. Saturation factor is from EPA's AP-42, 5th Edition, Section 5.2, Table 5.2-1; for submerged loading; dedicated normal service.

2. Molecular weight of vapors was taken from ProMax model.

3. Vapor pressures were from the ProMax model.

4. Losses are based on the loading losses equation from EPA's AP-42, Section 2, 5th Edition, June, 2008, Equation 1:

where:

L = Loading Losses, lb/1000 gallons

S = Saturation Factor, see Table 5.2-1 in AP-42, Section 5.2.

P = True vapor pressure, psia

M = Molecular weight of vapors, lb/lb-mol

T = Temperature of bulk liquid loaded, R (F + 460)

5. Short-term loading loss factor is calculated based on the worst-case (highest) temperature and vapor pressure.

6. Annual loading loss factor is calculated based on the average temperature and vapor pressure.

7. The volume of liquids loaded are estimated to be 99% water; therefore, overall fugitive losses from loading are assumed to be 1% of the total emissions.

# Silurian Compressor Station Flare Flash Tank Vent

### **Equipment Data:**

| Emission Unit (EU):        | 9     |
|----------------------------|-------|
| <b>Emission Unit Name:</b> | Flare |

Pilot Gas = 90.00 scf/hr = Volume of Vent Gas = 136.656 MMscf/yr 15,690 scf/hr

Gas Heating Value = 1,326 Btu/scf
Total Vent Rate = 137,444,400 scf/yr = 15,690 scf/hr

 $\begin{array}{lll} \mbox{Hours of Operation} = & 8,760 \ \mbox{hr/yr} \\ \mbox{H}_2\mbox{S Percent:} & 0.0004 \ \mbox{mole } \% \\ \mbox{Heat Input} = & 20.8 \ \mbox{MMBtu/hr} \\ \mbox{182,298.4} & \mbox{MMBtu/yr} \end{array}$ 

0.7884 MMscf/yr

Based on the engineering estimate plus 20%.

LHV of vent gas analysis 137.4444 MMscf/Yr

| Component         |        | Flow   |         |          |          |          |          |        |            | Efficiency | Emis    | sions   |
|-------------------|--------|--------|---------|----------|----------|----------|----------|--------|------------|------------|---------|---------|
|                   | MW     | Wt %   | Mol%    | lb/hr    | tpy      | scf/hr   | MMscf/yr | mol/hr | mol/yr     | %          | (lb/hr) | (tpy)   |
| Methane           | 16.04  | 32.66% | 52.98%  | 351.34   | 1,538.89 | 8,312.22 | 72.82    | 21.904 | 191,881.06 | 99%        | 3.5134  | 15.3889 |
| Ethane            | 33.07  | 39.68% | 31.22%  | 426.82   | 1,869.46 | 4,897.76 | 42.90    | 12.91  | 113,060.89 | 99%        | 4.2682  | 18.6946 |
| Propane           | 44.10  | 19.23% | 11.35%  | 206.91   | 906.29   | 1,780.50 | 15.60    | 4.69   | 41,101.38  | 99%        | 2.0691  | 9.0629  |
| Iso-butane        | 58.12  | 1.30%  | 0.58%   | 13.99    | 61.27    | 91.33    | 0.80     | 0.24   | 2,108.39   | 98%        | 0.2798  | 1.2254  |
| N-butane          | 58.12  | 3.11%  | 1.39%   | 33.51    | 146.76   | 218.77   | 1.92     | 0.58   | 5,050.20   | 98%        | 0.6701  | 2.9352  |
| Iso-pentane       | 72.15  | 0.26%  | 0.09%   | 2.75     | 12.04    | 14.46    | 0.13     | 0.04   | 333.86     | 98%        | 0.0550  | 0.2409  |
| N-pentane         | 72.15  | 0.27%  | 0.10%   | 2.93     | 12.85    | 15.43    | 0.14     | 0.04   | 356.27     | 98%        | 0.0587  | 0.2570  |
| Dimethylpropane   | 72.15  | 0.00%  | 0.00%   | 0.03     | 0.15     | 0.18     | 0.00     | 0.00   | 4.24       | 98%        | 0.0007  | 0.0031  |
| n-Hexane          | 86.18  | 0.35%  | 0.11%   | 3.76     | 16.49    | 16.57    | 0.15     | 0.04   | 382.59     | 98%        | 0.0753  | 0.3297  |
| Hexanes           | 86.18  | 0.03%  | 0.01%   | 0.34     | 1.50     | 1.50     | 0.01     | 0.00   | 34.73      | 98%        | 0.0068  | 0.0299  |
| Heptane (C7+)     | 100.2  | 0.00%  | 0.00%   | 0.00     | 0.02     | 0.01     | 0.00     | 0.00   | 0.31       | 98%        | 0.0001  | 0.0003  |
| Octane (C8+)      | 114.23 | 0.00%  | 0.00%   | 0.00     | 0.00     | 0.00     | 0.00     | 0.00   | 0.08       | 98%        | 0.0000  | 0.0001  |
| Benzene           | 78.11  | 0.10%  | 0.03%   | 1.03     | 4.51     | 5.00     | 0.04     | 0.01   | 115.50     | 98%        | 0.0206  | 0.0902  |
| Toluene           | 92.14  | 0.08%  | 0.02%   | 0.91     | 3.99     | 3.75     | 0.03     | 0.01   | 86.62      | 98%        | 0.0182  | 0.0798  |
| Ethylbenzene      | 106.17 | 0.00%  | 0.00%   | 0.04     | 0.19     | 0.16     | 0.00     | 0.00   | 3.61       | 98%        | 0.0009  | 0.0038  |
| Xylenes (M, P, O) | 106.17 | 0.03%  | 0.01%   | 0.35     | 1.53     | 1.25     | 0.01     | 0.00   | 28.87      | 98%        | 0.0070  | 0.0307  |
| Methanol          | 32.042 | 0.01%  | 0.00%   | 0.06     | 0.28     | 0.75     | 0.01     | 0.00   | 17.25      | 98%        | 0.0013  | 0.0055  |
| CO <sub>2</sub>   | 44.01  | 1.68%  | 1.00%   | 18.12    | 79.39    | 156.28   | 1.37     | 0.41   | 3,607.67   | 0%         | 18.1248 | 79.3868 |
| $N_2$             | 28.01  | 1.19%  | 1.11%   | 12.84    | 56.25    | 173.99   | 1.52     | 0.46   | 4,016.45   | 0%         | 12.8425 | 56.2504 |
| H <sub>2</sub> S  | 34.08  | 0.00%  | 0.00%   | 0.01     | 0.02     | 0.06     | 0.00     | 0.0002 | 1.45       | 98%        | 0.0001  | 0.0005  |
| SO <sub>2</sub>   | 64.00  | -      | -       | -        | -        | -        | -        | -      | -          | 0%         | 0.0106  | 0.0464  |
| TOTAL             |        | 100.0% | 100.00% | 1,075.77 | 4,711.88 | 15,690   | 137.44   | 41.35  | 362,191.42 | VOC Total  | 3.2636  | 14.2945 |
| _                 |        |        |         |          |          |          |          |        |            | HAP Total  | 0.1232  | 0.5398  |

|                     | Emission |          | Emissions |          |  |
|---------------------|----------|----------|-----------|----------|--|
| Pollutant           | Factor   | Units    | (lb/hr)   | (ton/yr) |  |
| PM Total Filterable | 7.6      | lb/MMscf | 0.0007    | 0.0030   |  |
| PM Filterable       | 1.9      | lb/MMscf | 0.0002    | 0.0007   |  |
| PM Condensable      | 5.7      | lb/MMscf | 0.0005    | 0.0022   |  |
| NOx                 | 0.138    | lb/MMBtu | 2.8718    | 12.5786  |  |
| co                  | 0.2755   | lb/MMBtu | 5.7332    | 25.1116  |  |

1. PM emission factors are from AP-42 Table 1.4-2 (07/98), per AP-42, all particulate is considered to be less than 1.0 micrometer in diameter.

2. NOx and CO emission factors are from TCEQ Technical Guidance for Flares and Vapor Combustors for high BTU streams (>1,000 Btu/scf)

3. Gas MoI% composition based on engineering estimate.

# Sample Calculation:

PM Total Emissions (lb/hr) = (Emission Factor, lb/MMscf) x (Processed Gas Volume, MMscf/yr) / (Hours of Operation, hr/yr)

PM Total Emissions (lb/hr) =  $(7.6 \text{ lb/MMscf}) \times (136.656 \text{ MMscf/yr}) / (8760 \text{ hr/yr}) = 0 \text{ lb/hr}$ 

NOx Emissions (lb/hr) = (Emission Factor, lb/MMscf) x (Processed Gas, MMscf/yr) x Gas Heating Value (MMBtu/MMscf) / (Hours of Operation, hr/yr)

NOx Emissions (lb/hr) =  $(0.138 \text{ lb/MMBtu}) \times (136.656 \text{ MMscf/yr}) \times (1326 \text{ MMBtu/MMscf} / (8760 \text{ hr/yr}) = 2.87 \text{ lb/hr}$ 

SO2 Emissions (lb/hr) = (Processed Gas, scf/hr) x (SO2 Molecular Weight, lb/lb-mole gas) x

[1/(Molar volume of Ideal Gas, 379.48 scf/lb-mole @ 60 deg F)] x (mole %H2S/100) (15,690 scf/hr) x (64.0000 lb/lb-mole SO2) x [1/(379.48 scf/lb-mole @ 68 deg F)] x (0.0004%/100)

SO2 Emissions (lb/hr) =  $(15,690 \text{ scf/hr}) \times (64.000 \text{ op.} 15,690 \text{ op.} 15,690 \text{ scf/hr}) \times (64.000 \text{ op.} 15,690 \text{ op.} 15,6$ 

| Pollutant        | Emission Factor | Units    | Emission Factor | Emissions |        |  |
|------------------|-----------------|----------|-----------------|-----------|--------|--|
|                  |                 |          | Reference       | (lb/hr)   | (tpy)  |  |
| CO₂e             |                 |          |                 | 2,437     | 10,673 |  |
| GHG              |                 |          |                 | 2,434     | 10,663 |  |
| CO <sub>2</sub>  | 117             | lb/MMBtu | AP-42           | 2,434     | 10,662 |  |
| CH₄              | 0.0022          | lb/MMBtu | AP-42           | 0.0459    | 0.2009 |  |
| N <sub>2</sub> O | 0.0002          | lb/MMBtu | AP-42           | 0.0046    | 0.0201 |  |

Silurian CS

# Silurian Compressor Station Miscellaneous Storage Tanks

| Tank Name                                                                       |                      | Methanol Tank | Lube Oil Tank No.<br>1 | Lube Oil Tank No.<br>2 | Lube Oil Tank No.<br>3 | Lube Oil Tank No.<br>4 | Antifreeze Tank<br>No. 1 | Antifreeze Tank<br>No. 2 | Antifreeze Tank<br>No. 3 | Antifreeze Tank<br>No. 4 |
|---------------------------------------------------------------------------------|----------------------|---------------|------------------------|------------------------|------------------------|------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| Product Name                                                                    |                      | Methanol Tank | Lube Oil               | Lube Oil               | Lube Oil               | Lube Oil               | Antifreeze               | Antifreeze               | Antifreeze               | Antifreeze               |
| General Tank Information                                                        | AP-42 Reference      |               |                        |                        |                        |                        |                          |                          |                          |                          |
| Tank Type - Vertical or Horizontal                                              |                      | Horizontal    | Horizontal             | Horizontal             | Horizontal             | Horizontal             | Horizontal               | Horizontal               | Horizontal               | Horizontal               |
| Tank Type - Uninsulated, Shell Insulated, or Shell & Roof Insulated             |                      | Uninsulated   | Uninsulated            | Uninsulated            | Uninsulated            | Uninsulated            | Uninsulated              | Uninsulated              | Uninsulated              | Uninsulated              |
| Height, H <sub>S</sub> or Length, L (ft)                                        |                      | 7.00          | 5.00                   | 5.00                   | 5.00                   | 5.00                   | 5.00                     | 5.00                     | 5.00                     | 5.00                     |
| Diameter, D (ft)                                                                |                      | 7.00          | 3.50                   | 3.50                   | 3.50                   | 3.50                   | 3.50                     | 3.50                     | 3.50                     | 3.50                     |
| Length of Side 1, L1 (ft) (Only Rectangular)                                    |                      |               |                        |                        |                        |                        |                          |                          |                          |                          |
| Length of Side 2, L2 (ft) (Only Rectangular)                                    |                      |               |                        |                        |                        |                        |                          |                          |                          |                          |
| Length of Square Sides, L (Only Square)                                         |                      |               |                        |                        |                        |                        |                          |                          |                          |                          |
| Tank Capacity (bbl)                                                             |                      | 47.62         | 11.90                  | 11.90                  | 11.90                  | 11.90                  | 11.90                    | 11.90                    | 11.90                    | 11.90                    |
| Effective Height, H <sub>E</sub> (ft)                                           | Eq. 7.1-15           | 5.50          | 2.75                   | 2.75                   | 2.75                   | 2.75                   | 2.75                     | 2.75                     | 2.75                     | 2.75                     |
| Effective Diameter, D <sub>E</sub> (ft)                                         | Eq. 7.1-14, 1-16, 1- | 7.90          | 4.72                   | 4.72                   | 4.72                   | 4.72                   | 4.72                     | 4.72                     | 4.72                     | 4.72                     |
| Maximum Liquid Temperature, T <sub>BX</sub> (°R)                                |                      |               |                        |                        |                        |                        |                          |                          |                          |                          |
| (Only Shell & Roof Insulated)                                                   |                      |               |                        |                        |                        |                        |                          |                          |                          |                          |
| Minimum Liquid Temperature, T <sub>BN</sub> (°R)                                |                      |               |                        |                        |                        |                        |                          |                          |                          |                          |
| (Only Shell & Roof Insulated)                                                   |                      |               |                        |                        |                        |                        |                          |                          |                          |                          |
| Liquid Height, H <sub>∟</sub> (ft)                                              |                      | 2.75          | 1.37                   | 1.37                   | 1.37                   | 1.37                   | 1.37                     | 1.37                     | 1.37                     | 1.37                     |
| Maximum Liquid Height, H <sub>LX</sub> (ft)                                     | Eq. 7.1-38 footnote  | 5.50          | 2.75                   | 2.75                   | 2.75                   | 2.75                   | 2.75                     | 2.75                     | 2.75                     | 2.75                     |
| Dome Roof Radius, R <sub>R</sub> (ft) (D default) (Only Vertical)               |                      |               |                        |                        |                        |                        |                          |                          |                          |                          |
| Cone Roof Slope, S <sub>R</sub> (ft/ft) (0.0625 default) (Only Vertical)        |                      |               |                        |                        |                        |                        |                          |                          |                          |                          |
| Tank Shell Radius, R <sub>S</sub> (ft)                                          |                      | 3.50          | N. T.                  | A.715                  | <i>195</i>             | N. V.S                 | N715                     |                          | N 755                    | <b>N</b>                 |
| Cone Roof Height, H <sub>R</sub> (ft)                                           | Eq. 7.1-20           | 0.22          | 0.11                   | 0.11                   | 0.11                   | 0.11                   | 0.11                     | 0.11                     | 0.11                     | 0.11                     |
| Cone Roof Outage, H <sub>RO</sub> (ft)                                          | Eq. 7.1-19           | 0.07          | 0.04                   | 0.04                   | 0.04                   | 0.04                   | 0.04                     | 0.04                     | 0.04                     | 0.04                     |
| Dome Roof Height, H <sub>R</sub> (ft)                                           | Eq. 7.1-21           |               |                        |                        |                        |                        |                          |                          |                          |                          |
| Dome Roof Outage, H <sub>RO</sub> (ft)                                          | Eq. 7.1-21           |               |                        |                        |                        |                        |                          |                          |                          |                          |
| Shell Color (White default)                                                     |                      | White         | White                  | White                  | White                  | White                  | White                    | White                    | White                    | White                    |
| Shell Condition (Average default)                                               |                      | Average       | Average                | Average                | Average                | Average                | Average                  | Average                  | Average                  | Average                  |
| Average Tank Shell Surface Solar Absorptance, α <sub>S</sub>                    | Tbl. 7.1-6           | 0.25          | 0.25                   | 0.25                   | 0.25                   | 0.25                   | 0.25                     | 0.25                     | 0.25                     | 0.25                     |
| Roof Color (White default)                                                      |                      | White         | White                  | White                  | White                  | White                  | White                    | White                    | White                    | White                    |
| Roof Condition (Average default)                                                |                      | Average       | Average                | Average                | Average                | Average                | Average                  | Average                  | Average                  | Average                  |
| Average Tank Roof Surface Solar Absorptance, $\alpha_{R}$                       | Tbl. 7.1-6           | 0.25          | 0.25                   | 0.25                   | 0.25                   | 0.25                   | 0.25                     | 0.25                     | 0.25                     | 0.25                     |
| Vent Pressure Setting, P <sub>BP</sub> (psig) (0.03 psig default)               |                      | 0.03          | 0.03                   | 0.03                   | 0.03                   | 0.03                   | 0.03                     | 0.03                     | 0.03                     | 0.03                     |
| Vent Vacuum Setting, P <sub>BV</sub> (psig) (-0.03 psig default)                |                      | -0.03         | -0.03                  | -0.03                  | -0.03                  | -0.03                  | -0.03                    | -0.03                    | -0.03                    | -0.03                    |
| Breather Vent Pressure Range, ΔP <sub>B</sub> (psi)                             | Eq. 7.1-10           | 0.06          | 0.06                   | 0.06                   | 0.06                   | 0.06                   | 0.06                     | 0.06                     | 0.06                     | 0.06                     |
| Normal Operating Conditions Vapor Space Pressure, P <sub>I</sub> (psig) (0 psig | default)             | 0             | 0                      | 0                      | 0                      | 0                      | 0                        | 0                        | 0                        | 0                        |
| Vent Setting Correction Factor, K <sub>B</sub> (dimensionless)                  | Eq. 7.1-42, 1-43     | 1.00          | 1.00                   | 1.00                   | 1.00                   | 1.00                   | 1.00                     | 1.00                     | 1.00                     | 1.00                     |
| Vapor Space Outage, H <sub>VO</sub> (ft)                                        | Eq. 7.1-18           | 2.75          | 1.37                   | 1.37                   | 1.37                   | 1.37                   | 1.37                     | 1.37                     | 1.37                     | 1.37                     |
| Vapor Space Volume, V <sub>V</sub> (ft <sup>3</sup> )                           | Eq. 7.1-3            | 135           | 24                     | 24                     | 24                     | 24                     | 24                       | 24                       | 24                       | 24                       |
| Throughput                                                                      | AP-42 Reference      |               |                        |                        |                        |                        |                          |                          |                          |                          |
| Throughput (gal/yr)                                                             |                      | 12,000.00     | 6,000.00               | 6,000.00               | 6,000.00               | 6,000.00               | 300.00                   | 300.00                   | 300.00                   | 300.00                   |
| Maximum Fill Rate (gal/hr)                                                      |                      | 2,000.00      | 500.00                 | 500.00                 | 500.00                 | 500.00                 | 500.00                   | 500.00                   | 500.00                   | 500.00                   |
| Vapor Balanced or Flashing Occurs?                                              |                      | No            | No                     | No No                  | No                     | No                     | No                       | No                       | No                       | No                       |
| Annual Liquid Level Increases, ΣΗ <sub>ΟΙ</sub> (ft/yr)                         | Eq. 7.1-39           | 32.73         | 45.83                  | 45.83                  | 45.83                  | 45.83                  | 2.29                     | 2.29                     | 2.29                     | 2.29                     |
| Turnovers, N (/year)                                                            | Eq. 7.1-38           | 5.95          | 16.67                  | 16.67                  | 16.67                  | 16.67                  | 0.83                     | 0.83                     | 0.83                     | 0.83                     |
| Turnover Factor, K <sub>N</sub>                                                 | Eq. 7.1-37 footnote  | 1.000         | 1.000                  | 1.000                  | 1.000                  | 1.000                  | 1.000                    | 1.000                    | 1.000                    | 1.000                    |
| / IN                                                                            | 1-1 3. 130111010     |               | 802                    | 802                    |                        | 802                    |                          | 1                        | 1.555                    | 40                       |

| Tank Name                                                           |                                 | Methanol Tank            | 1                        | 2                        | Lube Oil Tank No.<br>3   | 4                        | Antifreeze Tank<br>No. 1 | Antifreeze Tank<br>No. 2 | Antifreeze Tank<br>No. 3 | Antifreeze Tank<br>No. 4 |
|---------------------------------------------------------------------|---------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| Product Name                                                        |                                 | Methanol Tank            | Lube Oil                 | Lube Oil                 | Lube Oil                 | Lube Oil                 | Antifreeze               | Antifreeze               | Antifreeze               | Antifreeze               |
| Meteorological Data                                                 | AP-42 Reference                 |                          |                          |                          |                          |                          |                          |                          |                          |                          |
| Origin of Meteorological Data                                       |                                 | Climate Database         |
| Annual Average Solar Insolation Factor, I (Btu/ft²-d)               | Tbl.7.1-7                       | 1,193                    | 1,193                    | 1,193                    | 1,193                    | 1,193                    | 1,193                    | 1,193                    | 1,193                    | 1,193                    |
| Annual Average Max Ambient Temp, T <sub>AX</sub> (°F)               | Tbl.7.1-7                       | 82.9                     | 82.9                     | 82.9                     | 82.9                     | 82.9                     | 82.9                     | 82.9                     | 82.9                     | 82.9                     |
| Annual Average Min Ambient Temp, T <sub>AN</sub> (°F)               | Tbl.7.1-7                       | 56.6                     | 56.6                     | 56.6                     | 56.6                     | 56.6                     | 56.6                     | 56.6                     | 56.6                     | 56.6                     |
| Annual Average Ambient Pressure, P <sub>A</sub> (psia)              | Tbl.7.1-7                       | 13.7                     | 13.7                     | 13.7                     | 13.7                     | 13.7                     | 13.7                     | 13.7                     | 13.7                     | 13.7                     |
| User-Entered Annual Average Solar Insolation Factor, I (Btu/ft²-d)  |                                 |                          |                          |                          |                          |                          |                          |                          |                          |                          |
| User-Entered Annual Average Max Ambient Temp, T <sub>AX</sub> (°F)  |                                 |                          |                          |                          |                          |                          |                          |                          |                          |                          |
| User-Entered Annual Average Min Ambient Temp, T <sub>AN</sub> (°F)  |                                 |                          |                          |                          |                          |                          |                          |                          |                          |                          |
| User-Entered Annual Average Ambient Pressure, P <sub>A</sub> (psia) |                                 |                          |                          |                          |                          |                          |                          |                          |                          |                          |
| Annual Average Daily Ambient Temp Change, ΔT <sub>A</sub> (°F/°R)   | Eq. 7.1-11                      | 26.30                    | 26.30                    | 26.30                    | 26.30                    | 26.30                    | 26.30                    | 26.30                    | 26.30                    | 26.30                    |
| Annual Average Daily Avg Ambient Temp, T <sub>AA</sub> (°R)         | Eq. 7.1-32                      | 529.42                   | 529.42                   | 529.42                   | 529.42                   | 529.42                   | 529.42                   | 529.42                   | 529.42                   | 529.42                   |
| Annual Average Liquid Bulk Temp, T <sub>B</sub> (°R)                | Eq. 7.1-33                      | 530.31                   | 530.31                   | 530.31                   | 530.31                   | 530.31                   | 530.31                   | 530.31                   | 530.31                   | 530.31                   |
| Annual Average Daily Temp Range, ΔT <sub>V</sub> (°F/°R)            | Eq. 7.1-6 or 1-8 <sup>a</sup>   | 25.39                    | 25.04                    | 25.04                    | 25.04                    | 25.04                    | 25.04                    | 25.04                    | 25.04                    | 25.04                    |
| Maximum Liquid Surface Temperature                                  |                                 | TCEQ Default (≥<br>95°F) |
| Annual Average Vapor Temp, T <sub>v</sub> (°R)                      | Eq. 7.1-34 or 1-36 <sup>b</sup> | 532.24                   | 532.32                   | 532.32                   | 532.32                   | 532.32                   | 532.32                   | 532.32                   | 532.32                   | 532.32                   |
| Annual Average Daily Avg Liquid Surface Temp, T <sub>LA</sub> (°R)  | Eq. 7.1-29 or 1-31°             | 531.28                   | 531.32                   | 531.32                   | 531.32                   | 531.32                   | 531.32                   | 531.32                   | 531.32                   | 531.32                   |
| Annual Average Daily Max Liquid Surface Temp, T <sub>LX</sub> (°R)  | Fig. 7.1-17                     | 537.63                   | 537.58                   | 537.58                   | 537.58                   | 537.58                   | 537.58                   | 537.58                   | 537.58                   | 537.58                   |
| Annual Average Daily Min Liquid Surface Temp, T <sub>LN</sub> (°R)  | Fig. 7.1-17                     | 524.93                   | 525.06                   | 525.06                   | 525.06                   | 525.06                   | 525.06                   | 525.06                   | 525.06                   | 525.06                   |

<sup>a</sup>Uninsulated: Eq. 7.1-6, Shell Insulated: Eq. 7.1-8, Shell/Roof Insulated=T<sub>BX</sub>-T<sub>BN</sub>

bUninsulated: Eq. 7.1-34, Shell Insulated: Eq. 7.1-36, Shell/Roof Insulated=T<sub>B</sub>

<sup>c</sup>Uninsulated: Eq. 7.1-29, Shell Insulated: Eq. 7.1-31, Shell/Roof Insulated=T<sub>B</sub>

| Product Data                                                            | AP-42 Reference                |                  |                  |                  |                  |                  |                  |                  |                  |                  |
|-------------------------------------------------------------------------|--------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| Product Stored                                                          |                                | Methanol         | Lube Oil         | Lube Oil         | Lube Oil         | Lube Oil         | Antifreeze       | Antifreeze       | Antifreeze       | Antifreeze       |
| Product Type                                                            |                                | Other            | Refined          | Refined          | Refined          | Refined          | Other            | Other            | Other            | Other            |
| Vapor Pressure Methodology                                              |                                | Antoine Equation |
| Vapor Molecular Wt., M <sub>V</sub> (lb/lb-mole)                        |                                | 32.04            | 130              | 130              | 130              | 130              | 62.08            | 62.08            | 62.08            | 62.08            |
| Reid Vapor Pressure                                                     |                                | 0                | 0.022            | 0.022            | 0.022            | 0.022            | 0                | 0                | 0                | 0                |
| Stock ASTM-ID86 Distillation Slope at 10 vol% Evaporation, S (°F/vol %) |                                | 0                | 0                | 0                | 0                | 0                | 0                | 0                | 0                | 0                |
| Chemical Used for Antoine Constants <sup>f</sup>                        |                                | Methanol         | Diesel           | Diesel           | Diesel           | Diesel           | Ethylene Glycol  | Ethylene Glycol  | Ethylene Glycol  | Ethylene Glycol  |
| Antoine Constant A                                                      |                                | 8.0724           | 7.12             | 7.12             | 7.12             | 7.12             | 8.7945           | 8.7945           | 8.7945           | 8.7945           |
| Antoine Constant B (°C)                                                 |                                | 1574.99          | 2209             | 2209             | 2209             | 2209             | 2615.4           | 2615.4           | 2615.4           | 2615.4           |
| Antoine Constant C (°C)                                                 |                                | 238.87           | 273.15           | 273.15           | 273.15           | 273.15           | 244.91           | 244.91           | 244.91           | 244.91           |
| Vapor Pressure at T <sub>max</sub> , P <sub>Vmax</sub> (psia)           |                                | 4.05             | 0.02             | 0.02             | 0.02             | 0.02             | 0.01             | 0.01             | 0.01             | 0.01             |
| Vapor Pressure at T <sub>LA</sub> , P <sub>VA</sub> (psia)              | Fig 7.1-13b, 14b,              | 2.10             | 0.01             | 0.01             | 0.01             | 0.01             | 1.92E-03         | 1.92E-03         | 1.92E-03         | 1.92E-03         |
| Vapor Pressure at T <sub>LX</sub> , P <sub>VX</sub> (psia)              | Eq. 7.1-28                     | 2.52             | 0.01             | 0.01             | 0.01             | 0.01             | 2.57E-03         | 2.57E-03         | 2.57E-03         | 2.57E-03         |
| Vapor Pressure at T <sub>LN</sub> , P <sub>VN</sub> (psia)              |                                | 1.73             | 0.01             | 0.01             | 0.01             | 0.01             | 1.42E-03         | 1.42E-03         | 1.42E-03         | 1.42E-03         |
| Daily Vapor Pressure Range, ΔP <sub>V</sub> (psi)                       | Eq. 7.1-9                      | 0.79             | 3.41E-03         | 3.41E-03         | 3.41E-03         | 3.41E-03         | 1.14E-03         | 1.14E-03         | 1.14E-03         | 1.14E-03         |
| Working Loss Product Factor, K <sub>P</sub>                             | Eq. 7.1-39                     | 1                | 1                | 1                | 1                | 1                | 1                | 1                | 1                | 1                |
| Vented Vapor Sat. Factor, K <sub>S</sub>                                | Eq. 7.1-23                     | 0.766            | 0.999            | 0.999            | 0.999            | 0.999            | 1.000            | 1.000            | 1.000            | 1.000            |
| Vapor Density, W <sub>v</sub> (lb/ft³)                                  | Eq. 7.1-24                     | 1.18E-02         | 1.90E-04         | 1.90E-04         | 1.90E-04         | 1.90E-04         | 2.09E-05         | 2.09E-05         | 2.09E-05         | 2.09E-05         |
| Vapor Space Expansion Factor Equation                                   |                                | Equation 1-5     |
| Vapor Space Expansion Factor, K <sub>E</sub>                            | Eq. 7.1-5 or 1-12 <sup>d</sup> | 0.1107           | 0.0430           | 0.0430           | 0.0430           | 0.0430           | 0.0428           | 0.0428           | 0.0428           | 0.0428           |

<sup>d</sup>Eq.1-5 (TVP>0.1 psia or  $\Delta$ P<sub>B</sub>>±0.03 ), Eq.1-12 (TVP<0.1 psia and  $\Delta$ P<sub>B</sub><±0.03)

| Emissions Rates                       | AP-42 Reference |       |          |            |          |          |          |          |          |          |
|---------------------------------------|-----------------|-------|----------|------------|----------|----------|----------|----------|----------|----------|
| Standing Loss, L <sub>S</sub> (lb/yr) | Eq. 7.1-2       | 49.00 | 0.07     | 0.07       | 0.07     | 0.07     | 0.01     | 0.01     | 0.01     | 0.01     |
| Working Loss, L <sub>W</sub> (lb/yr)  | Eq. 7.1-37      | 18.86 | 0.15     | 0.15277334 | 0.15     | 0.15     | 8.36E-04 | 8.36E-04 | 8.36E-04 | 8.36E-04 |
| Total Loss, L <sub>T</sub> (lb/yr)    | Eq. 7.1-1       | 67.87 | 0.22     | 0.22       | 0.22     | 0.22     | 0.01     | 0.01     | 0.01     | 0.01     |
| Uncontrolled Total Loss (lb/hr)       | е               | 5.83  | 0.03     | 0.03       | 0.03     | 0.03     | 3.81E-03 | 3.81E-03 | 3.81E-03 | 3.81E-03 |
| Uncontrolled Total Loss (tpy)         |                 | 0.03  | 1.12E-04 | 1.12E-04   | 1.12E-04 | 1.12E-04 | 4.34E-06 | 4.34E-06 | 4.34E-06 | 4.34E-06 |

eTCEQ APDG 6250v3 (Rev 2/20) Equation 1

Total VOC, all tanks, tpy =

0.03

f Diesel fuel is used to conservatively represent emissions from storage of lube oil. Ethylene Glycol is used to conservatively represent emissions from antifreeze tank.

## Hiland Partners Holdings LLC Silurian Compressor Station Fugitives

**Equipment Data:** 

| Emission Unit (EU): | 11        |
|---------------------|-----------|
| Emission Unit Name: | Fugitives |

| Component Type       | Service      | Emission<br>Factor <sup>1</sup><br>(lb/hr/comp) | Component<br>Count | Total Loss<br>(lb/hr) | Total Loss (tpy) |
|----------------------|--------------|-------------------------------------------------|--------------------|-----------------------|------------------|
| Valves               | Gas/Vapor    | 0.00992                                         | 84                 | 0.83                  | 3.65             |
| Vaives               | Light Liquid | 0.0055                                          | 29                 | 0.16                  | 0.70             |
| Pumps                | Gas Vapor    | 0.00529                                         | 0                  | 0.00                  | 0.00             |
| Fullips              | Light Liquid | 0.02866                                         | 5                  | 0.14                  | 0.63             |
| Flanges <sup>2</sup> | Gas/Vapor    | 0.00086                                         | 1003               | 0.86                  | 3.78             |
| rianges              | Light Liquid | 0.000243                                        | 82                 | 0.02                  | 0.09             |
| Connectors           | Gas/Vapor    | 0.00044                                         | 0                  | 0.00                  | 0.00             |
| Connectors           | Light Liquid | 0.000463                                        | 0                  | 0.00                  | 0.00             |
| Open Ended Lines     | Gas/Vapor    | 0.00441                                         | 0                  | 0.00                  | 0.00             |
| Open Ended Lines     | Light Liquid | 0.00309                                         | 0                  | 0.00                  | 0.00             |
| Other <sup>3</sup>   | Gas/Vapor    | 0.0194                                          | 0                  | 0.00                  | 0.00             |
| Other                | Light Liquid | 0.0165                                          | 0                  | 0.00                  | 0.00             |
| Compressors          | Gas/Vapor    | 0.0194                                          | 4                  | 0.08                  | 0.34             |
| Compressors          | Light Liquid | 0.0165                                          | 0                  | 0.00                  | 0.00             |
|                      | Co           | omponent Emissi                                 | on Total Losses    | 2.10                  | 9.18             |
|                      |              | Gas/\                                           | apor Emissions     | 1.77                  | 7.77             |
|                      |              | iquid Emissions                                 | 0.32               | 1.41                  |                  |

| Component        | Gas     | Gas/Vapor | Emissions | Total Em | issions <sup>4</sup> |
|------------------|---------|-----------|-----------|----------|----------------------|
| Component        | (wt%)   | (lb/hr)   | (tpy)     | (lb/hr)  | (tpy)                |
| CO <sub>2</sub>  | 1.056   | 0.019     | 0.082     | 0.019    | 0.082                |
| Nitrogen         | 2.009   | 0.036     | 0.156     | 0.036    | 0.156                |
| H <sub>2</sub> S | 0.0005  | 0         | 0         | 0.000    | 0.000                |
| Methane          | 31.131  | 0.552     | 2.418     | 0.552    | 2.418                |
| Ethane           | 23.535  | 0.417     | 1.828     | 0.417    | 1.828                |
| Propane          | 21.775  | 0.386     | 1.691     | 0.386    | 1.691                |
| i-Butane         | 3.259   | 0.058     | 0.253     | 0.058    | 0.253                |
| n-Butane         | 10.335  | 0.183     | 0.803     | 0.183    | 0.803                |
| i-Pentane        | 2.107   | 0.037     | 0.164     | 0.037    | 0.164                |
| n-Pentane        | 2.886   | 0.051     | 0.224     | 0.051    | 0.224                |
| Dimethylpropane  | 0.014   | 0.000     | 0.001     | 0.000    | 0.001                |
| Benzene          | 0.091   | 0.002     | 0.007     | 0.002    | 0.007                |
| n-Hexane         | 0.332   | 0.006     | 0.026     | 0.006    | 0.026                |
| Methanol         | 0.006   | 0.000     | 0.000     | 0.000    | 0.000                |
| Hexanes          | 1.281   | 0.023     | 0.099     | 0.023    | 0.099                |
| Toluene          | 0.080   | 0.001     | 0.006     | 0.001    | 0.006                |
| Heptanes         | 0.032   | 0.001     | 0.002     | 0.001    | 0.002                |
| Ethylbenzene     | 0.004   | 0.000     | 0.000     | 0.000    | 0.000                |
| Xylenes          | 0.031   | 0.001     | 0.002     | 0.001    | 0.002                |
| Octanes          | 0.037   | 0.001     | 0.003     | 0.001    | 0.003                |
| Nonanes          | 0.000   | 0.000     | 0.000     | 0.000    | 0.000                |
| C10+             | 0.000   | 0.000     | 0.000     | 0.000    | 0.000                |
| Total            | 100.000 | 1.773     | 7.768     | 1.773    | 7.768                |
| Total VOC        | 42.268  | 0.750     | 3.283     | 1.072    | 4.697                |
| Total HAPs       | 0.543   | 0.010     | 0.042     | 0.010    | 0.042                |

## Notes:

- 1. Emission factors are from EPA's "Protocol for Equipment Leak Emission Estimates" EPA-453/R-95-017, 11/1995. Table 2-4
- 2. Maintenance Plugs & Blind Flanges are treated as screwed connectors. Per TCEQ's "Air Permit Technical Guidance for Chemical Sources: Equipment Leak Fugitives" dated October 2000, screwed fittings should be estimated as flanges.
- 3. For Oil and Gas Production Operations, "Other" includes compressors, diaphrams, drains, dump arms, hatches, instruments, meters, pressure relief valves, polished rods, relief valves, and vents.
- 4. The total emissions include the light liquid emissions assuming 100% VOC of light liquid.

Silurian CS 7/9/2025

## Silurian Compressor Station Pigging Emissions (EU 12)

| Designation | Pigging<br>Volume       | Pig Receiver<br>or<br>Launcher<br>Pressure      | Number<br>of<br>Events                                                                                                                                                                                                      | Gas VOC<br>Weight %                                                                                                                                                                                                                                                                       | Gas MW                                                                                                                                                                                                                                                                                                                                                                                     | Average Gas<br>Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                              | MCF per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Estimated<br>SCF<br>per event                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Estimated<br>SCF<br>per year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tential VO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C Emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------|-------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | (ft³)                   | (psig)                                          | (#/ per<br>Year)                                                                                                                                                                                                            | (%)                                                                                                                                                                                                                                                                                       | (lb/lb-mol)                                                                                                                                                                                                                                                                                                                                                                                | (°F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lb/scf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lb/hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lb/year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (tpy)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Pigging     | 7                       | 1,250                                           | 12                                                                                                                                                                                                                          | 42.27                                                                                                                                                                                                                                                                                     | 27.49                                                                                                                                                                                                                                                                                                                                                                                      | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 497                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Pigging     | 7                       | 1,250                                           | 12                                                                                                                                                                                                                          | 42.27                                                                                                                                                                                                                                                                                     | 27.49                                                                                                                                                                                                                                                                                                                                                                                      | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 497                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Pigging     | 12                      | 250                                             | 52                                                                                                                                                                                                                          | 42.27                                                                                                                                                                                                                                                                                     | 27.49                                                                                                                                                                                                                                                                                                                                                                                      | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12376                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 379                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Pigging     | 12                      | 250                                             | 52                                                                                                                                                                                                                          | 42.27                                                                                                                                                                                                                                                                                     | 27.49                                                                                                                                                                                                                                                                                                                                                                                      | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12376                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 379                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.19<br><b>0.88</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | Pigging Pigging Pigging | DesignationVolume(ft³)Pigging7Pigging7Pigging12 | Designation         Pigging Volume         or Launcher Pressure           (ft³)         (psig)           Pigging         7         1,250           Pigging         7         1,250           Pigging         12         250 | Designation         Volume         Launcher Pressure         Of Events           (ft³)         (psig)         (#/ per Year)           Pigging         7         1,250         12           Pigging         7         1,250         12           Pigging         12         250         52 | Designation         Pigging Volume         or Launcher Pressure         Number of Events         Gas VOC Weight %           (ft³)         (psig)         (#/ per Year)         (%)           Pigging         7         1,250         12         42.27           Pigging         7         1,250         12         42.27           Pigging         12         250         52         42.27 | Designation         Pigging Volume         or Launcher Pressure         Number of Events         Gas VOC Weight %         Gas MW           (ft³)         (psig)         (#/ per Year)         (%)         (lb/lb-mol)           Pigging         7         1,250         12         42.27         27.49           Pigging         7         1,250         12         42.27         27.49           Pigging         12         250         52         42.27         27.49 | Designation         Pigging Volume         or Launcher Pressure         Number of Events         Gas VOC Weight %         Gas MW         Average Gas Temperature           Pigging         7         1,250         12         42.27         27.49         60           Pigging         7         1,250         12         42.27         27.49         60           Pigging         7         1,250         12         42.27         27.49         60           Pigging         12         250         52         42.27         27.49         60 | Designation         Pigging Volume         or Launcher Pressure         Number of Events         Gas VOC Weight %         Gas MW         Average Gas Temperature         Estimated MCF per event           Pigging         (ft³)         (psig)         (#/ per Year)         (%)         (lb/lb-mol)         (°F)           Pigging         7         1,250         12         42.27         27.49         60         1.353           Pigging         7         1,250         12         42.27         27.49         60         1.353           Pigging         12         250         52         42.27         27.49         60         0.238 | Designation         Pigging Volume         or Launcher Pressure         Number of Events         Gas VOC Weight %         Gas MW         Average Gas Temperature         Estimated MCF per event         SCF per event           Pigging         7         1,250         12         42.27         27.49         60         1.353         1353           Pigging         7         1,250         12         42.27         27.49         60         1.353         1353           Pigging         7         1,250         12         42.27         27.49         60         1.353         1353           Pigging         12         250         52         42.27         27.49         60         0.238         238 | Designation         Pigging Volume         or Launcher Pressure         Number of Events         Gas VOC Weight %         Gas MW         Average Gas Temperature         Estimated MCF per event         Estimated SCF per event         SCF per event           Pigging         7         1,250         12         42.27         27.49         60         1.353         1353         16236           Pigging         7         1,250         12         42.27         27.49         60         1.353         1353         16236           Pigging         12         250         52         42.27         27.49         60         0.238         238         12376           Pigging         12         250         52         42.27         27.49         60         0.238         238         12376 | Designation         Pigging Volume         or Launcher Pressure         (#/ per Year)         (%)         (lb/lb-mol)         (°F)         Lestimated MCF per event         Estimated SCF per event         Estimated SCF per event         SCF per event         Po           Pigging         7         1,250         12         42.27         27.49         60         1.353         1353         16236         0.031           Pigging         7         1,250         12         42.27         27.49         60         1.353         1353         16236         0.031           Pigging         12         250         52         42.27         27.49         60         0.238         238         12376         0.031           Pigging         12         250         52         42.27         27.49         60         0.238         238         12376         0.031 | Designation   Pigging Volume   Cas voc Launcher Pressure   Cas voc Launcher Pressure   Cas voc Events   Cas woc Launcher Pressure   Cas voc Weight %   Cas woc Launcher Pressure   Cas woc Weight %   Cas woc Temperature   Cas woc Temperature | Designation         Pigging Volume         Or Launcher Pressure         Result of Events         Gas MW (Bight % Femperature)         Gas MW (Femperature)         Estimated MCF per event         Estimated SCF per event         Estimated SCF per event         Potential VOC Emission           Pigging         7         1,250         12         42.27         27.49         60         1.353         1353         16236         0.031         41         497           Pigging         7         1,250         12         42.27         27.49         60         1.353         1353         16236         0.031         41         497           Pigging         12         250         52         42.27         27.49         60         0.238         238         12376         0.031         7         379           Pigging         12         250         52         42.27         27.49         60         0.238         238         12376         0.031         7         379           Pigging         12         250         52         42.27         27.49         60         0.238         238         12376         0.031         7         379 |

#### Notes:

1. Assume 12 events per year for each high pressure (HP) launcher/receiver and 52 events per year for each low pressure (LP) launcher/receiver.

2. Emissions from pigging operations are reported under EU 12.

VOC weight percentage is from the ProMax model.

Molecular Weight of

Gas = 27.49

VOC Weight Percent = 42.27

Universal Gas Content = 379.5 ft 3/lb-mol @ 60 F and 14.696 psia

Calculation:

Pound " X"/ scf = Wt Fraction (wt%) \* MW of Gas \* 1 lb mol/379.5 scf

lbs NM/E VOC/scf = 0.031

Estimated MCF per event from using Blowdown Volumes Compressibility Spreadsheet Emissions (tpy) = (Estimated scf/event \* number of events per year \* lb/scf)/2000 (lb/ton)

Silurian CS 7/9/2025

# Silurian Compressor Station

## **Compressor Blowdown Emissions (EU 12)**

| Emission Unit | Designation          | Compressor<br>Volume | Compressor<br>Pressure | Number of<br>Events | Gas VOC<br>Weight % | Gas MW      | Average Gas<br>Temperature | SCF per   | Estimated<br>SCF per<br>year |        |       |         | Control<br>Efficiency<br>% | Emis  | sions |      |
|---------------|----------------------|----------------------|------------------------|---------------------|---------------------|-------------|----------------------------|-----------|------------------------------|--------|-------|---------|----------------------------|-------|-------|------|
|               |                      | (scf)                | (psig)                 | (#/ per Year)       | (%)                 | (lb/lb-mol) | (°F)                       | SCFH      | SCF/Yr                       | lb/scf | lb/hr | lb/year | tpy                        |       | lb/hr | tpy  |
| 12            | Compressor Blowdowns | 19,501.20            | 1,168                  | 200                 | 30.29%              | 23.2        | 84                         | 19,501.20 | 3,900,240                    | 0.019  | 361.8 | 72,368  | 36.18                      | 98%   | 7.24  | 0.72 |
|               |                      |                      |                        |                     |                     |             |                            |           |                              |        |       |         |                            | Total |       | 0.72 |

#### Notes:

1. Assumes 50 blowdowns/year released to flare at 1168 psig per engine.

2. Emissions from compressor blowdowns are reported under EU 13 (Flare MSS).

VOC weight percentage is from ProMax model.

Molecular Weight of Gas =

23.25

VOC Weight Percent = 30.29% From engineering estimate

Universal Gas Content = 379.5 ft 3/lb-mol @ 60 F and 14.696 psia

#### Calculation:

VOC Emission Estimates:

lb/hr = Mass rates per hour x VOC weight % x (1- flare control efficiency)

 $= 294.8 \text{ lb/hr} \times 24.79 \% \text{ VOC} \times (100-98\%) = 1.46 \text{ lb/hr}$ 

Gas Heating Value = 1,211 Btu/scf Heat Input = 23.6 MMBtu/hr

4,722.4 MMBtu/yr

tpy = Mass rates per year x VOC weight % x (1- flare control efficiency)

= 29.48 tpy x 24.79 % VOC x (100-98%) = 0.15 tpy

Pound "X"/ scf = Wt Fraction (wt%) \* MW of Gas \* 1 lb mol/379.5 scf

lbs NM/E VOC/scf = 0.019 0.061 lbs/scf =

Estimated MCF per event from using Blowdown Compressibility Calc Spreadsheet

Emissions (tpy) = (Estimated scf/event \* number of events per year \* lb/scf )/2000 (lb/ton)

|                 | Emission |          | Emissions |          |  |  |  |
|-----------------|----------|----------|-----------|----------|--|--|--|
| Pollutant       | Factor   | Units    | (lb/hr)   | (ton/yr) |  |  |  |
| SO <sub>2</sub> | 0.6      | lb/MMscf | 0.0117    | 0.0012   |  |  |  |
| NO <sub>X</sub> | 0.138    | lb/MMBtu | 3.2584    | 0.3258   |  |  |  |
| СО              | 0.2755   | lb/MMBtu | 6.5051    | 0.6505   |  |  |  |

- 1. SO<sub>2</sub> emission factors are from AP-42 Table 1.4-2 (07/98).
- 2. NO<sub>X</sub> and CO emission factors are from TCEQ Technical Guidance for Flares and Vapor Combustors for high BTU streams (>1,000 Btu/scf)
- 3. Gas Mol% composition based on engineering estimate.

| Component         | MW                   | Ma10/   | Gas Weight | VA/4 0/ |            | Emissions | Emissions |
|-------------------|----------------------|---------|------------|---------|------------|-----------|-----------|
| Component         | (g/mol)              | Mol%    | (lb/lbmol) | Wt %    |            | (tpy)     | (lb/hr)   |
| methane (C1)      | 16.042               | 65.32%  | 10.4792    | 45.07%  | 1          | 0.326     |           |
| ethane (C2)       | 30.069               | 19.05%  | 5.7290     | 24.64%  | ]          | 0.178     | 1.78      |
| propane (C3)      | 44.096               | 8.55%   | 3.7715     | 16.22%  | ]          | 0.117     | 1.17      |
| iso-butane (C4)   | 58.122               | 0.70%   | 0.4079     | 1.75%   | ]          | 0.013     | 0.13      |
| nor-butane (C4)   | 58.122               | 1.97%   | 1.1445     | 4.92%   |            | 0.036     | 0.36      |
| iso-pentane (C5)  | 72.149               | 0.22%   | 0.1584     | 0.68%   |            | 0.005     | 0.05      |
| nor-pentane (C5)  | 72.149               | 0.27%   | 0.1962     | 0.84%   | ]          | 0.006     |           |
| Dimethylpropane   | 72.149               | 0.002%  | 0.0013     | 0.01%   |            | 0.000     | 0.00      |
| n-hexane          | 86.180               | 0.001   | 0.0910     | 0.39%   |            | 0.003     | 0.03      |
| hexanes (C6+)     | 86.180               | 0.001   | 0.0459     | 0.20%   |            | 0.001     | 0.01      |
| heptane (C7+)     | 100.200              | 0.001%  | 0.0011     | 0.00%   |            | 0.000     | 0.00      |
| octane (C8+)      | 114.230              | 0.001%  | 0.0006     | 0.00%   | ]          | 0.000     | 0.00      |
| benzene           | 78.110               | 0.03%   | 0.0249     | 0.11%   |            | 0.001     | 0.01      |
| toluene           | 92.140               | 0.02%   | 0.0220     | 0.09%   |            | 0.001     | 0.01      |
| Ethylbenzene      | 106.170              | 0.001%  | 0.0011     | 0.00%   |            | 0.000     | 0.00      |
| xylenes (M, P, O) | 106.170              | 0.01%   | 0.0085     | 0.04%   |            | 0.000     | 0.00      |
| Methanol          | 32.042               | 0.0003% | 0.0001     | 0.00%   |            | 0.000     | 0.00      |
| CO2               | 44.010               | 0.84%   | 0.3708     | 1.59%   |            | 0.012     | 0.12      |
| Nitrogen          | 28.013               | 2.84%   | 0.7956     | 3.42%   |            | 0.025     | 0.25      |
| H2S               | 34.082               | 0.0004% | 0.0001     | 0.00%   |            | 0.000     | 0.00      |
| SO2               | 64.000               |         | 0.0000     | 0.00%   |            | 0.001     | 0.013     |
|                   | Total                | 100.00% | 23.25      | 100.00% | Total      | 0.725     |           |
|                   | Vapor MW (lb/lb-mol) | 23.25   |            |         | VOC Total  | 0.183     | 1.83      |
|                   | VOC Weight (%)       | 30.29%  |            | 30.29%  | HAPs Total | 0.005     | 0.05      |

LHV of vent gas analysis

|                  |                 |          | Emission            | Emissions |        |  |
|------------------|-----------------|----------|---------------------|-----------|--------|--|
| Pollutant        | Emission Factor | Units    | Factor<br>Reference | (lb/hr)   | (tpy)  |  |
| CO₂e             |                 |          |                     | 2,765     | 276.49 |  |
| GHG              | 1               |          |                     | 2,762     | 276.21 |  |
| CO <sub>2</sub>  | 117             | lb/MMBtu | AP-42               | 2,762     | 276.21 |  |
| CH₄              | 0.0022          | lb/MMBtu | AP-42               | 0.0521    | 0.0052 |  |
| N <sub>2</sub> O | 0.0002          | lb/MMBtu | AP-42               | 0.0052    | 0.0005 |  |

7/9/2025 Silurian CS

# **Silurian Compressor Station** Inlet Gas Analysis (1)

| Sample temperature and pressure | 85 °F, 1000                    | psia              |                          |          |
|---------------------------------|--------------------------------|-------------------|--------------------------|----------|
| Component                       | MW<br>(g/mol)                  | Mole %            | Gas Weight<br>(lb/lbmol) | Weight % |
| Carbon Dioxide                  | 44.010                         | 0.6596            | 0.290                    | 1.0561   |
| Hydrogen Sulfide                | 34.082                         | 0.0004            | 0.000                    | 0.0005   |
| Nitrogen                        | 28.013                         | 1.9710            | 0.552                    | 2.0087   |
| Methane (C1)                    | 16.042                         | 53.3396           | 8.557                    | 31.1314  |
| Ethane (C2)                     | 30.069                         | 21.5137           | 6.469                    | 23.5349  |
| Propane (C3)                    | 44.096                         | 13.5734           | 5.985                    | 21.7752  |
| Iso-Butane (C4)                 | 58.122                         | 1.5411            | 0.896                    | 3.2587   |
| Nor-Butane (C4)                 | 58.122                         | 4.8877            | 2.841                    | 10.3352  |
| Iso-Pentane (C5)                | 72.149                         | 0.8027            | 0.579                    | 2.1070   |
| n-Pentane                       | 72.149                         | 1.0994            | 0.793                    | 2.8858   |
| Dimethylpropane                 | 72.149                         | 0.0053            | 0.004                    | 0.0140   |
| n-Hexane                        | 86.180                         | 0.1058            | 0.091                    | 0.3317   |
| Methanol                        | 32.042                         | 0.0048            | 0.002                    | 0.0056   |
| Other Hexanes                   | 86.180                         | 0.4085            | 0.352                    | 1.2808   |
| Heptane (C7+)                   | 100.200                        | 0.0088            | 0.009                    | 0.0321   |
| Methylcyclohexane               | 86.180                         | 0.0000            | 0.000                    | 0.0000   |
| 2,2,4 Trimethyl Pentane         | 72.149                         | 0.0000            | 0.000                    | 0.0000   |
| Benzene                         | 78.110                         | 0.0319            | 0.025                    | 0.0908   |
| Toluene                         | 92.140                         | 0.0240            | 0.022                    | 0.0803   |
| Ethylbenzene                    | 106.170                        | 0.0010            | 0.001                    | 0.0039   |
| Xylenes (M, P, O)               | 106.170                        | 0.0080            | 0.008                    | 0.0308   |
| Octane (C8+)                    | 114.230                        | 0.0088            | 0.010                    | 0.0366   |
| Nonane (C9+)                    | 128.260                        | 0                 | 0.000                    | 0.0000   |
| Decane (C10+)                   | 142.290                        | 0                 | 0.000                    | 0.0000   |
|                                 | Total                          | 100.0             | 27.4867                  | 100.0000 |
|                                 | Vapor MW (lb/lb-mol)           | 27.487            |                          |          |
|                                 | VOC Weight (%) HAPs Weight (%) | 42.2684<br>0.5431 |                          |          |

Silurian CS 7/9/2025

Specific Gravity = 0.94
(1) From ProMax model, inlet stream with NGL (conservative), and corrected to include representative HAPs.



#### **Simulation Report**

Project: 06904.28 KM Silurian Compressor Station Rev. D.pmx

#### Licensed to Spirit Environmental, LLC and Affiliates

Client Name: Kinder Morgan

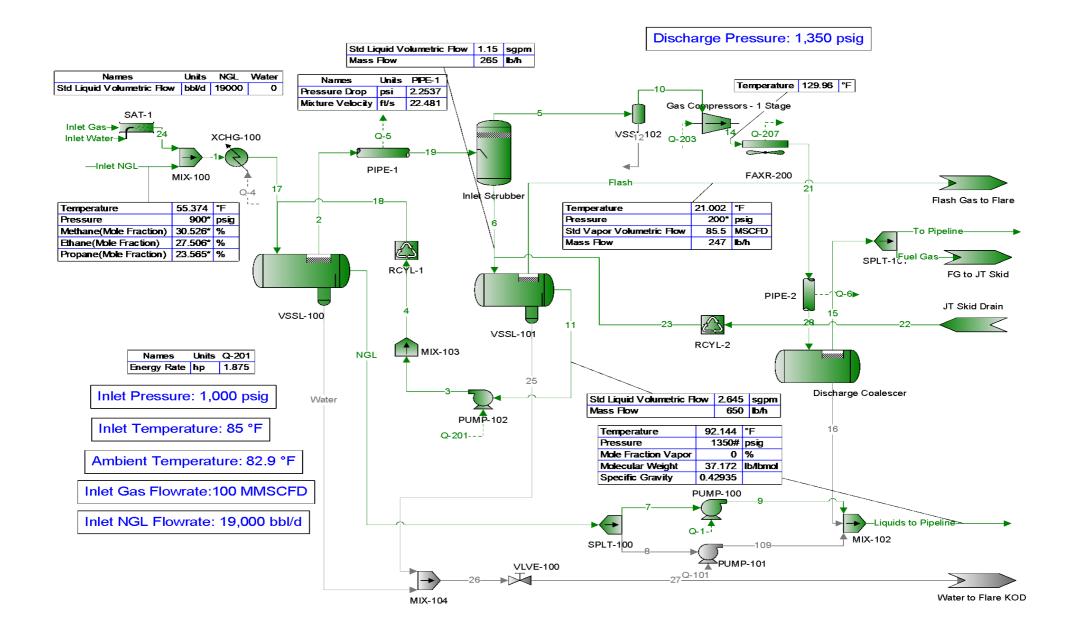
Location: Williams County, North Dakota

Job: 06904.28 KM Silurian Compressor Station

ProMax Filename: W:\06904.28 KM Silurian Compressor Station Rev. D.pmx

ProMax Version: 6.0.24302.0

Simulation Initiated: 6/11/2025 1:28:52 PM


#### Bryan Research & Engineering, LLC

Chemical Engineering Consultants P.O. Box 4747 Bryan, Texas 77805 Office: (979) 776-5220 FAX: (979) 776-4818 mailto:sales@bre.com http://www.bre.com/

Report Navigator can be activated via the ProMax Navigator Toolbar.

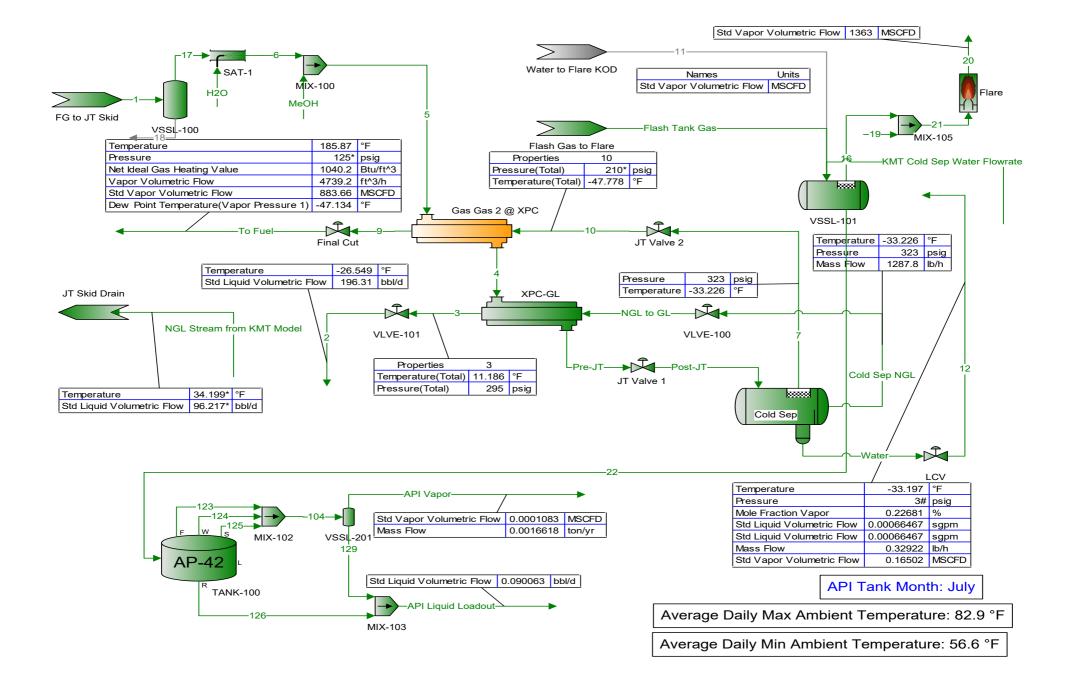
An asterisk (\*), throughout the report, denotes a user specified value.

A question mark (?) after a value, throughout the report, denotes an extrapolated or approximate value.



Silurian CS 7/7/2025

| Process Streams                                      |                          | Flash                          | Fuel Gas                   | Inlet Gas                    | Inlet NGL               | Inlet Water             | Liquids to Pipeline        | NGL                   | To Pipeline                | Water               | 1                          | 2                          | 3                        | 4                        | 5                          | 6                          | 7                          | 8                    | 9                   |
|------------------------------------------------------|--------------------------|--------------------------------|----------------------------|------------------------------|-------------------------|-------------------------|----------------------------|-----------------------|----------------------------|---------------------|----------------------------|----------------------------|--------------------------|--------------------------|----------------------------|----------------------------|----------------------------|----------------------|---------------------|
| Composition                                          | Status:                  | Solved                         | Solved                     | Solved                       | Solved                  | Solved                  | Solved                     | Solved                | Solved                     | Solved              | Solved                     | Solved                     | Solved                   | Solved                   | Solved                     | Solved                     | Solved                     | Solved               | Solved              |
| Phase: <b>Total</b>                                  | From Block:<br>To Block: | VSSL-101<br>Flash Gas to Flare | SPLT-101<br>FG to JT Skid  | <br>SAT-1                    | <br>MIX-100             | <br>SAT-1               | MIX-102<br>                | VSSL-100<br>SPLT-100  | SPLT-101<br>               | VSSL-100<br>MIX-104 | MIX-100<br>XCHG-100        | VSSL-100<br>PIPE-1         | PUMP-102<br>MIX-103      | MIX-103<br>RCYL-1        | Inlet Scrubber<br>VSSL-102 | Inlet Scrubber<br>VSSL-101 | SPLT-100<br>PUMP-100       | SPLT-100<br>PUMP-101 | PUMP-100<br>MIX-102 |
| Mole Fraction                                        |                          | 0.400000                       | 0.044404                   | 0.000707*                    | 0.005057*               | 0*                      | 0.000000                   | 0.000000              | 0.044404                   |                     | 0.504000                   | 0.040054                   | 0.0540507                | 0.0540507                | 0.044404                   | 0.070000                   | 0.000000                   | 0.000000             | 0.000000            |
| Methane<br>Ethane                                    |                          | 0.466033<br>0.353843           | 0.611164<br>0.207189       | 0.688767*<br>0.175432*       | 0.305257*<br>0.275063*  | 0*<br>0*                | 0.280228<br>0.243119       | 0.280228<br>0.243119  | 0.611164<br>0.207189       |                     | 0.534363<br>0.215526       | 0.610954<br>0.207212       | 0.0542537<br>0.268952    | 0.0542537<br>0.268952    | 0.611164<br>0.207189       | 0.279669<br>0.243134       | 0.280228<br>0.243119       | 0.280228<br>0.243119 |                     |
| Propane                                              |                          | 0.136130                       | 0.105314                   | 0.0687507*                   | 0.235648*               | 0*                      | 0.237523                   | 0.237523              | 0.105314                   |                     | 0.135926                   | 0.105397                   | 0.396569                 | 0.396569                 | 0.105314                   | 0.237805                   | 0.237523                   | 0.237523             | 3 0.237523          |
| i-Butane<br>n-Butane                                 |                          | 0.00635256<br>0.0139833        | 0.00944963<br>0.0273928    | 0.00521005*<br>0.0136501*    | 0.0306220*<br>0.101387* | 0*<br>0*                | 0.0352506<br>0.120225      | 0.0352506<br>0.120225 | 0.00944963<br>0.0273928    |                     | 0.0154386<br>0.0489651     | 0.00946594<br>0.0274515    | 0.0516458<br>0.155187    | 0.0516458<br>0.155187    | 0.00944963<br>0.0273928    | 0.0353084<br>0.120423      | 0.0352506<br>0.120225      |                      |                     |
| 2,2-Dimethylpropane                                  |                          | 4.44324E-06                    | 2.76478E-05                |                              | 0.000133000*            | 0*                      | 0.000138542                | 0.000138542           | 2.76478E-05                |                     | 5.35349E-05                | 2.77179E-05                | 6.38559E-05              | 6.38559E-05              | 2.76478E-05                | 0.000138771                | 0.000138542                |                      |                     |
| i-Pentane                                            |                          | 0.000787287                    | 0.00331410                 | 0.00150002*                  | 0.0177520*              | 0*                      | 0.0236250                  | 0.0236250             | 0.00331410                 |                     | 0.00804166                 | 0.00332694                 | 0.0236575                | 0.0236575                | 0.00331410                 | 0.0236561                  | 0.0236250                  | 0.0236250            |                     |
| n-Pentane<br>2,2-Dimethylbutane                      |                          | 0.000844387<br>0               | 0.00415797<br>0            | 0.00199002*<br>0*            | 0.0244090*<br>0*        | 0*                      | 0.0336095<br>0             | 0.0336095<br>0        | 0.00415797<br>0            |                     | 0.0110140<br>0             | 0.00417658<br>0            | 0.0327691<br>0           | 0.0327691<br>0           | 0.00415797<br>0            | 0.0336445<br>0             | 0.0336095<br>0             | 0.0336095<br>0       | 5 0.0336095<br>0 0  |
| 2,3-Dimethylbutane                                   |                          | 0                              | 0                          | 0*                           | 0*                      | 0*                      | 0                          | 0                     | 0                          |                     | 0                          | 0                          | 0                        | 0                        | 0                          | 0                          | 0                          | 0                    | ) 0                 |
| i-C6<br>3-Methylpentane                              |                          | 0                              | 0                          | 0*<br>0*                     | 0*<br>0*                | 0*<br>0*                | 0                          | 0                     | 0                          |                     | 0                          | 0                          | 0                        | 0                        | 0                          | 0                          | 0                          | 0                    | ) 0<br>) 0          |
| Hexane                                               |                          | 6.18538E-05                    | 0.000928472                |                              | 0.00972899*             | 0*                      | 0.0144994                  | 0.0144994             | 0.000928472                |                     | 0.00409234                 | 0.000937018                |                          | 0.00941854               | 0.000928472                | 0.0144728                  | 0.0144994                  | 0.0144994            |                     |
| C7<br>C8                                             |                          | 4.31939E-06<br>6.39870E-07     |                            | 0.000147500*<br>0.000147500* | 0*<br>0*                | 0*<br>0*                | 0.000344168<br>0.000358535 | 0.000344168           | 1.26163E-05<br>7.01281E-06 |                     | 8.81211E-05<br>8.81211E-05 | 1.28239E-05<br>7.23013E-06 | 0.00199620<br>0.00106097 | 0.00199620<br>0.00106097 | 1.26163E-05<br>7.01281E-06 | 0.000341601<br>0.000351452 | 0.000344168<br>0.000358535 |                      |                     |
| C9                                                   |                          | 0.000702 07                    | 0                          | 0*                           | 0*                      | 0*                      | 0                          | 0                     | 0                          |                     | 0.012112.00                | 0                          | 0.00100001               | 0.00100001               | 0                          | 0.000001402                | 0.000000000                | 0.00000000           | ) 0.00000000        |
| C10                                                  |                          | 0<br>0.00822561                | 0 0220204                  | 0*                           | 0*                      | 0*<br>0*                | 0<br>0.00592554            | 0<br>0.00592554       | 0<br>0.0239304             |                     | 0<br>0.0197453             | 0<br>0.0239191             | 0<br>0.000284456         | 0<br>0.000284456         | 0<br>0.0239304             | 0.00590490                 | 0<br>0.00592554            | 0<br>0.00592554      | 0<br>4 0.00592554   |
| Nitrogen<br>Carbon Dioxide                           |                          | 0.00822561                     | 0.0239304<br>0.00705760    | 0.0330503*<br>0.0110601*     | 0*                      | 0*                      | 0.00592554                 | 0.00592554            | 0.0239304                  |                     | 0.0197453                  | 0.0239191                  | 0.000284456              | 0.000284456              | 0.0239304                  | 0.00590490                 | 0.00592554                 | 0.00592554           |                     |
| Water                                                |                          | 2.26645E-05                    | 5.51525E-05                | 0*                           | 0*                      | 1*                      | 3.43410E-05                | 3.43410E-05           | 5.51525E-05                |                     | 5.03385E-05                | 5.51393E-05                | 4.44179E-06              | 4.44179E-06              | 5.51525E-05                | 3.42924E-05                | 3.43410E-05                | 3.43410E-05          | 5 3.43410E-05       |
| Oxygen<br>MeOH                                       |                          | 0                              | 0                          | 0*<br>0*                     | 0*<br>0*                | 0*<br>0*                | 0                          | 0                     | 0                          |                     | 0                          | 0                          | 0                        | 0                        | 0                          | 0                          | 0                          | 0<br>0               | ) 0                 |
|                                                      |                          |                                |                            |                              |                         |                         |                            |                       |                            |                     |                            |                            |                          |                          |                            |                            |                            |                      |                     |
| Process Streams Properties                           | Status:                  | Flash<br>Solved                | Fuel Gas                   | Inlet Gas                    | Inlet NGL<br>Solved     | Inlet Water             | Liquids to Pipeline        | NGL<br>Solved         | To Pipeline                | Water<br>Solved     | 1<br>Solved                | 2<br>Solved                | 3<br>Solved              | 4<br>Solved              | 5<br>Solved                | 6<br>Solved                | 7<br>Solved                | 8<br>Solved          | 9<br>Solved         |
| Phase: Total                                         | From Block:              | VSSL-101                       | SPLT-101                   |                              |                         |                         | MIX-102                    | VSSL-100              | SPLT-101                   | VSSL-100            | MIX-100                    | VSSL-100                   | PUMP-102                 | MIX-103                  | Inlet Scrubber             | Inlet Scrubber             | SPLT-100                   | SPLT-100             | PUMP-100            |
|                                                      | To Block:                | Flash Gas to Flare             | FG to JT Skid              | SAT-1                        | MIX-100                 | SAT-1                   | -                          | SPLT-100              | -                          | MIX-104             | XCHG-100                   | PIPE-1                     | MIX-103                  | RCYL-1                   | VSSL-102                   | VSSL-101                   | PUMP-100                   | PUMP-101             | MIX-102             |
| Property Temperature                                 | Units<br>°F              | 21.0015                        | 119.316                    | 164.416                      | 55.3737                 | 546.050                 | 92.1443                    | 85                    | 119.316                    | 85                  | 85.0332                    | 85*                        | 31.5138                  | 31.5138                  | 84.8591                    | 84.8591                    | 85                         | 85                   | 5 92.1443           |
| Pressure                                             | psig                     | 200*                           | 1345.68                    | 1000                         | 900*                    | 1000                    | 1350*                      | 1000                  | 1345.68                    | 1000                |                            | 1000                       | 1000*                    | 1000                     | 997.746                    | 997.746                    | 1000                       |                      |                     |
| Mole Fraction Vapor<br>Molecular Weight              | lb/lbmol                 | 1<br>26.2587                   | 1<br>24.4249               | 1<br>22.1738                 | 0*<br>35.1215           | 0.817374                | 0<br>37.1724               | 0<br>37.1724          | 1<br>24.4249               |                     | 0.768412<br>27.3853        | 1<br>24.4330               | 0<br>43.8647             | 0<br>43.8647             | 1<br>24.4249               | 0<br>37.1919               | 27 1724                    |                      | 0<br>4 37.1724      |
| Mass Density                                         | lb/ft^3                  | 1.24953                        | 7.70922                    | 3.89126                      | 26.8567                 | 18.0153<br>2.65170      |                            | 26.4590?              | 7.70922                    |                     | 8.20990?                   | 6.23788                    | 33.7372                  | 33.7372                  | 6.21847                    | 26.4836?                   | 37.1724<br>26.4590?        |                      | 26.7779?            |
| Mass Flow                                            | lb/h                     | 246.618                        | 3218.18                    | 194772                       | 207853                  | 13.3333                 | 127497                     | 127497                | 272307                     | 0                   | 402638                     | 275790                     | 650.229                  | 650.229                  | 275526                     | 264.874                    | 127497                     |                      | 127497              |
| Std Vapor Volumetric Flow Std Liquid Volumetric Flow | MMSCFD<br>sgpm           | 0.0855377<br>1.31236           | 1.2*<br>17.1831            | 80*<br>1084.40               | 53.8999<br>939.384*     | 0.00674066<br>0.0266543 | 31.2382<br>554.167         | 31.2382<br>554.167    | 101.539<br>1453.95         | 0                   | 133.907<br>2023.81         | 102.803<br>1472.29         | 0.135007<br>2.64496      | 0.135007<br>2.64496      | 102.739<br>1471.14         | 0.0648627<br>1.15100       | 31.2382<br>554.167         |                      | 31.2382<br>554.167  |
| Compressibility                                      | -gp                      | 0.874661                       | 0.693666                   | 0.863333                     | 0.216416                |                         | 0.319907?                  | 0.243886?             | 0.693666                   | · ·                 | 0.579018?                  | 0.679952                   | 0.250285                 | 0.250285                 | 0.680512                   | 0.243308?                  | 0.243886?                  |                      | 0.319907?           |
| Specific Gravity                                     |                          | 0.906644                       | 0.843329                   | 0.765605                     | 0.430611                |                         | 0.429349?                  | 0.424234?             | 0.843329                   |                     |                            | 0.843607                   | 0.540931                 | 0.540931                 | 0.843329                   | 0.424630?                  | 0.424234?                  |                      | 0.429349?           |
|                                                      |                          |                                |                            |                              |                         |                         |                            |                       |                            |                     |                            |                            |                          |                          |                            |                            |                            |                      |                     |
| Process Streams Composition                          | Status                   | Flash                          | Fuel Gas                   | Inlet Gas                    |                         |                         | Liquids to Pipeline        | NGL                   |                            |                     | 1<br>Columb                | 2<br>Calvad                | Solved.                  | Quitand                  | 5<br>Calved                | 6<br>Columb                | 7<br>Calved                | Solved               | 9<br>Columb         |
| Composition Phase: Vapor                             | Status:<br>From Block:   | Solved<br>VSSL-101             | Solved<br>SPLT-101         | Solved<br>                   | Solved<br>              | Solved<br>              | Solved<br>MIX-102          | Solved<br>VSSL-100    | Solved<br>SPLT-101         | Solved<br>VSSL-100  | Solved<br>MIX-100          | Solved<br>VSSL-100         | Solved<br>PUMP-102       | Solved<br>MIX-103        | Solved<br>Inlet Scrubber   | Solved<br>Inlet Scrubber   | Solved<br>SPLT-100         | Solved<br>SPLT-100   | Solved<br>PUMP-100  |
|                                                      | To Block:                | Flash Gas to Flare             |                            | SAT-1                        | MIX-100                 | SAT-1                   |                            | SPLT-100              | _                          | MIX-104             | XCHG-100                   | PIPE-1                     | MIX-103                  | RCYL-1                   | VSSL-102                   | VSSL-101                   | PUMP-100                   | PUMP-101             | MIX-102             |
| Mole Fraction  Methane                               |                          | 0.466033                       | 0.611164                   | 0.688767                     |                         | 0                       |                            |                       | 0.611164                   |                     | 0.610971                   | 0.610954                   |                          |                          | 0.611164                   |                            |                            |                      |                     |
| Ethane                                               |                          | 0.353843                       | 0.207189                   | 0.175432                     |                         | 0                       |                            |                       | 0.207189                   |                     | 0.207218                   | 0.207212                   |                          |                          | 0.207189                   |                            |                            |                      |                     |
| Propane                                              |                          | 0.136130                       | 0.105314                   | 0.0687507                    |                         | 0                       |                            |                       | 0.105314                   |                     | 0.105348                   | 0.105397                   |                          |                          | 0.105314                   |                            |                            |                      |                     |
| i-Butane<br>n-Butane                                 |                          | 0.00635256<br>0.0139833        | 0.00944963<br>0.0273928    | 0.00521005<br>0.0136501      |                         | 0                       |                            |                       | 0.00944963<br>0.0273928    |                     | 0.00946698<br>0.0274679    | 0.00946594<br>0.0274515    |                          |                          | 0.00944963<br>0.0273928    |                            |                            |                      |                     |
| 2,2-Dimethylpropane                                  |                          | 4.44324E-06                    | 2.76478E-05                | 0                            |                         | 0                       |                            |                       | 2.76478E-05                |                     | 2.77970E-05                | 2.77179E-05                |                          |                          | 2.76478E-05                |                            |                            |                      |                     |
| i-Pentane<br>n-Pentane                               |                          | 0.000787287<br>0.000844387     | 0.00331410<br>0.00415797   | 0.00150002<br>0.00199002     |                         | 0                       |                            |                       | 0.00331410<br>0.00415797   |                     | 0.00333277<br>0.00418456   | 0.00332694<br>0.00417658   |                          |                          | 0.00331410<br>0.00415797   |                            |                            |                      |                     |
| 2,2-Dimethylbutane                                   |                          | 0                              | 0                          | 0.00100002                   |                         | 0                       |                            |                       | 0                          |                     | 0                          | 0                          |                          |                          | 0                          |                            |                            |                      |                     |
| 2,3-Dimethylbutane<br>i-C6                           |                          | 0                              | 0                          | 0                            |                         | 0                       |                            |                       | 0                          |                     | 0                          | 0                          |                          |                          | 0                          |                            |                            |                      |                     |
| 3-Methylpentane                                      |                          | 0                              | 0                          | 0                            |                         | 0                       |                            |                       | 0                          |                     | 0                          | 0                          |                          |                          | 0                          |                            |                            |                      |                     |
| Hexane                                               |                          | 6.18538E-05                    | 0.000928472                |                              |                         | 0                       |                            |                       | 0.000928472                |                     | 0.000940318                |                            |                          |                          | 0.000928472                |                            |                            |                      |                     |
| C7<br>C8                                             |                          | 4.31939E-06<br>6.39870E-07     | 1.26163E-05<br>7.01281E-06 |                              |                         | 0                       |                            |                       | 1.26163E-05<br>7.01281E-06 |                     |                            |                            |                          |                          | 1.26163E-05<br>7.01281E-06 |                            |                            |                      |                     |
| C9                                                   |                          | 0                              | 0                          | 0                            |                         | 0                       |                            |                       | 0                          |                     | 0                          | 0                          |                          |                          | 0                          |                            |                            |                      |                     |
| C10<br>Nitrogen                                      |                          | 0<br>0.00822561                | 0<br>0.0239304             | 0.0330503                    |                         | 0                       |                            |                       | 0<br>0.0239304             |                     | 0<br>0.0239114             | 0<br>0.0239191             |                          |                          | 0.0239304                  |                            |                            |                      |                     |
| Carbon Dioxide                                       |                          | 0.0137063                      | 0.00705760                 |                              |                         | 0                       |                            |                       | 0.00705760                 |                     | 0.00705623                 | 0.00705637                 |                          |                          | 0.00705760                 |                            |                            |                      |                     |
| Water                                                |                          | 2.26645E-05                    | 5.51525E-05<br>0           | 0                            |                         | 1                       |                            |                       | 5.51525E-05                |                     | 5.51577E-05                | 5.51393E-05                |                          |                          | 5.51525E-05                |                            |                            |                      |                     |
| Oxygen<br>MeOH                                       |                          | 0                              | 0                          | 0                            |                         | 0                       |                            |                       | 0                          |                     | 0                          | 0                          |                          |                          | 0                          |                            |                            |                      |                     |
|                                                      |                          |                                |                            |                              |                         |                         |                            |                       |                            |                     |                            |                            |                          |                          |                            |                            |                            |                      |                     |
| Process Streams Properties                           | Status:                  | Flash<br>Solved                | Fuel Gas<br>Solved         | Inlet Gas<br>Solved          | Inlet NGL<br>Solved     | Inlet Water<br>Solved   | Liquids to Pipeline Solved | NGL<br>Solved         | To Pipeline<br>Solved      | Water<br>Solved     | 1<br>Solved                | 2<br>Solved                | 3<br>Solved              | 4<br>Solved              | 5<br>Solved                | 6<br>Solved                | 7<br>Solved                | 8<br>Solved          | 9<br>Solved         |
| Phase: Vapor                                         | From Block:              | VSSL-101                       | SPLT-101                   | -                            | -                       | -                       | MIX-102                    | VSSL-100              | SPLT-101                   | VSSL-100            | MIX-100                    | VSSL-100                   | PUMP-102                 | MIX-103                  | Inlet Scrubber             | Inlet Scrubber             | SPLT-100                   | SPLT-100             | PUMP-100            |
| Property                                             | To Block:<br>Units       | Flash Gas to Flare             | FG to JT Skid              | SAT-1                        | MIX-100                 | SAT-1                   |                            | SPLT-100              | -                          | MIX-104             | XCHG-100                   | PIPE-1                     | MIX-103                  | RCYL-1                   | VSSL-102                   | VSSL-101                   | PUMP-100                   | PUMP-101             | MIX-102             |
| Temperature                                          | °F                       | 21.0015                        | 119.316                    | 164.416                      |                         | 546.050                 |                            |                       | 119.316                    |                     | 85.0332                    | 85                         |                          |                          | 84.8591                    |                            |                            |                      |                     |
|                                                      |                          |                                |                            |                              |                         | 1000                    |                            |                       |                            |                     |                            |                            |                          |                          |                            |                            |                            |                      |                     |
| Pressure<br>Mole Fraction Vapor                      | psig                     | 200                            | 1345.68                    | 1000                         |                         | 1000                    |                            |                       | 1345.68                    |                     | 1000                       | 1000                       |                          |                          | 997.746                    |                            |                            |                      |                     |


| Molecular Weight Mass Density Mass Flow Std Vapor Volumetric Flow Std Liquid Volumetric Flow Compressibility Specific Gravity                                                                             | lb/lbmol<br>lb/ft^3<br>lb/h<br>MMSCFD<br>sgpm               | 26.2587<br>1.24953<br>246.618<br>0.0855377<br>1.31236<br>0.874661<br>0.906644 | 24.4249<br>7.70922<br>3218.18<br>1.2<br>17.1831<br>0.693666<br>0.843329 | 22.1738<br>3.89126<br>194772<br>80<br>1084.40<br>0.863333<br>0.765605 |                                                                                                         | 18.0153<br>2.19039<br>10.8983<br>0.00550964<br>0.0217865<br>0.773239<br>0.622021            |                                                                                                         |                                                                                                         | 24.4249<br>7.70922<br>272307<br>101.539<br>1453.99<br>0.693666<br>0.843329 | 2<br>7<br>9<br>5              | 24.4333<br>6.23695<br>276041<br>102.895<br>1473.62<br>0.680022<br>0.843619                              | 24.4330<br>6.23788<br>275790<br>102.803<br>1472.29<br>0.679952<br>0.843607 |                                                                                                          |                                                   | 24.4249<br>6.21847<br>275526<br>102.739<br>1471.14<br>0.680512<br>0.843329 |                                                                                                             |                                                                           |                                |                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------|
| Process Streams                                                                                                                                                                                           |                                                             | Flash                                                                         | Fuel Gas                                                                | Inlet Gas                                                             | Inlet NGL                                                                                               | Inlet Water                                                                                 | Liquids to Pipeline                                                                                     | NGL                                                                                                     | To Pipeline                                                                | Water                         | 1                                                                                                       | 2                                                                          | 3                                                                                                        | 4                                                 | 5                                                                          | 6                                                                                                           | 7                                                                         | 8                              | 9                                                                                                       |
| Composition Phase: Nonspecific Liquid Mole Fraction                                                                                                                                                       | Status:<br>From Block:<br>To Block:                         | Solved<br>VSSL-101<br>Flash Gas to Flare                                      | Solved<br>SPLT-101<br>FG to JT Skid                                     | Solved<br><br>SAT-1                                                   | Solved<br><br>MIX-100                                                                                   | Solved<br><br>SAT-1                                                                         | Solved<br>MIX-102<br>                                                                                   | Solved<br>VSSL-100<br>SPLT-100                                                                          | Solved<br>SPLT-101<br>-                                                    | VSSL-100<br>MIX-104           | Solved<br>MIX-100<br>XCHG-100                                                                           | Solved<br>VSSL-100<br>PIPE-1                                               | Solved<br>PUMP-102<br>MIX-103                                                                            | Solved<br>MIX-103<br>RCYL-1                       | Solved<br>Inlet Scrubber<br>VSSL-102                                       | Solved<br>Inlet Scrubber<br>VSSL-101                                                                        | Solved<br>SPLT-100<br>PUMP-100                                            | Solved<br>SPLT-100<br>PUMP-101 | Solved<br>PUMP-100<br>MIX-102                                                                           |
| Methane Ethane Propane i-Butane n-Butane 2,2-Dimethylpropane i-Pentane n-Pentane 2,2-Dimethylbutane 2,3-Dimethylbutane i-C6 3-Methylpentane                                                               |                                                             |                                                                               |                                                                         |                                                                       | 0.305257<br>0.275063<br>0.235648<br>0.0306220<br>0.101387<br>0.000133000<br>0.0177520<br>0.0244090<br>0 |                                                                                             | 0.280228<br>0.243119<br>0.237523<br>0.0352506<br>0.120225<br>0.000138542<br>0.0236250<br>0.0336095<br>0 | 0.280228<br>0.243119<br>0.237523<br>0.0352506<br>0.120225<br>0.000138542<br>0.0236250<br>0.0336095<br>0 |                                                                            |                               | 0.280176<br>0.243092<br>0.237385<br>0.0352524<br>0.120293<br>0.000138934<br>0.0236658<br>0.0336741<br>0 |                                                                            | 0.0542537<br>0.268952<br>0.396569<br>0.0516458<br>0.155187<br>6.38559E-05<br>0.0236575<br>0.0327691<br>0 | 0.155187<br>6.38559E-05                           |                                                                            | 0.279669<br>0.243134<br>0.237805<br>0.0353084<br>0.120423<br>0.000138771<br>0.0236561<br>0.0336445<br>0     | 0.243119<br>0.237523<br>0.0352506<br>0.120225<br>0.000138542<br>0.0236250 |                                | 0.280228<br>0.243119<br>0.237523<br>0.0352506<br>0.120225<br>0.000138542<br>0.0236250<br>0.0336095<br>0 |
| Hexane C7 C8 C9 C10 Nitrogen Carbon Dioxide Water                                                                                                                                                         |                                                             |                                                                               |                                                                         |                                                                       | 0.00972899<br>0<br>0<br>0<br>0<br>0<br>0                                                                |                                                                                             | 0.000358535<br>0<br>0<br>0.00592554<br>0.00512027                                                       |                                                                                                         |                                                                            |                               | 0.0145508<br>0.000338646<br>0.000356648<br>0<br>0<br>0.00592202<br>0.00511927<br>3.43484E-05            |                                                                            | 0.00413657                                                                                               | 0.00199620<br>0.00106097<br>0<br>0<br>0.000284456 |                                                                            | 0.000351452<br>0<br>0<br>0.00590490<br>0.00511558                                                           | 0.000344168<br>0.000358535<br>0<br>0<br>0.00592554                        |                                | 0.0144994<br>0.000344168<br>0.000358535<br>0<br>0<br>0.00592554<br>0.00512027<br>3.43410E-05            |
| Oxygen<br>MeOH                                                                                                                                                                                            |                                                             |                                                                               |                                                                         |                                                                       | 0                                                                                                       |                                                                                             | 0                                                                                                       | 0                                                                                                       |                                                                            |                               | 0 0                                                                                                     |                                                                            | 0                                                                                                        | 0                                                 |                                                                            | 0 0                                                                                                         | 0                                                                         |                                | 0 0                                                                                                     |
| Process Streams                                                                                                                                                                                           |                                                             | Flash                                                                         | Fuel Gas                                                                | Inlet Gas                                                             | Inlet NGL                                                                                               | Inlet Water                                                                                 | Liquids to Pipeline                                                                                     | NGL                                                                                                     | To Pipeline                                                                | Water                         | 1                                                                                                       | 2                                                                          | 3                                                                                                        | 4                                                 | 5                                                                          | 6                                                                                                           | 7                                                                         | 8                              | 9                                                                                                       |
| Properties Phase: Nonspecific Liquid Property                                                                                                                                                             | Status: From Block: To Block: Units                         | Solved<br>VSSL-101<br>Flash Gas to Flare                                      | Solved<br>SPLT-101<br>FG to JT Skid                                     | Solved<br><br>SAT-1                                                   | Solved<br><br>MIX-100                                                                                   | Solved<br><br>SAT-1                                                                         | Solved<br>MIX-102<br>                                                                                   | Solved<br>VSSL-100<br>SPLT-100                                                                          | Solved<br>SPLT-101<br>                                                     | Solved<br>VSSL-100<br>MIX-104 | Solved<br>MIX-100<br>XCHG-100                                                                           | Salved<br>VSSL-100<br>PIPE-1                                               | Solved<br>PUMP-102<br>MIX-103                                                                            | Solved<br>MIX-103<br>RCYL-1                       | Solved<br>Inlet Scrubber<br>VSSL-102                                       | Solved<br>Inlet Scrubber<br>VSSL-101                                                                        | Solved<br>SPLT-100<br>PUMP-100                                            | Solved<br>SPLT-100<br>PUMP-101 | Solved<br>PUMP-100<br>MIX-102                                                                           |
| Temperature Pressure Mole Fraction Vapor Molecular Weight Mass Density Mass Flow Std Vapor Volumetric Flow Std Liquid Volumetric Flow Compressibility Specific Gravity                                    | °F<br>psig<br>lb/lbmol<br>lb/ft^3<br>lb/h<br>MMSCFD<br>sgpm |                                                                               |                                                                         |                                                                       | 55.3737<br>900<br>0<br>35.1215<br>26.8567<br>207853<br>53.8999<br>939.384<br>0.216416<br>0.430611       |                                                                                             | 92.1443<br>1350<br>0<br>37.1724<br>26.7779?<br>127497<br>31.2382<br>554.167<br>0.319907?<br>0.429349?   | 85<br>1000<br>0<br>37.1724<br>26.4590?<br>127497<br>31.2382<br>554.167<br>0.243886?<br>0.424234?        |                                                                            |                               | 85.0332<br>1000<br>0<br>37.1800<br>26.4627?<br>126597<br>31.0111<br>550.191<br>0.243887?<br>0.424294?   |                                                                            | 31.5138<br>1000<br>0<br>43.8647<br>33.7372<br>650.229<br>0.135007<br>2.64496<br>0.250285<br>0.540931     | 1000<br>0<br>43.8647                              |                                                                            | 84.8591<br>997.746<br>0<br>37.1919<br>26.4836?<br>264.874<br>0.0648627<br>1.15100<br>0.243308?<br>0.424630? | 0<br>37.1724<br>26.4590?<br>127497<br>31.2382<br>554.167<br>0.243886?     |                                | 92.1443<br>1350<br>0<br>37.1724<br>26.7779?<br>127497<br>31.2382<br>554.167<br>0.319907?<br>0.429349?   |
| Process Streams                                                                                                                                                                                           |                                                             | Flash                                                                         | Fuel Gas                                                                | Inlet Gas                                                             | Inlet NGL                                                                                               | Inlet Water                                                                                 | Liquids to Pipeline                                                                                     | NGL                                                                                                     | To Pipeline                                                                | Water                         | 1                                                                                                       | 2                                                                          | 3                                                                                                        | 4                                                 | 5                                                                          | 6                                                                                                           | 7                                                                         | 8                              | 9                                                                                                       |
| Composition Phase: Aqueous Liquid Mole Fraction                                                                                                                                                           | Status:<br>From Block:<br>To Block:                         | Solved<br>VSSL-101<br>Flash Gas to Flare                                      | Solved<br>SPLT-101<br>FG to JT Skid                                     | Solved<br><br>SAT-1                                                   | Solved<br><br>MIX-100                                                                                   | Salved<br><br>SAT-1                                                                         | Solved<br>MIX-102<br>                                                                                   | Solved<br>VSSL-100<br>SPLT-100                                                                          | Solved<br>SPLT-101<br>                                                     | Solved<br>VSSL-100<br>MIX-104 | Solved<br>MIX-100<br>XCHG-100                                                                           | Solved<br>VSSL-100<br>PIPE-1                                               | Solved<br>PUMP-102<br>MIX-103                                                                            | Solved<br>MIX-103<br>RCYL-1                       | Solved<br>Inlet Scrubber<br>VSSL-102                                       | Solved<br>Inlet Scrubber<br>VSSL-101                                                                        | Solved<br>SPLT-100<br>PUMP-100                                            | Solved<br>SPLT-100<br>PUMP-101 | Solved<br>PUMP-100<br>MIX-102                                                                           |
| Methane Ethane Propane i-Butane n-Butane 2,2-Dimethylpropane i-Pentane n-Pentane 2,2-Dimethylbutane 2,3-Dimethylbutane i-C6 3-Methylpentane Hexane C7 C8 C9 C10 Nitrogen Carbon Dioxide Water Oxygen MeOH |                                                             | Flash                                                                         | Fuel Gas                                                                |                                                                       |                                                                                                         | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Liquids to Pipeline                                                                                     | NGL                                                                                                     | To Pipeline                                                                |                               |                                                                                                         |                                                                            |                                                                                                          |                                                   |                                                                            |                                                                                                             |                                                                           |                                |                                                                                                         |

| Properties                 | Status:     |                    |               |       |         |            |         |          |          |          |          |          |          |         |                |                |          |          |          |
|----------------------------|-------------|--------------------|---------------|-------|---------|------------|---------|----------|----------|----------|----------|----------|----------|---------|----------------|----------------|----------|----------|----------|
| Phase: Aqueous Liquid      | From Block: | VSSL-101           | SPLT-101      | -     | -       | -          | MIX-102 | VSSL-100 | SPLT-101 | VSSL-100 | MIX-100  | VSSL-100 | PUMP-102 | MIX-103 | Inlet Scrubber | Inlet Scrubber | SPLT-100 | SPLT-100 | PUMP-100 |
|                            | To Block:   | Flash Gas to Flare | FG to JT Skid | SAT-1 | MIX-100 | SAT-1      |         | SPLT-100 | -        | MIX-104  | XCHG-100 | PIPE-1   | MIX-103  | RCYL-1  | VSSL-102       | VSSL-101       | PUMP-100 | PUMP-101 | MIX-102  |
| Property                   | Units       |                    |               |       |         |            |         |          |          |          |          |          |          |         |                |                |          |          |          |
| Temperature                | °F          |                    |               |       |         | 546.050    |         |          |          |          |          |          |          |         |                |                |          |          |          |
| Pressure                   | psig        |                    |               |       |         | 1000       |         |          |          |          |          |          |          |         |                |                |          |          |          |
| Mole Fraction Vapor        |             |                    |               |       |         | 0          |         |          |          |          |          |          |          |         |                |                |          |          |          |
| Molecular Weight           | lb/lbmol    |                    |               |       |         | 18.0153    |         |          |          |          |          |          |          |         |                |                |          |          |          |
| Mass Density               | lb/ft^3     |                    |               |       |         | 46.1840    |         |          |          |          |          |          |          |         |                |                |          |          |          |
| Mass Flow                  | lb/h        |                    |               |       |         | 2.43501    |         |          |          |          |          |          |          |         |                |                |          |          |          |
| Std Vapor Volumetric Flow  | MMSCFD      |                    |               |       |         | 0.00123102 |         |          |          |          |          |          |          |         |                |                |          |          |          |
| Std Liquid Volumetric Flow | sgpm        |                    |               |       |         | 0.00486777 |         |          |          |          |          |          |          |         |                |                |          |          |          |
| Compressibility            |             |                    |               |       |         | 0.0366728  |         |          |          |          |          |          |          |         |                |                |          |          |          |
| Specific Gravity           |             |                    |               |       |         | 0.740500   |         |          |          |          |          |          |          |         |                |                |          |          |          |

| 40                                              |                                | 40                       | 44                                        | 45                                  | 10                                 | 45                             | 40                           | 40                                 | 24                        | 00                                |                              | 0.1                        | 0.5                           | 00           | 07                                 | 00                                | 400                   |
|-------------------------------------------------|--------------------------------|--------------------------|-------------------------------------------|-------------------------------------|------------------------------------|--------------------------------|------------------------------|------------------------------------|---------------------------|-----------------------------------|------------------------------|----------------------------|-------------------------------|--------------|------------------------------------|-----------------------------------|-----------------------|
| 10<br>Solved                                    | 11<br>Solved                   | 12<br>Solved             | 14<br>Solved                              | 15<br>Solved                        | 16<br>Solved                       | 17<br>Solved                   | 18<br>Solved                 | 19<br>Solved                       | 21<br>Solved              | 22<br>Solved                      | 23<br>Solved                 | 24<br>Solved               | 25<br>Solved                  | 26<br>Solved | 27<br>Solved                       | 28<br>Solved                      | 109<br>Solved         |
| VSSL-102 Gas Compressors - 1 Stage              | VSSL-101<br>PUMP-102           | VSSL-102<br>             | Gas Compressors - 1 Stage<br>FAXR-200     | Discharge Coalescer<br>SPLT-101     | Discharge Coalescer<br>MIX-102     | XCHG-100<br>VSSL-100           | RCYL-1<br>VSSL-100           | PIPE-1<br>Inlet Scrubber           | FAXR-200<br>PIPE-2        | JT Skid Drain<br>RCYL-2           | RCYL-2<br>VSSL-101           | SAT-1<br>MIX-100           | VSSL-101<br>MIX-104           |              | VLVE-100<br>Water to Flare KOD     | PIPE-2<br>Discharge Coalescer     | PUMP-101<br>MIX-102   |
| 0.611164                                        | 0.0542537                      | 0.279669                 | 0.611164                                  | 0.611164                            |                                    | 0.534363                       | 0.0542517                    | 0.610954                           | 0.611164                  | 0.186585                          | 0.186585                     | 0.688709                   |                               |              |                                    | 0.611164                          |                       |
| 0.207189<br>0.105314                            | 0.268952<br>0.396569           | 0.243134<br>0.237805     | 0.207189<br>0.105314                      | 0.207189<br>0.105314                |                                    | 0.215526<br>0.135926           | 0.268966<br>0.396580         | 0.207212<br>0.105397               | 0.207189<br>0.105314      | 0.326351<br>0.319621              | 0.326351<br>0.319621         | 0.175417<br>0.0687449      |                               |              |                                    | 0.207189<br>0.105314              |                       |
| 0.00944963                                      | 0.0516458                      | 0.0353084                | 0.00944963                                | 0.00944963                          |                                    | 0.0154386                      | 0.0516441                    | 0.00946594                         | 0.00944963                | 0.0335667                         | 0.0335667                    | 0.00520961                 |                               |              |                                    | 0.00944963                        |                       |
| 0.0273928<br>2.76478E-05                        | 0.155187<br>6.38559E-05        | 0.120423<br>0.000138771  | 0.0273928<br>2.76478E-05                  | 0.0273928<br>2.76478E-05            |                                    | 0.0489651<br>5.35349E-05       | 0.155175<br>6.37895E-05      | 0.0274515<br>2.77179E-05           | 0.0273928<br>2.76478E-05  | 0.0920882<br>0                    | 0.0920882<br>0               | 0.0136490<br>0             | )<br>)                        |              |                                    | 0.0273928<br>2.76478E-05          | 0.12022<br>0.00013854 |
| 0.00331410                                      | 0.0236575                      | 0.0236561                | 0.00331410                                | 0.00331410                          |                                    | 0.00804166                     | 0.0236539                    | 0.00332694                         | 0.00331410                | 0.0110923                         | 0.0110923                    | 0.00149989                 |                               |              |                                    | 0.00331410                        |                       |
| 0.00415797<br>0<br>0<br>0                       | 0.0327691<br>0<br>0<br>0       | 0.0336445<br>0<br>0<br>0 | 0.00415797<br>0<br>0<br>0                 | 0.00415797<br>0<br>0<br>0           |                                    | 0.0110140<br>0<br>0<br>0       | 0.0327644<br>0<br>0<br>0     | 0.00417658<br>0<br>0<br>0          | 0.00415797<br>0<br>0<br>0 | 0.0148637<br>0<br>0<br>0          | 0.0148637<br>0<br>0<br>0     | 0.00198985<br>0<br>0<br>0  | )<br>)<br>)                   |              |                                    | 0.00415797<br>0<br>0<br>0         | 0.033609              |
| 0.000928472                                     | 0.00941854                     | 0.0144728                | 0.000928472                               | 0.000928472                         |                                    | 0.00409234                     | 0<br>0.00941551              | 0.000937018                        | 0.000928472               | 0.00217182                        | 0<br>0.00217182              | 0.000294975                | )<br>;                        |              |                                    | 0.000928472                       | 0.014499              |
| 1.26163E-05                                     | 0.00199620                     | 0.000341601              | 1.26163E-05                               | 1.26163E-05                         |                                    | 8.81211E-05                    | 0.00199698                   | 1.28239E-05                        | 1.26163E-05               | 0.00159115                        | 0.00159115                   | 0.000147488                | 3                             |              |                                    | 1.26163E-05                       | 0.00034416            |
| 7.01281E-06                                     | 0.00106097                     | 0.000351452              | 7.01281E-06                               | 7.01281E-06                         |                                    | 8.81211E-05                    | 0.00106143                   | 7.23013E-06                        | 7.01281E-06<br>0          | 0.000773993                       | 0.000773993                  | 0.000147488                | 3                             |              |                                    | 7.01281E-06                       | 0.00035853            |
| 0                                               | 0                              | 0                        | 0                                         | 0                                   |                                    | 0                              | 0                            | 0                                  | 0                         | 0                                 | 0                            | 0                          | )                             |              |                                    | 0                                 |                       |
| 0.0239304                                       | 0.000284456                    |                          | 0.0239304                                 | 0.0239304                           |                                    |                                | 0.000284440                  | 0.0239191                          | 0.0239304                 | 0.00230596                        | 0.00230596                   | 0.0330475                  |                               |              |                                    | 0.0239304                         |                       |
| 0.00705760<br>5.51525E-05                       | 0.00413657<br>4.44179E-06      |                          | 0.00705760<br>5.51525E-05                 | 0.00705760<br>5.51525E-05           |                                    | 0.00660766<br>5.03385E-05      | 0.00413774<br>4.44000E-06    | 0.00705637<br>5.51393E-05          | 0.00705760<br>5.51525E-05 | 0.00898666<br>2.01722E-06         | 0.00898666<br>2.01722E-06    | 0.0110592<br>8.42512E-05   |                               |              |                                    | 0.00705760<br>5.51525E-05         |                       |
| 0                                               | 0                              | 0                        | 0                                         | 0                                   |                                    | 0                              | 0                            | 0                                  | 0                         | 0                                 | 0                            | 0                          | )<br>)                        |              |                                    | 0                                 |                       |
|                                                 |                                |                          |                                           |                                     |                                    |                                |                              |                                    |                           | ·                                 |                              |                            |                               |              |                                    |                                   |                       |
| 10<br>Solved                                    | 11<br>Solved                   | 12<br>Solved             | 14<br>Solved                              | 15<br>Solved                        | 16<br>Solved                       | 17<br>Solved                   | 18<br>Solved                 | 19<br>Solved                       | 21<br>Solved              | 22<br>Solved                      | 23<br>Solved                 | 24<br>Solved               | 25<br>Solved                  | 26<br>Solved | 27<br>Solved                       | 28<br>Solved                      | 109<br>Solved         |
| VSSL-102<br>Gas Compressors - 1 Stage           | VSSL-101<br>PUMP-102           | VSSL-102<br>             | Gas Compressors - 1 Stage<br>FAXR-200     | Discharge Coalescer<br>SPLT-101     | Discharge Coalescer<br>MIX-102     | XCHG-100<br>VSSL-100           | RCYL-1                       | PIPE-1<br>Inlet Scrubber           | FAXR-200<br>PIPE-2        | JT Skid Drain<br>RCYL-2           | RCYL-2<br>VSSL-101           | SAT-1<br>MIX-100           | VSSL-101                      | MIX-104      | VLVE-100                           | PIPE-2<br>Discharge Coalescer     | PUMP-101<br>MIX-102   |
| 84.8591                                         | 21.0015                        | 84.8591                  | 129.955                                   | 119.316                             |                                    | 85.0332                        | 31.5135                      | 84.8591                            | 120*                      | 34.1988                           | 34.1988                      | 164.416                    | <b>3</b>                      |              |                                    | 119.316                           |                       |
| 997.746                                         | 200                            | 997.746                  | 1350*                                     | 1345.68                             | 1345.68                            | 1000                           | 1000                         | 997.746                            | 1350                      | 295                               | 295                          | 1000                       |                               | 200          | 0*                                 |                                   |                       |
| 1<br>24.4249                                    | 0<br>43.8647                   | 0<br>37.1919             | 1<br>24.4249                              | 1<br>24.4249                        |                                    | 0.768412<br>27.3853            | 0<br>43.8641                 | 0.999369<br>24.4330                | 1<br>24.4249              | 0.278137<br>36.9714               | 0.278137<br>36.9714          | 22.1735                    | ;                             |              |                                    | 1<br>24.4249                      | 37.172                |
| 6.21847                                         | 33.5184                        | 26.4836?                 | 7.36228                                   | 7.70922                             |                                    | 8.20990?                       | 33.7370                      | 6.22304?                           | 7.71428                   | 7.54263                           | 7.54263                      | 3.89120                    |                               |              |                                    | 7.70922                           |                       |
| 275526<br>102.739                               | 650.229<br>0.135007            | 0                        | 275526<br>102.739                         | 275526<br>102.739                   | 0                                  | 402638<br>133.907              | 649.997<br>0.134961          | 275790<br>102.803                  | 275526<br>102.739         | 631.974<br>0.155682               | 631.974<br>0.155682          | 194785<br>80.0067          |                               | 0            | 0                                  | 275526<br>102.739                 |                       |
| 1471.14                                         | 2.64496                        | 0                        | 1471.14                                   | 1471.14                             | 0                                  | 2023.81                        | 2.64403                      | 1472.29                            | 1471.14                   | 2.80632                           | 2.80632                      | 1084.43                    |                               | 0            | 0                                  | 1471.14                           |                       |
| 0.680512                                        | 0.0544683                      |                          | 0.715512                                  | 0.693666                            |                                    | 0.579018?                      | 0.250283                     | 0.680236?                          | 0.694591                  | 0.286420                          | 0.286420                     |                            |                               |              |                                    | 0.693666                          |                       |
| 0.843329                                        | 0.537423                       |                          | 0.843329                                  | 0.843329                            |                                    |                                | 0.540928                     |                                    | 0.843329                  |                                   |                              | 0.765593                   |                               |              |                                    | 0.843329                          |                       |
| 10                                              | 11                             | 12                       | 14                                        | 15                                  | 16                                 | 17                             | 18                           | 19                                 | 21                        | 22                                | 23                           | 24                         | 25                            | 26           | 27                                 | 28                                | 109                   |
| Solved<br>VSSL-102<br>Gas Compressors - 1 Stage | Solved<br>VSSL-101<br>PUMP-102 | Solved<br>VSSL-102<br>   | Solved Gas Compressors - 1 Stage FAXR-200 | Solved Discharge Coalescer SPLT-101 | Solved Discharge Coalescer MIX-102 | Solved<br>XCHG-100<br>VSSL-100 | Solved<br>RCYL-1<br>VSSL-100 | Solved<br>PIPE-1<br>Inlet Scrubber | FAXR-200<br>PIPE-2        | Solved<br>JT Skid Drain<br>RCYL-2 | Solved<br>RCYL-2<br>VSSL-101 | Solved<br>SAT-1<br>MIX-100 | Solved<br>VSSL-101<br>MIX-104 |              | Solved VLVE-100 Water to Flare KOD | Solved PIPE-2 Discharge Coalescer | PUMP-101<br>MIX-102   |
| 0.611164                                        |                                |                          | 0.611164                                  | 0.611164                            |                                    | 0.610971                       |                              | 0.611164                           | 0.611164                  | 0.471544                          | 0.471544                     | 0.688709                   |                               |              |                                    | 0.611164                          |                       |
| 0.207189<br>0.105314                            |                                |                          | 0.207189<br>0.105314                      | 0.207189<br>0.105314                |                                    | 0.207218<br>0.105348           |                              | 0.207189<br>0.105314               | 0.207189<br>0.105314      | 0.354491<br>0.130863              | 0.354491<br>0.130863         | 0.175417<br>0.0687449      |                               |              |                                    | 0.207189<br>0.105314              |                       |
| 0.00944963                                      |                                |                          | 0.00944963                                | 0.00944963                          |                                    | 0.00946698                     |                              | 0.00944963                         | 0.00944963                | 0.00585709                        | 0.00585709                   | 0.00520961                 |                               |              |                                    | 0.00944963                        |                       |
| 0.0273928<br>2.76478E-05                        |                                |                          | 0.0273928<br>2.76478E-05                  | 0.0273928<br>2.76478E-05            |                                    | 0.0274679<br>2.77970E-05       |                              | 0.0273928<br>2.76478E-05           | 0.0273928<br>2.76478E-05  | 0.0123969<br>0                    | 0.0123969                    | 0.0136490                  | )<br>)                        |              |                                    | 0.0273928<br>2.76478E-05          |                       |
| 0.00331410                                      |                                |                          | 0.00331410                                | 0.00331410                          |                                    | 0.00333277                     |                              | 0.00331410                         | 0.00331410                |                                   | 0.000617673                  | 0.00149989                 | )                             |              |                                    | 0.00331410                        |                       |
| 0.00415797                                      |                                |                          | 0.00415797                                | 0.00415797                          |                                    | 0.00418456<br>0                |                              | 0.00415797                         | 0.00415797<br>0           | 0.000664506                       | 0.000664506                  | 0.00198985                 | ;<br>)                        |              |                                    | 0.00415797                        |                       |
| 0                                               |                                |                          | 0                                         | 0                                   |                                    | 0                              |                              | 0                                  | 0                         | 0                                 | 0                            | 0                          | )<br>)                        |              |                                    | 0                                 |                       |
| 0                                               |                                |                          | 0                                         | 0                                   |                                    | 0                              |                              | 0                                  | 0                         | 0                                 | 0                            | 0                          | )                             |              |                                    | 0                                 |                       |
| 0.000928472                                     |                                |                          | 0.000928472                               | 0.000928472                         |                                    | 0.000940318                    |                              | 0.000928472                        | 0.000928472               | 2.84156E-05                       | 2.84156E-05                  | 0.000294975                | )<br>}                        |              |                                    | 0.000928472                       |                       |
| 1.26163E-05                                     |                                |                          | 1.26163E-05                               | 1.26163E-05                         |                                    | 1.26169E-05                    |                              |                                    | 1.26163E-05               | 7.67933E-06                       |                              | 0.000147488                |                               |              |                                    | 1.26163E-05                       |                       |
| 7.01281E-06                                     |                                |                          | 7.01281E-06                               | 7.01281E-06                         |                                    | 7.19115E-06<br>0               |                              | 7.01281E-06                        | 7.01281E-06               | 1.18920E-06                       | 1.18920E-06                  | 0.000147488                | }<br>)                        |              |                                    | 7.01281E-06<br>0                  |                       |
| 0                                               |                                |                          | 0                                         | 0                                   |                                    | 0                              |                              | 0                                  | 0                         | 0                                 | 0                            | 0                          | )                             |              |                                    | 0                                 |                       |
| 0.0239304<br>0.00705760                         |                                |                          | 0.0239304<br>0.00705760                   | 0.0239304<br>0.00705760             |                                    | 0.0239114<br>0.00705623        |                              | 0.0239304<br>0.00705760            | 0.0239304<br>0.00705760   | 0.00726205<br>0.0162622           | 0.00726205<br>0.0162622      | 0.0330475<br>0.0110592     |                               |              |                                    | 0.0239304<br>0.00705760           |                       |
| 5.51525E-05                                     |                                |                          | 5.51525E-05                               | 5.51525E-05                         |                                    | 5.51577E-05                    |                              |                                    | 5.51525E-05               | 4.34807E-06                       |                              | 8.42512E-05                |                               |              |                                    | 5.51525E-05                       |                       |
| 0                                               |                                |                          | 0                                         | 0                                   |                                    | 0                              |                              | 0                                  | 0                         | 0                                 | 0                            | 0                          | )<br>)                        |              |                                    | 0                                 |                       |
|                                                 |                                |                          |                                           |                                     |                                    |                                |                              |                                    |                           |                                   |                              |                            |                               |              |                                    | ·                                 |                       |
| 10<br>Solved                                    | 11<br>Solved                   | 12<br>Solved             | 14<br>Solved                              | 15<br>Solved                        | 16<br>Solved                       | 17<br>Solved                   | 18<br>Solved                 | 19<br>Solved                       | 21<br>Solved              | 22<br>Solved                      | 23<br>Solved                 | 24<br>Solved               | 25<br>Solved                  | 26<br>Solved | 27<br>Solved                       | 28<br>Solved                      | 109<br>Solved         |
| VSSL-102 Gas Compressors - 1 Stage              | VSSL-101<br>PUMP-102           | VSSL-102<br>             | Gas Compressors - 1 Stage<br>FAXR-200     | Discharge Coalescer SPLT-101        | Discharge Coalescer<br>MIX-102     | XCHG-100<br>VSSL-100           | RCYL-1                       | PIPE-1<br>Inlet Scrubber           |                           | JT Skid Drain<br>RCYL-2           | RCYL-2<br>VSSL-101           | SAT-1<br>MIX-100           | VSSL-101                      | MIX-104      | VLVE-100<br>Water to Flare KOD     | PIPE-2                            | PUMP-101<br>MIX-102   |
| 84.8591<br>997.746                              |                                |                          | 129.955<br>1350                           | 119.316<br>1345.68                  |                                    | 85.0332<br>1000                |                              | 84.8591<br>997.746                 | 120<br>1350               | 34.1988<br>295                    | 34.1988<br>295               |                            |                               |              |                                    | 119.316<br>1345.68                |                       |
| 1                                               |                                |                          | 1330                                      | 1545.06                             |                                    | 1                              |                              | 1                                  | 1                         | 295                               | 295                          | 1000                       | •                             |              |                                    | 1343.00                           |                       |

| No.      | ed Solved Solved                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| No.      | 100 PIPE-2 PUMP-101                                        |
| 0.289589   0.289589   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556   0.287556      |                                                            |
| 0.586568   0.0257558   0.0257558   0.0255526   0.0255526   0.0255526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.025526   0.0255   |                                                            |
| 0.155167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                            |
| \$ \$8595 -6   0.000198974   0.000198974   0.000198974   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0.00019897   0. |                                                            |
| 0.0325991 0.0325991 0.0325945 0.032547 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.0225347 0.02253   |                                                            |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                            |
| 0.00941654   0.001958260   0.001958260   0.001958260   0.001958260   0.001958260   0.001958260   0.001958260   0.001958260   0.001958260   0.001958260   0.001958260   0.001958260   0.00195776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00197776   0.00     |                                                            |
| 0.00941884                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                            |
| 0.00190820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                            |
| 0.00254456                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                            |
| 0.000284456                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                            |
| 0.0041387   0.0041387   0.00511374   0.00511388   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.0061837   0.00   |                                                            |
| 4.44179E-08   3.43484E-05   4.44000E-08   3.42924E-05   1.11914E-08   1.   |                                                            |
| Solve   Solv     |                                                            |
| Solver   S     |                                                            |
| Solver   S     |                                                            |
| VSSL-102 Gas Compressors - 1 Stage         VSSL-102 PUMP-102         Compressors - 1 Stage         Discharge Coalescer SPLT-101         Discharge Coalescer VSSL-100         VCH-10 VSSL-100         PIPE-1 VSSL-100         FAXR-200         JT Skid Drain RCYL-2 VSSL-101         SAT-1 MIX-104         VSSL-101 MIX-104         VLVE-100 Water to VSSL-101           21.0015         21.0015         85.0332         31.5135         84.8591         34.1988         34.1988         34.1988         34.1988         34.1988         34.1988         34.1988         34.1988         34.1988         34.1988         34.1988         34.1988         34.1988         34.1988         34.1988         34.1988         34.1988         34.1988         34.1988         34.1988         34.1988         34.1988         34.1988         34.1988         34.1988         34.1988         34.1988         34.1988         34.1988         34.1988         34.1988         34.1988         34.1988         34.1988         34.1988         34.1988         34.1988         34.1988         34.1988         34.1988         34.1988         34.1988         34.1988         34.1988         34.1988         34.1988         34.1988         34.1988         34.1988         34.1988         34.1988         34.1988         34.1988         34.1988         34.1988         34.1988         34.1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28 109                                                     |
| 21,0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ed Solved Solved                                           |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100 PIPE-2 PUMP-101<br>are KOD Discharge Coalescer MIX-102 |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                            |
| 43.8647   37.1800   43.8641   37.1919   41.1716   41.1716   41.1716   33.5184   26.4627?   33.7370   26.4836?   31.7096   31.7096   31.7096   650.229   126597   649.997   264.874   508.026   508.026   508.026   60.135007   31.0111   0.134961   0.0648627   0.112381   0.112381   0.112381   0.0544683   0.0544683   0.0544683   0.0544683   0.2433887?   0.250283   0.243308?   0.0758696   0.0758696   0.0758696   0.537423   0.537423   0.424294?   0.540928   0.424630?   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508421   0.508     |                                                            |
| 33.5184   26.4627? 33.7370 26.4836? 31.7096 31.7096 650.229   126597 649.997 264.874 508.026 508.026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                            |
| 0.135007 2.64496 550.191 2.64403 1.15100 2.14443 2.14443 0.0544683 0.537423  0.1012381 0.112381 0.112381 0.112381 0.112381 0.112381 0.112381 0.112381 0.112381 0.112381 0.112381 0.112381 0.112381 0.112381 0.112381 0.112381 0.112381 0.112381 0.112381 0.0544683 0.0544683 0.0544683 0.0544683 0.0544683 0.0544683 0.0544683 0.0544630? 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.508421 0.5084   |                                                            |
| 0.0544683 0.537423       0.243887? 0.250283 0.243308? 0.424630?       0.0758696 0.0758696 0.0758696 0.508421         0.537423       0.537423       0.540928 0.424630?       0.508421 0.508421             10       11       12       14       15       16       17       18       19       21       22       23       24       25       26         Solved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                            |
| 0.537423     0.424294?     0.540928     0.424630?     0.508421     0.508421     0.508421       10     11     12     14     15     16     17     18     19     21     22     23     24     25     26       Solved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                            |
| Solved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                            |
| Solved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                            |
| ANTANIA TILLARIA TILL   | 28 109                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ed Solved Solved                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ed Solved Solved                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | od Solved Solved<br>100 PIPE-2 PUMP-101                    |

7/7/2025



Silurian CS 7/7/2025

| Process Streams                                     |                          | API Liquid Loadout         | API Vapor                  | Cold Sep NGL             | Flash Tank Gas                 | H2O                        | KMT Cold Sep Water Flowrate        | MeOH              | NGL Stream from KMT | Model                  | NGL to GL                  | Post-JT                    | Pre-JT                     | To Fuel                    | Water               | 1                          | 2                          | 3                          | 4                            |
|-----------------------------------------------------|--------------------------|----------------------------|----------------------------|--------------------------|--------------------------------|----------------------------|------------------------------------|-------------------|---------------------|------------------------|----------------------------|----------------------------|----------------------------|----------------------------|---------------------|----------------------------|----------------------------|----------------------------|------------------------------|
| mposition<br>se: Total                              | Status:<br>From Block:   | Solved<br>MIX-103          | Solved<br>VSSL-201         | Solved<br>Cold Sep       | Solved<br>Flash Gas to Flare   | Solved                     | Solved<br>                         | Solved<br>        | Solved<br>          |                        | Solved<br>VLVE-100         | Solved<br>JT Valve 1       | Solved<br>XPC-GL           | Solved<br>Final Cut        | Solved<br>Cold Sep  | Solved<br>FG to JT Skid    | Solved<br>VLVE-101         | Solved<br>XPC-GL           | Solved Gas Gas 2 @ XPC       |
|                                                     | To Block:                | -                          | -                          | VLVE-100                 | VSSL-101                       | SAT-1                      | VSSL-101                           | MIX-100           | JT Skid Drain       |                        | XPC-GL                     | Cold Sep                   | JT Valve 1                 |                            | LCV                 | VSSL-100                   |                            | VLVE-101                   | XPC-GL                       |
| e Fraction<br>nane                                  |                          | 4.13162E-08                | 0.195147                   | 0.18400                  | 0 0.466033                     | 0*                         | 0.00133780                         | 0*                | (                   | 0.186585*              | 0.184000                   | 0.610508                   | 0.610508                   | 0.763850                   | 0.00133414          | 0.611164                   | 0.184000                   | 0.184000                   | 0.61050                      |
| ane                                                 |                          | 1.36531E-07                | 0.399120                   | 0.33329                  |                                | 0*<br>0*                   | 0.000775594                        | 0*                |                     | 0.326351*              | 0.333297                   | 0.206967                   | 0.206967                   | 0.161620                   |                     | 0.207189                   | 0.333297                   | 0.333297                   | 0.20696                      |
| oane<br>tane                                        |                          | 3.49863E-08<br>1.87662E-09 |                            | 0.30962<br>0.032880      |                                | 0*                         | 0.000116392<br>6.74507E-06         |                   |                     | 0.319621*<br>.0335667* | 0.309627<br>0.0328808      | 0.105201<br>0.00943948     | 0.105201<br>0.00943948     | 0.0317773<br>0.00101962    |                     | 0.105314<br>0.00944963     | 0.309627<br>0.0328808      | 0.309627<br>0.0328808      | 0.10520<br>0.0094394         |
| Butane<br>-Dimethylpropane                          |                          | 3.44020E-09<br>4.08394E-13 |                            | 0.097406<br>9.96740E-0   |                                | 0*<br>0*                   | 6.49197E-06                        |                   | 0.                  | .0920882*              | 0.0974061<br>9.96740E-05   | 0.0273634<br>2.76182E-05   | 0.0273634<br>2.76182E-05   | 0.00220461                 |                     | 0.0273928                  | 0.0974061<br>9.96740E-05   | 0.0974061<br>9.96740E-05   | 0.027363<br>2.76182E-0       |
| entane                                              |                          | 1.53041E-10                |                            | 0.012287                 |                                | 0*                         | 4.72110E-09<br>2.90185E-07         | 0*                | 0.                  | .0110923*              | 0.0122873                  | 0.00331055                 | 0.00331055                 |                            |                     | 2.76478E-05<br>0.00331410  | 0.0122873                  | 0.0122873                  | 0.0033105                    |
| entane<br>Dimethylbutane                            |                          | 1.17946E-11                | 0.000128990                | 0.015486                 | 5 0.000844387<br>0 0           | 0*<br>0*                   | 3.20486E-08                        | 0*<br>0*          | 0.                  | .0148637*<br>0*        | 0.0154865<br>0             | 0.00415351<br>0            | 0.00415351<br>0            | 8.27616E-05                | 3.06371E-08         | 0.00415797<br>0            | 0.0154865<br>0             | 0.0154865<br>0             | 0.0041535                    |
| -Dimethylbutane                                     |                          | 0                          | 0                          |                          | 0 0                            | 0*                         | 0                                  | 0*                |                     | 0*                     | 0                          | 0                          | 0                          | 0                          | 0                   | 0                          | 0                          | 0                          |                              |
| 6<br>⁄lethylpentane                                 |                          | 0                          | 0                          |                          | 0 0                            | 0*<br>0*                   | 0                                  | 0*<br>0*          |                     | 0*<br>0*               | 0                          | 0                          | 0                          | 0                          | 0                   | 0                          | 0                          | 0                          |                              |
| xane                                                |                          |                            | 9.11945E-06                | 0.0034989                |                                | 0*                         | 1.31058E-09                        | 0*                |                     | 00217182*              | 0.00349895                 | 0.000927475                |                            |                            |                     | 0.000928472                | 0.00349895                 | 0.00349895                 | 0.00092747                   |
|                                                     |                          |                            | 7.61977E-07<br>3.32382E-08 | 4.76473E-0<br>2.65026E-0 |                                | 0*<br>0*                   | 7.50660E-12<br>2.13103E-13         | 0*<br>0*          |                     | 00159115*<br>00773993* | 4.76473E-05<br>2.65026E-05 | 1.26028E-05<br>7.00528E-06 | 1.26028E-05<br>7.00528E-06 |                            |                     | 1.26163E-05<br>7.01281E-06 | 4.76473E-05<br>2.65026E-05 |                            | 1.26028E-0<br>7.00528E-0     |
|                                                     |                          | 0                          | 0                          |                          | 0 0                            | 0*                         | 0                                  | 0*                |                     | 0*                     | 0                          | 0                          | 0                          | 0                          | 0                   | 0                          | 0                          | 0                          |                              |
| 0<br>rogen                                          |                          | 0<br>1.70573E-10           | 0.00176125                 | 0.0019374                | 0                              | 0*<br>0*                   | 0<br>3.36602E-05                   | 0*<br>0*          | 0.0                 | 0*<br>00230596*        | 0.00193742                 | 0.0239047                  | 0.0239047                  | 0.0318013                  | 0<br>3.24800E-05    | 0.0239304                  | 0.00193742                 | 0<br>0.00193742            | 0.023904                     |
| rbon Dioxide                                        |                          | 6.30411E-07                | 0.189938                   | 0.0057209                |                                | 0*                         | 0.000493563                        | 0*                |                     | 00898666*              | 0.00572093                 | 0.00705002                 | 0.00705002                 |                            |                     | 0.00705760                 | 0.00572093                 | 0.00572093                 | 0.0070500                    |
| ater<br>ygen                                        |                          | 0.997563<br>0              | 0.0419574<br>0             | 5.59502E-0               | 6 2.26645E-05<br>0 0           | 0*                         | 0.987527<br>0                      | 0*                | 2.01                | 1722E-06*<br>0*        | 5.59502E-06<br>0           | 0.000147286<br>0           | 0.000147286<br>0           | 1.37412E-05<br>0           | 0.987838<br>0       | 5.51525E-05<br>0           | 5.59502E-06<br>0           | 5.59502E-06<br>0           | 0.00014728                   |
| ОН                                                  |                          | 0.00243593                 | 0.0245907                  | 0.0036788                | 6 0                            | 0*                         | 0.00970261                         | 1*                |                     | 0*                     | 0.00367886                 | 0.000981354                | 0.000981354                | 1.06600E-05                | 0.00942590          | 0                          | 0.00367886                 | 0.00367886                 | 0.00098135                   |
|                                                     |                          |                            |                            |                          |                                |                            |                                    |                   |                     |                        |                            |                            |                            |                            |                     |                            |                            |                            |                              |
| ocess Streams operties                              | Status:                  | API Liquid Loadout Solved  | API Vapor<br>Solved        | Cold Sep NGL<br>Solved   | Flash Tank Gas                 | H2O<br>Solved              | KMT Cold Sep Water Flowrate Solved | MeOH<br>Solved    | NGL Stream from KMT | Model                  | NGL to GL<br>Solved        | Post-JT<br>Solved          | Pre-JT<br>Solved           | To Fuel<br>Solved          | Water<br>Solved     | 1<br>Solved                | 2<br>Solved                | 3<br>Solved                | 4<br>Solved                  |
| ase: Total                                          | From Block:              | MIX-103                    | VSSL-201                   | Cold Sep                 | Flash Gas to Flare             |                            | -                                  | Sulveu<br>        | 301V80<br>          |                        | VLVE-100                   | JT Valve 1                 | XPC-GL                     | Final Cut                  | Cold Sep            | FG to JT Skid              | VLVE-101                   | XPC-GL                     | Gas Gas 2 @ XPC              |
| pperty                                              | To Block:<br>Units       | -                          | -                          | VLVE-100                 | VSSL-101                       | SAT-1                      | VSSL-101                           | MIX-100           | JT Skid Drain       |                        | XPC-GL                     | Cold Sep                   | JT Valve 1                 | -                          | LCV                 | VSSL-100                   |                            | VLVE-101                   | XPC-GL                       |
| mperature                                           | °F                       | 85.2769                    | 84.9385                    | -33.225                  | 8 21.0015                      | 582.300                    | -33.2032                           | 100*              |                     | 34.1988*               | -35.5029                   | -33.0030                   | 29*                        | 185.872                    | -33.2258            | 119.316                    | -26.5492                   | 11.1864                    | 43                           |
| essure<br>le Fraction Vapor                         | psig                     | -0.975949<br>0             | -0.975949<br>1             | 32                       | 3 200                          | 1340.68<br>0.770002        | 3*<br>0.00228214                   | 1300*             |                     | 295*<br>0.278137       | 295.1*<br>0.0203447        | 325*<br>0.735162           | 1299.4<br>0.554281         | 125*<br>1                  | 323<br>0            | 1345.68<br>1               | 90*<br>0.344406            | 295<br>0.169174            | 1299<br>0.71022              |
| olecular Weight                                     | lb/lbmol                 | 18.0495                    |                            | 36.943                   |                                | 18.0153                    | 18.1748                            | 32.0419           |                     | 36.9714                | 36.9439                    | 24.4318                    | 24.4318                    | 19.9378                    |                     | 24.4249                    | 36.9439                    | 36.9439                    | 24.431                       |
| ass Density<br>ass Flow                             | lb/ft^3<br>lb/h          | 62.0776<br>1.31257         |                            | 32.971<br>1287.7         |                                | 3.87662<br>0.219068        | 20.7908<br>1.45933                 | 49.3857<br>4.1475 |                     | 7.54263<br>631.974     | 27.2923<br>1287.76         | 2.82123<br>3222.54         | 13.9430?<br>3222.54        | 0.408181<br>1934.45        | 62.3800<br>0.329223 | 7.70922<br>3218.18         | 2.47649<br>1287.76         | 11.0203<br>1287.76         | 12.2920<br>3222.5            |
| d Vapor Volumetric Flow                             | MMSCFD                   | 0.000662310                | 1.08305E-07                | 0.31746                  | 7 0.0855377                    | 0.000110750                | 0.000731287*                       | 0.00117889        |                     | 0.155682               | 0.317467                   | 1.20129                    | 1.20129                    | 0.883658                   | 0.000165021         | 1.2                        | 0.317467                   | 0.317467                   | 1.2012                       |
| d Liquid Volumetric Flow<br>ompressibility          | sgpm                     | 0.00262683<br>0.000682127  | 1.64752E-06<br>0.993596    | 5.7257<br>0.082681       |                                | 0.000437932<br>0.563286    | 0.00294662<br>0.00338006           |                   |                     | 2.80632*<br>0.286420   | 5.72575<br>0.0921250       | 17.1939<br>0.642473        | 17.1939<br>0.439083?       | 11.4675<br>0.984966        |                     | 17.1831<br>0.693666        | 5.72575<br>0.336018        | 5.72575<br>0.205463        | 17.193<br>0.484226           |
| pecific Gravity                                     |                          | 0.995333                   | 1.10159                    | 0.52864                  | 8 0.906644                     |                            |                                    | 0.791834          |                     |                        |                            |                            |                            | 0.688402                   | 1.00018             | 0.843329                   |                            |                            |                              |
| 01                                                  |                          | ADILL                      | ADLV                       | 0 1 1 0 NOI              |                                | 1100                       | MAT O LLO W. C. FL. C.             | M OU              | NOI O               |                        | NO. 1 O.                   | D ( 17                     | D 17                       | ·                          | NA/ 4               |                            |                            |                            |                              |
| rocess Streams omposition                           | Status:                  | API Liquid Loadout Solved  | Solved                     | Solved                   | Solved                         | H2O<br>Solved              | KMT Cold Sep Water Flowrate Solved | MeOH<br>Solved    | NGL Stream from KMT | Model                  | Solved                     | Solved                     | Pre-JT<br>Solved           | To Fuel<br>Solved          | Water<br>Solved     | Solved                     | Solved                     | Solved                     | Solved                       |
| ase: Vapor                                          | From Block:              | MIX-103                    | VSSL-201                   | Cold Sep                 | Flash Gas to Flare             |                            | -                                  |                   | -                   |                        | VLVE-100                   | JT Valve 1                 | XPC-GL                     | Final Cut                  | Cold Sep            | FG to JT Skid              | VLVE-101                   | XPC-GL                     | Gas Gas 2 @ XPC              |
| ole Fraction                                        | To Block:                |                            |                            | VLVE-100                 | VSSL-101                       | SAT-1                      | VSSL-101                           | MIX-100           | JT Skid Drain       |                        | XPC-GL                     | Cold Sep                   | JT Valve 1                 |                            | LCV                 | VSSL-100                   |                            | VLVE-101                   | XPC-GL                       |
| ethane                                              |                          |                            | 0.195147                   |                          | 0.466033                       | 0                          | 0.561376                           |                   |                     | 0.471544               | 0.763950                   | 0.763896                   | 0.688854                   | 0.763850                   |                     | 0.611164                   | 0.469013                   | 0.582273                   | 0.66496                      |
| hane<br>opane                                       |                          |                            | 0.399120<br>0.125818       |                          | 0.353843<br>0.136130           | 0                          | 0.294444<br>0.0447169              |                   |                     | 0.354491<br>0.130863   | 0.166947<br>0.0319894      | 0.161529<br>0.0318001      | 0.178978<br>0.0715182      | 0.161620<br>0.0317773      |                     | 0.207189<br>0.105314       | 0.399590<br>0.103879       | 0.302675<br>0.0839457      | 0.18996<br>0.081600          |
| Butane                                              |                          |                            | 0.00894561                 |                          | 0.00635256                     | 0                          | 0.00228069                         |                   |                     | .00585709              | 0.00100124                 | 0.00102243                 | 0.00518844                 |                            |                     | 0.00944963                 | 0.00332912                 | 0.00332204                 | 0.0062501                    |
| Butane<br>2-Dimethylpropane                         |                          |                            | 0.0117789<br>3.39212E-06   |                          | 0.0139833<br>4.44324E-06       | 0                          | 0.00250891<br>1.80965E-06          |                   | U                   | 0.0123969              | 0.00215160<br>1.68868E-06  | 0.00221196<br>1.74247E-06  | 0.0141105<br>1.34751E-05   | 0.00220461<br>1.73622E-06  |                     | 0.0273928<br>2.76478E-05   | 0.00692084<br>5.45787E-06  | 0.00742234<br>5.96467E-06  | 0.017220<br>1.66426E-0       |
| Pentane<br>Pentane                                  |                          |                            | 0.000799881<br>0.000128990 |                          | 0.000787287<br>0.000844387     | 0                          | 0.000107120<br>1.37559E-05         |                   |                     | 000617673              | 8.22527E-05<br>7.83194E-05 | 8.66119E-05<br>8.32608E-05 |                            | 8.61521E-05<br>8.27616E-05 |                     | 0.00331410<br>0.00415797   | 0.000262053<br>0.000238513 | 0.000353162                | 0.0017208<br>0.0020653       |
| 2-Dimethylbutane                                    |                          |                            | 0.000126990                |                          | 0.000844387                    | 0                          | 1.37359E-03                        |                   | 0.00                | 0                      | 7.03194E-03<br>0           | 0.32006E-03                | 0.00159008                 | 0.27010E-03                |                     | 0.00415797                 | 0.000236313                | 0.000346377                | 0.0020033                    |
| 3-Dimethylbutane                                    |                          |                            | 0                          |                          | 0                              | 0                          | 0                                  |                   |                     | 0                      | 0                          | 0                          | 0                          | 0                          |                     | 0                          | 0                          | 0                          |                              |
| Methylpentane                                       |                          |                            | 0                          |                          | 0                              | 0                          | 0                                  |                   |                     | 0                      | 0                          | 0                          | 0                          | 0                          |                     | 0                          | 0                          | 0                          |                              |
| exane<br>7                                          |                          |                            | 9.11945E-06<br>7.61977E-07 |                          | 6.18538E-05<br>4.31939E-06     | 0                          | 5.61617E-07<br>3.18768E-09         |                   |                     | 34156E-05<br>37933E-06 | 3.48268E-06<br>1.32467E-08 |                            | 0.000251589<br>2.53901E-06 |                            |                     |                            | 9.73640E-06<br>3.42904F-08 | 2.04784E-05<br>9.45112E-08 | 0.00034332<br>3.57770E-0     |
| 3                                                   |                          |                            | 3.32382E-08                |                          | 6.39870E-07                    | 0                          | 9.25508E-11                        |                   |                     | 18920E-06              | 1.65114E-09                |                            | 9.90791E-07                |                            |                     |                            | 3.84763E-09                |                            | 1.43603E-0                   |
| 9<br>10                                             |                          |                            | 0                          |                          | 0                              | 0                          | 0                                  |                   |                     | 0<br>0                 | 0                          | 0                          | 0                          | 0                          |                     | 0                          | 0                          | 0                          |                              |
| trogen                                              |                          |                            | 0.00176125                 |                          | 0.00822561                     | 0                          | 0.0144180                          |                   |                     | .00726205              | 0.0259856                  | 0.0318137                  | 0.0306873                  | 0.0318013                  |                     | 0.0239304                  | 0.00545493                 | 0.00905959                 | 0.028113                     |
| arbon Dioxide<br>′ater                              |                          |                            | 0.189938<br>0.0419574      |                          | 0.0137063<br>2.26645E-05       | 1                          | 0.0798087<br>0.000229270           |                   |                     | 0.0162622<br>34807E-06 | 0.00778565<br>1.41286E-05  | 0.00752630<br>1.38398E-05  | 0.00701648<br>8.99685E-05  | 0.00752875<br>1.37412E-05  |                     | 0.00705760<br>5.51525E-05  | 0.0112525<br>1.29260E-05   | 0.0104932<br>1.36454E-05   | 0.0071071<br>0.00015010      |
| xygen<br>eOH                                        |                          |                            | 0                          |                          | 0                              | 0                          | 0 424205 05                        |                   |                     | 0                      | 0 040775 00                | 0                          | 0                          | 0                          |                     | 0                          | 0                          | 0                          |                              |
| O11                                                 |                          | <u></u>                    | 0.0245907                  |                          | 0                              | U                          | 9.43120E-05                        |                   |                     | U                      | 9.81877E-06                | 1.0133ZE-U5                | 0.000004040                | 1.000UUE-U5                |                     | U                          | J. 1034 TE-US              | 6.73004E-05                | 0.00047438                   |
| ocess Streams                                       |                          | API Liquid Loadout         | ADI Van an                 | Cold San NOL             | Flach Tonk Co.                 | НЗО                        | KMT Cold Son Water Flauret         | MeOH              | NGL Stream from KMT | Model                  | NGL to CL                  | Doot IT                    | Dro. IT                    | To Fuel                    | Matar               | 4                          | 2                          | 2                          | 4                            |
| operties                                            | Status:                  | Solved                     | Solved                     | Solved                   | Solved                         | H2O<br>Solved              | KMT Cold Sep Water Flowrate Solved | Solved            | Solved              | woder                  | Solved                     | Solved                     | Pre-JT<br>Solved           | To Fuel Solved             | Water<br>Solved     | Solved                     | Solved                     | Solved                     | Solved                       |
| ase: Vapor                                          | From Block:<br>To Block: | MIX-103<br>                | VSSL-201<br>               | Cold Sep<br>VLVE-100     | Flash Gas to Flare<br>VSSL-101 | <br>SAT-1                  | <br>VSSL-101                       | <br>MIX-100       | <br>JT Skid Drain   |                        | VLVE-100<br>XPC-GL         | JT Valve 1<br>Cold Sep     | XPC-GL<br>JT Valve 1       | Final Cut                  | Cold Sep<br>LCV     | FG to JT Skid<br>VSSL-100  | VLVE-101                   | XPC-GL<br>VLVE-101         | Gas Gas 2 @ XPC<br>XPC-GL    |
| pperty                                              | Units                    | -                          |                            | 7LVE-100                 |                                |                            |                                    |                   | OT SKIU DIAIII      |                        |                            |                            |                            |                            |                     |                            |                            |                            | Al G-GL                      |
| nperature<br>ssure                                  | °F<br>psig               |                            | 84.9385<br>-0.975949       |                          | 21.0015<br>200                 | 582.300<br>1340.68         | -33.2032<br>3                      |                   |                     | 34.1988<br>295         | -35.5029<br>295.1          | -33.0030<br>325            | 29<br>1299.4               | 185.872<br>125             |                     | 119.316<br>1345.68         | -26.5492<br>90             | 11.1864<br>295             | 1299                         |
| e Fraction Vapor                                    |                          |                            | 1                          |                          | 1                              | 1                          | 1<br>                              |                   |                     | 1                      | 1                          | 1                          | 1                          | 1                          |                     | 1                          | 1                          | 1                          |                              |
| lecular Weight<br>ss Density                        | lb/lbmol<br>lb/ft^3      |                            | 31.9048<br>0.0753793       |                          | 26.2587<br>1.24953             | 18.0153<br>3.04726         | 24.0420<br>0.0939124               |                   |                     | 26.0704<br>1.82907     | 19.9526<br>1.59083         | 19.9378<br>1.75259         | 22.1241<br>10.3435         | 19.9378<br>0.408181        |                     | 24.4249<br>7.70922         | 25.4024<br>0.619550        | 23.5392<br>1.70958         | 22.76 <sup>4</sup><br>10.057 |
| ss Flow                                             | lb/h                     |                            | 0.000379401                |                          | 246.618                        | 0.168683                   | 0.00440551                         |                   |                     | 123.948                | 14.1495                    | 1933.32                    | 1617.48                    | 1934.45                    |                     | 3218.18                    | 304.957                    | 138.810                    | 2132.5                       |
| I Vapor Volumetric Flow<br>I Liquid Volumetric Flow | MMSCFD<br>sgpm           |                            | 1.08305E-07<br>1.64752E-06 |                          |                                | 8.52774E-05<br>0.000337209 | 1.66890E-06<br>2.34725E-05         |                   |                     | 0.0433008<br>0.661891  | 0.00645875<br>0.0842101    | 0.883143<br>11.4605        | 0.665852<br>9.05363        | 0.883658<br>11.4675        |                     | 1.2<br>17.1831             | 0.109338<br>1.67360        | 0.0537072<br>0.778540      | 0.85318<br>11.783            |
| mpressibility                                       |                          |                            | 0.993596                   |                          | 0.874661                       | 0.716593                   | 0.989857                           |                   |                     | 0.832874               | 0.853593                   | 0.843985                   | 0.535976                   | 0.984966                   |                     | 0.693666                   | 0.923541                   | 0.843890                   | 0.55140                      |
| cific Gravity                                       |                          |                            | 1.10159                    |                          | 0.906644                       | 0.622021                   | 0.830108                           |                   |                     | 0.900145               | 0.688911                   | 0.688400                   | 0.763887                   | 0.688402                   |                     | 0.843329                   | 0.877079                   | 0.812747                   | 0.78601                      |
|                                                     |                          | ADI                        | ADI                        | 0-110                    |                                | 112.0                      | I/MT O LLO WILLIAM                 |                   | Notes               |                        | NO.                        | D                          |                            |                            | 107                 |                            |                            |                            |                              |
| cess Streams                                        |                          | API Liquid Loadout         | API Vapor                  | Cold Sep NGL             | . Flash Tank Gas               | H2O                        | KMT Cold Sep Water Flowrate        | MeOH              | NGL Stream from KMT | Model                  | NGL to GL                  | Post-JT                    | Pre-JT                     | To Fuel                    | Water               | 1                          | 2                          | 3                          | 4                            |

| Mole Fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | To Block:                                                                 |                                                                                                                                                                                                                                                                                                    |                                    | VLVE-100                | VSSL-101                                                                | SAT-1                                        | VSSL-101                                                                                                                                                                                                                                                                                               | MIX-100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | JT Skid Drain                                  | XPC-GL                    | Cold Sep                                                                                                                                                                                                                                                                        | JT Valve 1                                                                                                                                                                                                                                                               |                                        | LCV                                                                                                                                                                                                                                                                    | VSSL-100                                       |                            | VLVE-101                  | XPC-GL                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------|-------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                           |                                                                                                                                                                                                                                                                                                    |                                    | 0.18400                 | 0                                                                       |                                              |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0767899                                      | 0.171956                  | 0.184810                                                                                                                                                                                                                                                                        | 0.513151                                                                                                                                                                                                                                                                 |                                        |                                                                                                                                                                                                                                                                        |                                                | 0.0342732                  | 0.102903                  | 0.4770                                                                                                                                                                                                    |
| ane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                           |                                                                                                                                                                                                                                                                                                    |                                    | 0.33329                 |                                                                         |                                              |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.315509                                       | 0.336751                  | 0.333270                                                                                                                                                                                                                                                                        | 0.241807                                                                                                                                                                                                                                                                 |                                        |                                                                                                                                                                                                                                                                        |                                                | 0.298470                   | 0.339532                  | 0.2486                                                                                                                                                                                                    |
| ppane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                           |                                                                                                                                                                                                                                                                                                    |                                    | 0.30962                 |                                                                         |                                              |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.392350                                       | 0.315392                  | 0.309113                                                                                                                                                                                                                                                                        | 0.147108                                                                                                                                                                                                                                                                 |                                        |                                                                                                                                                                                                                                                                        |                                                | 0.417713                   | 0.355580                  | 0.1630                                                                                                                                                                                                    |
| utane<br>Butane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |                                                                                                                                                                                                                                                                                                    |                                    | 0.032880<br>0.097406    |                                                                         |                                              |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0442433<br>0.122794                          | 0.0335428<br>0.0993843    | 0.0328214<br>0.0972315                                                                                                                                                                                                                                                          | 0.0147280<br>0.0438504                                                                                                                                                                                                                                                   |                                        |                                                                                                                                                                                                                                                                        |                                                | 0.0484053<br>0.144941      | 0.0388996<br>0.115729     | 0.01725<br>0.05222                                                                                                                                                                                        |
| -Dimethylpropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                           |                                                                                                                                                                                                                                                                                                    |                                    | 9.96740E-0              |                                                                         |                                              |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                              | 0.000101709               |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                          |                                        |                                                                                                                                                                                                                                                                        |                                                | 0.000149169                |                           | 5.45192E-                                                                                                                                                                                                 |
| entane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                           |                                                                                                                                                                                                                                                                                                    |                                    | 0.012287                |                                                                         |                                              |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0151282                                      | 0.0125407                 | 0.0122662                                                                                                                                                                                                                                                                       | 0.00576462                                                                                                                                                                                                                                                               |                                        |                                                                                                                                                                                                                                                                        |                                                | 0.0186045                  |                           | 0.007206                                                                                                                                                                                                  |
| Pentane<br>2-Dimethylbutane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                           |                                                                                                                                                                                                                                                                                                    |                                    | 0.015486                | 5<br>n                                                                  |                                              |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0203347                                      | 0.0158064                 | 0.0154601                                                                                                                                                                                                                                                                       | 0.00733487                                                                                                                                                                                                                                                               | <b>,</b>                               |                                                                                                                                                                                                                                                                        |                                                | 0.0234967                  | 0.0185689                 | 0.009271                                                                                                                                                                                                  |
| 3-Dimethylbutane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                           |                                                                                                                                                                                                                                                                                                    |                                    |                         | 0                                                                       |                                              |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                              | 0                         | 0                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                        | )<br>)                                 |                                                                                                                                                                                                                                                                        |                                                | 0                          | 0                         |                                                                                                                                                                                                           |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                           |                                                                                                                                                                                                                                                                                                    |                                    |                         | 0                                                                       |                                              |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                              | 0                         | 0                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                        | )                                      |                                                                                                                                                                                                                                                                        |                                                | 0                          | 0                         |                                                                                                                                                                                                           |
| Methylpentane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                           |                                                                                                                                                                                                                                                                                                    |                                    |                         | 0                                                                       |                                              |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                              | 0                         | 0                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                        | )                                      |                                                                                                                                                                                                                                                                        |                                                | 0                          | 0                         |                                                                                                                                                                                                           |
| exane<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                           |                                                                                                                                                                                                                                                                                                    |                                    | 0.0034989<br>4.76473E-0 |                                                                         |                                              |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00299769<br>0.00220126                       | 0.00357154<br>4.86366E-05 |                                                                                                                                                                                                                                                                                 | 0.00176823<br>2.51213E-05                                                                                                                                                                                                                                                |                                        |                                                                                                                                                                                                                                                                        |                                                | 0.00533195<br>7.26602E-05  | 0.00420724<br>5.73302E-05 | 0.0023592<br>3.47232E-0                                                                                                                                                                                   |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                           |                                                                                                                                                                                                                                                                                                    |                                    | 2.65026E-0              |                                                                         |                                              |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00107176                                     |                           | 2.64595E-05                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                          |                                        |                                                                                                                                                                                                                                                                        |                                                |                            | 3.18960E-05               | 2.06555E-(                                                                                                                                                                                                |
| 3<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                           |                                                                                                                                                                                                                                                                                                    |                                    |                         | 0                                                                       |                                              |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                              | 0                         | 0                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                        | )                                      |                                                                                                                                                                                                                                                                        |                                                | 0                          | 0                         |                                                                                                                                                                                                           |
| 10<br>trogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                           |                                                                                                                                                                                                                                                                                                    |                                    | 0.0019374               | 0                                                                       |                                              |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000396358                                    | 0.00143801                | 0.00195127                                                                                                                                                                                                                                                                      | 0<br>0.0154724                                                                                                                                                                                                                                                           | )                                      |                                                                                                                                                                                                                                                                        |                                                | 0 055335 05                | 0<br>0.000487194          | 0.013589                                                                                                                                                                                                  |
| arbon Dioxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                           |                                                                                                                                                                                                                                                                                                    |                                    | 0.0019374               |                                                                         |                                              |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000390338                                    | 0.00143801                |                                                                                                                                                                                                                                                                                 | 0.0134724                                                                                                                                                                                                                                                                |                                        |                                                                                                                                                                                                                                                                        |                                                |                            | 0.000487194               | 0.006910                                                                                                                                                                                                  |
| ater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                           |                                                                                                                                                                                                                                                                                                    |                                    | 5.59502E-0              |                                                                         |                                              |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.11914E-06                                    | 5.41781E-06               | 5.65521E-06                                                                                                                                                                                                                                                                     | 7.98644E-05                                                                                                                                                                                                                                                              | 5                                      |                                                                                                                                                                                                                                                                        |                                                |                            | 3.95580E-06               | 0.00012950                                                                                                                                                                                                |
| xygen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                           |                                                                                                                                                                                                                                                                                                    |                                    | 0.0000700               | 0                                                                       |                                              |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                              | 0 00075500                | 0                                                                                                                                                                                                                                                                               | 0 00475004                                                                                                                                                                                                                                                               | )                                      |                                                                                                                                                                                                                                                                        |                                                | 0 00550477                 | 0                         | 0.000000                                                                                                                                                                                                  |
| еОН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                           |                                                                                                                                                                                                                                                                                                    |                                    | 0.0036788               | 10                                                                      |                                              |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | U                                              | 0.00375506                | 0.00367266                                                                                                                                                                                                                                                                      | 0.00175921                                                                                                                                                                                                                                                               |                                        |                                                                                                                                                                                                                                                                        |                                                | 0.00559477                 | 0.00441425                | 0.0022237                                                                                                                                                                                                 |
| races Streams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                           | API Liquid Loadout                                                                                                                                                                                                                                                                                 | ADI Vanor                          | Cold Con NCI            | Flesh Tonk Coo                                                          | H2O                                          | KMT Cold Sep Water Flowrate                                                                                                                                                                                                                                                                            | MaOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NGL Stream from KMT Model                      | NCI to CI                 | Doot IT                                                                                                                                                                                                                                                                         | Dro IT                                                                                                                                                                                                                                                                   | To Fuel                                | Water                                                                                                                                                                                                                                                                  | 4                                              | 2                          | 2                         | 4                                                                                                                                                                                                         |
| rocess Streams<br>roperties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Status:                                                                   | Solved                                                                                                                                                                                                                                                                                             | Solved                             | Solved                  | Solved                                                                  | Solved                                       | Solved                                                                                                                                                                                                                                                                                                 | Solved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Solved                                         | Solved                    | Solved                                                                                                                                                                                                                                                                          | Pre-JT<br>Solved                                                                                                                                                                                                                                                         | Solved                                 | Solved                                                                                                                                                                                                                                                                 | Solved                                         | Solved                     | Solved                    | Solved                                                                                                                                                                                                    |
| nase: Nonspecific Liquid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | From Block:                                                               | MIX-103                                                                                                                                                                                                                                                                                            | VSSL-201                           | Cold Sep                | Flash Gas to Flare                                                      | <br>CAT 4                                    | <br>VC01, 404                                                                                                                                                                                                                                                                                          | <br>MIV 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <br>IT Olid Desir                              | VLVE-100                  | JT Valve 1                                                                                                                                                                                                                                                                      | XPC-GL                                                                                                                                                                                                                                                                   | Final Cut                              |                                                                                                                                                                                                                                                                        | FG to JT Skid                                  | VLVE-101                   |                           | Gas Gas 2 @ XPC                                                                                                                                                                                           |
| operty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | To Block:<br>Units                                                        |                                                                                                                                                                                                                                                                                                    |                                    | VLVE-100                | VSSL-101                                                                | SAT-1                                        | VSSL-101                                                                                                                                                                                                                                                                                               | MIX-100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | JT Skid Drain                                  | XPC-GL                    | Cold Sep                                                                                                                                                                                                                                                                        | Ji Valve 1                                                                                                                                                                                                                                                               |                                        | LCV                                                                                                                                                                                                                                                                    | VSSL-100                                       |                            | VLVE-101                  | XPC-GL                                                                                                                                                                                                    |
| emperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | °F                                                                        |                                                                                                                                                                                                                                                                                                    |                                    | -33.225                 | 8                                                                       |                                              |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 34.1988                                        | -35.5029                  | -33.0030                                                                                                                                                                                                                                                                        | 29                                                                                                                                                                                                                                                                       | )                                      |                                                                                                                                                                                                                                                                        |                                                | -26.5492                   | 11.1864                   | 4:                                                                                                                                                                                                        |
| ressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | psig                                                                      |                                                                                                                                                                                                                                                                                                    |                                    | 32                      | 3                                                                       |                                              |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 295                                            | 295.1                     | 325                                                                                                                                                                                                                                                                             | 1299.4                                                                                                                                                                                                                                                                   |                                        |                                                                                                                                                                                                                                                                        |                                                | 90                         | 295                       | 1299.                                                                                                                                                                                                     |
| ole Fraction Vapor<br>olecular Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lh/lhmal                                                                  |                                                                                                                                                                                                                                                                                                    |                                    | 36.943                  | •                                                                       |                                              |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                              | 07 2007                   | 0<br>36.0165                                                                                                                                                                                                                                                                    | 07 2000                                                                                                                                                                                                                                                                  | )                                      |                                                                                                                                                                                                                                                                        |                                                | 42.0070                    | 20.6722                   | 00 547                                                                                                                                                                                                    |
| olecular vvelgnt<br>ass Density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lb/lbmol<br>lb/ft^3                                                       |                                                                                                                                                                                                                                                                                                    |                                    | 36.943<br>32.971        |                                                                         |                                              |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 41.1716<br>31.7096                             | 37.2967<br>33.2626        | 36.9165<br>32.9463                                                                                                                                                                                                                                                              | 27.3029<br>21.4721?                                                                                                                                                                                                                                                      |                                        |                                                                                                                                                                                                                                                                        |                                                | 43.0070<br>35.3914         | 39.6733<br>32.2209        | 28.517<br>21.7400                                                                                                                                                                                         |
| ass Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lb/h                                                                      |                                                                                                                                                                                                                                                                                                    |                                    | 1287.7                  |                                                                         |                                              |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 508.026                                        | 1273.61                   | 1288.90                                                                                                                                                                                                                                                                         | 1604.91                                                                                                                                                                                                                                                                  |                                        |                                                                                                                                                                                                                                                                        |                                                | 982.804                    | 1148.95                   | 1089.9                                                                                                                                                                                                    |
| d Vapor Volumetric Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MMSCFD                                                                    |                                                                                                                                                                                                                                                                                                    |                                    | 0.31746                 |                                                                         |                                              |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.112381                                       | 0.311008                  | 0.317982                                                                                                                                                                                                                                                                        | 0.535362                                                                                                                                                                                                                                                                 |                                        |                                                                                                                                                                                                                                                                        |                                                | 0.208129                   | 0.263759                  | 0.34810                                                                                                                                                                                                   |
| d Liquid Volumetric Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sgpm                                                                      |                                                                                                                                                                                                                                                                                                    |                                    | 5.7257<br>0.082681      |                                                                         |                                              |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.14443<br>0.0758696                           | 5.64154<br>0.0763115      |                                                                                                                                                                                                                                                                                 | 8.13999<br>0.318626?                                                                                                                                                                                                                                                     |                                        |                                                                                                                                                                                                                                                                        |                                                | 4.05216<br>0.0273715       | 4.94721<br>0.0754649      | 5.4101                                                                                                                                                                                                    |
| ompressibility<br>pecific Gravity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                           |                                                                                                                                                                                                                                                                                                    |                                    | 0.082681                |                                                                         |                                              |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0758696                                      | 0.0763115                 |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                          |                                        |                                                                                                                                                                                                                                                                        |                                                | 0.0273715                  |                           | 0.319569<br>0.348572                                                                                                                                                                                      |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                           |                                                                                                                                                                                                                                                                                                    |                                    |                         |                                                                         |                                              |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |                           |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                          |                                        |                                                                                                                                                                                                                                                                        |                                                |                            |                           |                                                                                                                                                                                                           |
| rocess Streams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                           | API Liquid Loadout                                                                                                                                                                                                                                                                                 | API Vapor                          | Cold Sep NGL            | Flash Tank Gas                                                          | H2O                                          | KMT Cold Sep Water Flowrate                                                                                                                                                                                                                                                                            | MeOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NGL Stream from KMT Model                      | NGL to GL                 | Post-JT                                                                                                                                                                                                                                                                         | Pre-JT                                                                                                                                                                                                                                                                   | To Fuel                                | Water                                                                                                                                                                                                                                                                  | 1                                              | 2                          | 3                         | 4                                                                                                                                                                                                         |
| omposition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Status:                                                                   | Calvad                                                                                                                                                                                                                                                                                             |                                    |                         |                                                                         | 6 1 1                                        | 0.11                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                | 6.1                       | Cobrod                                                                                                                                                                                                                                                                          | Columb                                                                                                                                                                                                                                                                   | Calmad                                 |                                                                                                                                                                                                                                                                        |                                                | 6.1                        |                           | Solved                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |                                                                                                                                                                                                                                                                                                    |                                    |                         |                                                                         |                                              |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |                           |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                          |                                        |                                                                                                                                                                                                                                                                        |                                                |                            |                           |                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | From Block:                                                               | MIX-103                                                                                                                                                                                                                                                                                            | VSSL-201                           | Cold Sep                | Flash Gas to Flare                                                      | -                                            | <del></del>                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                              | VLVE-100                  | JT Valve 1                                                                                                                                                                                                                                                                      | XPC-GL                                                                                                                                                                                                                                                                   | Final Cut                              | Cold Sep                                                                                                                                                                                                                                                               | FG to JT Skid                                  | VLVE-101                   | XPC-GL                    | Gas Gas 2 @ XPC                                                                                                                                                                                           |
| hase: Aqueous Liquid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | From Block:<br>To Block:                                                  |                                                                                                                                                                                                                                                                                                    |                                    |                         |                                                                         |                                              | S01V86<br><br>VSSL-101                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Solved<br><br>JT Skid Drain                    |                           |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                          |                                        |                                                                                                                                                                                                                                                                        |                                                |                            |                           |                                                                                                                                                                                                           |
| hase: Aqueous Liquid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                           | MIX-103<br><br>4.13162E-08                                                                                                                                                                                                                                                                         | VSSL-201<br>                       | Cold Sep                | Flash Gas to Flare                                                      | -                                            | <br>VSSL-101<br>5.67866E-05                                                                                                                                                                                                                                                                            | MIX-100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                              | VLVE-100                  | JT Valve 1<br>Cold Sep<br>0.00133662                                                                                                                                                                                                                                            | XPC-GL<br>JT Valve 1                                                                                                                                                                                                                                                     | Final Cut<br>                          | Cold Sep<br>LCV<br>0.00133414                                                                                                                                                                                                                                          | FG to JT Skid                                  | VLVE-101                   | XPC-GL                    | Gas Gas 2 @ XPC<br>XPC-GL<br>0.0016574                                                                                                                                                                    |
| ole Fraction ethane thane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                           | MIX-103<br><br>4.13162E-08<br>1.36531E-07                                                                                                                                                                                                                                                          | VSSL-201<br>                       | Cold Sep                | Flash Gas to Flare                                                      | -                                            | <br>VSSL-101<br>5.67866E-05<br>0.000103867                                                                                                                                                                                                                                                             | <br>MIX-100<br>5 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                              | VLVE-100                  | JT Valve 1<br>Cold Sep<br>0.00133662<br>0.000779918                                                                                                                                                                                                                             | XPC-GL<br>JT Valve 1<br>0.00187086<br>0.000386294                                                                                                                                                                                                                        | Final Cut                              | Cold Sep<br>LCV<br>0.00133414<br>0.000781949                                                                                                                                                                                                                           | FG to JT Skid                                  | VLVE-101                   | XPC-GL                    | Gas Gas 2 @ XPC<br>XPC-GL<br>0.0016574<br>0.00036410                                                                                                                                                      |
| ole Fraction ethane thane ropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                           | MIX-103<br><br>4.13162E-08<br>1.36531E-07<br>3.49863E-08                                                                                                                                                                                                                                           | VSSL-201<br>                       | Cold Sep                | Flash Gas to Flare                                                      | -                                            | <br>VSSL-101<br>5.67866E-05<br>0.000103867<br>1.43745E-05                                                                                                                                                                                                                                              | MIX-100  6 0 7 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                              | VLVE-100                  | JT Valve 1<br>Cold Sep<br>0.00133662<br>0.000779918<br>0.000115509                                                                                                                                                                                                              | XPC-GL<br>JT Valve 1<br>0.00187086<br>0.000386294<br>5.78743E-05                                                                                                                                                                                                         | Final Cut                              | 0.00133414<br>0.000781949<br>0.000115876                                                                                                                                                                                                                               | FG to JT Skid                                  | VLVE-101                   | XPC-GL                    | 0.0016574<br>0.0036410<br>6.01508E-0                                                                                                                                                                      |
| ole Fraction ethane thane ropane Butane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                           | 4.13162E-08<br>1.36531E-07<br>3.49863E-08<br>1.87662E-09                                                                                                                                                                                                                                           | VSSL-201<br>                       | Cold Sep                | Flash Gas to Flare                                                      | -                                            | <br>VSSL-101<br>5.67866E-05<br>0.000103867<br>1.43745E-05<br>1.54374E-06                                                                                                                                                                                                                               | MIX-100  5 0 7 0 6 0 6 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                              | VLVE-100                  | 0.00133662<br>0.000779918<br>0.000115509<br>6.56530E-06                                                                                                                                                                                                                         | XPC-GL<br>JT Valve 1<br>0.00187086<br>0.000386294<br>5.78743E-05<br>2.29574E-06                                                                                                                                                                                          | Final Cut                              | 0.00133414<br>0.000781949<br>0.000115876<br>6.60037E-06                                                                                                                                                                                                                | FG to JT Skid                                  | VLVE-101                   | XPC-GL                    | 0.0016574<br>0.00036410<br>6.01508E-0<br>2.33176E-0                                                                                                                                                       |
| ole Fraction ethane thane ropane Butane Butane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                           | MIX-103<br><br>4.13162E-08<br>1.36531E-07<br>3.49863E-08                                                                                                                                                                                                                                           | VSSL-201<br>                       | Cold Sep                | Flash Gas to Flare                                                      | -                                            | <br>VSSL-101<br>5.67866E-05<br>0.000103867<br>1.43745E-05                                                                                                                                                                                                                                              | MIX-100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                              | VLVE-100                  | 0.00133662<br>0.000779918<br>0.000115509<br>6.56530E-06<br>6.32936E-06                                                                                                                                                                                                          | XPC-GL<br>JT Valve 1<br>0.00187086<br>0.000386294<br>5.78743E-05                                                                                                                                                                                                         | Final Cut                              | 0.00133414<br>0.000781949<br>0.000115876                                                                                                                                                                                                                               | FG to JT Skid                                  | VLVE-101                   | XPC-GL                    | 0.0016574<br>0.00036410<br>6.01508E-0<br>2.33176E-0<br>6.08980E-0                                                                                                                                         |
| lethane thane thane ropane Butane -Butane 2-Dimethylpropane Pentane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                           | 4.13162E-08<br>1.36531E-07<br>3.49863E-08<br>1.87662E-09<br>3.44020E-09<br>4.08394E-13<br>1.53041E-10                                                                                                                                                                                              | VSSL-201<br>                       | Cold Sep                | Flash Gas to Flare                                                      | -                                            | <br>VSSL-101<br>5.67866E-05<br>0.000103867<br>1.43745E-05<br>1.54374E-06<br>7.68042E-07<br>5.92568E-10<br>4.58274E-08                                                                                                                                                                                  | MIX-100  5 0  6 0  6 0  7 0  8 0  9 0  9 0  9 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                              | VLVE-100                  | 0.00133662<br>0.000779918<br>0.000115509<br>6.56530E-06<br>6.32936E-06<br>4.76671E-09<br>2.78226E-07                                                                                                                                                                            | 0.00187086<br>0.000386294<br>5.78743E-05<br>2.29574E-06<br>5.22625E-06<br>2.06468E-09<br>1.90974E-07                                                                                                                                                                     | Final Cut                              | 0.00133414<br>0.000781949<br>0.000115876<br>6.60037E-06<br>6.34008E-06<br>4.78854E-09<br>2.79077E-07                                                                                                                                                                   | FG to JT Skid                                  | VLVE-101                   | XPC-GL                    | 0.0016574<br>0.00036410<br>6.01508E-0<br>2.33176E-0<br>6.08980E-0<br>2.26390E-0<br>2.30422E-0                                                                                                             |
| ole Fraction ethane chane chane dhane dhane dhane copane Butane Butane 2-Dimethylpropane Pentane Pentane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                           | 4.13162E-08<br>1.36531E-07<br>3.49863E-08<br>1.87662E-09<br>3.44020E-09<br>4.08394E-13                                                                                                                                                                                                             | VSSL-201<br>                       | Cold Sep                | Flash Gas to Flare                                                      | -                                            | <br>VSSL-101<br>5.67866E-05<br>0.000103867<br>1.43745E-05<br>1.54374E-06<br>7.68042E-07<br>5.92568E-10                                                                                                                                                                                                 | MIX-100  5 0  6 0  6 0  7 0  8 0  9 0  9 0  9 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                              | VLVE-100                  | 0.00133662<br>0.000779918<br>0.000115509<br>6.56530E-06<br>6.32936E-06<br>4.76671E-09<br>2.78226E-07                                                                                                                                                                            | 0.00187086<br>0.000386294<br>5.78743E-05<br>2.29574E-06<br>5.22625E-06<br>2.06468E-09                                                                                                                                                                                    | Final Cut                              | 0.00133414<br>0.000781949<br>0.000115876<br>6.60037E-06<br>6.34008E-06<br>4.78854E-09                                                                                                                                                                                  | FG to JT Skid                                  | VLVE-101                   | XPC-GL                    | 0.0016574<br>0.00036410<br>6.01508E-0<br>2.33176E-0<br>6.08980E-0<br>2.26390E-0<br>2.30422E-0                                                                                                             |
| ole Fraction  ethane chane chane Butane 2-Dimethylpropane Pentane Pentane 2-Dimethylbutane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                           | 4.13162E-08<br>1.36531E-07<br>3.49863E-08<br>1.87662E-09<br>3.44020E-09<br>4.08394E-13<br>1.53041E-10                                                                                                                                                                                              | VSSL-201<br>                       | Cold Sep                | Flash Gas to Flare                                                      | -                                            | <br>VSSL-101<br>5.67866E-05<br>0.000103867<br>1.43745E-05<br>1.54374E-06<br>7.68042E-07<br>5.92568E-10<br>4.58274E-08                                                                                                                                                                                  | MIX-100  5 0  6 0  6 0  7 0  8 0  9 0  9 0  9 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                              | VLVE-100                  | 0.00133662<br>0.000779918<br>0.000115509<br>6.56530E-06<br>6.32936E-06<br>4.76671E-09<br>2.78226E-07                                                                                                                                                                            | 0.00187086<br>0.000386294<br>5.78743E-05<br>2.29574E-06<br>5.22625E-06<br>2.06468E-09<br>1.90974E-07                                                                                                                                                                     | Final Cut                              | 0.00133414<br>0.000781949<br>0.000115876<br>6.60037E-06<br>6.34008E-06<br>4.78854E-09<br>2.79077E-07                                                                                                                                                                   | FG to JT Skid                                  | VLVE-101                   | XPC-GL                    | 0.0016574<br>0.00036410<br>6.01508E-0<br>2.33176E-0<br>6.08980E-0<br>2.26390E-0<br>2.30422E-0                                                                                                             |
| ole Fraction  ethane chane chane dhane dhane dopane Butane 2-Dimethylpropane Pentane Pentane 2-Dimethylbutane 3-Dimethylbutane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                           | 4.13162E-08<br>1.36531E-07<br>3.49863E-08<br>1.87662E-09<br>3.44020E-09<br>4.08394E-13<br>1.53041E-10                                                                                                                                                                                              | VSSL-201<br>                       | Cold Sep                | Flash Gas to Flare                                                      | -                                            | <br>VSSL-101<br>5.67866E-05<br>0.000103867<br>1.43745E-05<br>1.54374E-06<br>7.68042E-07<br>5.92568E-10<br>4.58274E-08                                                                                                                                                                                  | MIX-100  5 0  6 0  6 0  7 0  8 0  9 0  9 0  9 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                              | VLVE-100                  | 0.00133662<br>0.000779918<br>0.000115509<br>6.56530E-06<br>6.32936E-06<br>4.76671E-09<br>2.78226E-07                                                                                                                                                                            | 0.00187086<br>0.000386294<br>5.78743E-05<br>2.29574E-06<br>5.22625E-06<br>2.06468E-09<br>1.90974E-07                                                                                                                                                                     | Final Cut                              | 0.00133414<br>0.000781949<br>0.000115876<br>6.60037E-06<br>6.34008E-06<br>4.78854E-09<br>2.79077E-07                                                                                                                                                                   | FG to JT Skid                                  | VLVE-101                   | XPC-GL                    | 0.0016574<br>0.00036410<br>6.01508E-0<br>2.33176E-0<br>6.08980E-0<br>2.26390E-0<br>2.30422E-0                                                                                                             |
| ole Fraction  ethane hane opane Butane Butane 2-Dimethylpropane Pentane 2-Dimethylbutane 3-Dimethylbutane 3-Dimethylbutane 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                           | 4.13162E-08<br>1.36531E-07<br>3.49863E-08<br>1.87662E-09<br>3.44020E-09<br>4.08394E-13<br>1.53041E-10<br>1.17946E-11                                                                                                                                                                               | VSSL-201<br>                       | Cold Sep                | Flash Gas to Flare                                                      | -                                            | <br>VSSL-101<br>5.67866E-05<br>0.000103867<br>1.43745E-05<br>1.54374E-06<br>7.68042E-07<br>5.92568E-10<br>4.58274E-08<br>6.57255E-10                                                                                                                                                                   | MIX-100  5 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 9 0 0 9 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                              | VLVE-100                  | 0.00133662<br>0.000779918<br>0.000115509<br>6.56530E-06<br>6.32936E-06<br>4.76671E-09<br>2.78226E-07<br>3.06765E-08<br>0<br>0                                                                                                                                                   | XPC-GL<br>JT Valve 1  0.00187086 0.000386294 5.78743E-05 2.29574E-06 5.22625E-06 2.06468E-09 1.90974E-07 6.17681E-08 0 0 0                                                                                                                                               | Final Cut                              | 0.00133414<br>0.000781949<br>0.000115876<br>6.60037E-06<br>6.34008E-06<br>4.78854E-09<br>2.79077E-07<br>3.06371E-08<br>0<br>0                                                                                                                                          | FG to JT Skid                                  | VLVE-101                   | XPC-GL                    | 0.0016574<br>0.00036410<br>6.01508E-0<br>2.33176E-0<br>6.08980E-0<br>2.26390E-0<br>2.30422E-0<br>8.61971E-0                                                                                               |
| pole Fraction ethane thane opane Butane Butane 2-Dimethylpropane Pentane 2-Dimethylbutane 3-Dimethylbutane 3-Dimethylbutane 6-6 Methylpentane exane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                           | 4.13162E-08<br>1.36531E-07<br>3.49863E-08<br>1.87662E-09<br>3.44020E-09<br>4.08394E-13<br>1.53041E-10<br>1.17946E-11<br>0<br>0                                                                                                                                                                     | VSSL-201<br>                       | Cold Sep                | Flash Gas to Flare                                                      | -                                            | 5.67866E-05<br>0.000103867<br>1.43745E-05<br>1.54374E-06<br>7.68042E-07<br>5.92568E-10<br>4.58274E-08<br>6.57255E-10                                                                                                                                                                                   | MIX-100  5 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                              | VLVE-100                  | 0.00133662<br>0.000779918<br>0.000115509<br>6.56530E-06<br>6.32936E-06<br>4.76671E-09<br>2.78226E-07<br>3.06765E-08<br>0<br>0                                                                                                                                                   | XPC-GL<br>JT Valve 1  0.00187086 0.000386294 5.78743E-05 2.29574E-06 5.22625E-06 2.06468E-09 1.90974E-07 6.17681E-08 0 0 0 3.54875E-09                                                                                                                                   | Final Cut                              | 0.00133414<br>0.000781949<br>0.000115876<br>6.60037E-06<br>6.34008E-06<br>4.78854E-09<br>2.79077E-07<br>3.06371E-08<br>0<br>0                                                                                                                                          | FG to JT Skid                                  | VLVE-101                   | XPC-GL                    | 0.0016574<br>0.00036410<br>6.01508E-0<br>2.33176E-0<br>6.08980E-0<br>2.26390E-0<br>2.30422E-0<br>8.61971E-0                                                                                               |
| pole Fraction ethane thane opane Butane Butane 2-Dimethylpropane Pentane 2-Dimethylbutane 3-Dimethylbutane 3-Dimethylbutane 6-6 Methylpentane exane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                           | 4.13162E-08<br>1.36531E-07<br>3.49863E-08<br>1.87662E-09<br>3.44020E-09<br>4.08394E-13<br>1.53041E-10<br>1.17946E-11<br>0<br>0<br>0<br>0<br>5.18493E-13<br>3.09590E-14                                                                                                                             | VSSL-201<br>                       | Cold Sep                | Flash Gas to Flare                                                      | -                                            | 5.67866E-05<br>0.000103867<br>1.43745E-05<br>1.54374E-06<br>7.68042E-07<br>5.92568E-10<br>4.58274E-08<br>6.57255E-10<br>0<br>0<br>0<br>0<br>2.89591E-11<br>2.32386E-13                                                                                                                                 | MIX-100  6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                              | VLVE-100                  | 0.00133662<br>0.000779918<br>0.000115509<br>6.56530E-06<br>6.32936E-06<br>4.76671E-09<br>2.78226E-07<br>3.06765E-08<br>0<br>0<br>0<br>1.25619E-09<br>5.79503E-12                                                                                                                | XPC-GL<br>JT Valve 1  0.00187086 0.000386294 5.78743E-05 2.29574E-06 5.22625E-06 2.06468E-09 1.90974E-07 6.17681E-08 0 0 0 3.54875E-09 1.62978E-11                                                                                                                       | Final Cut                              | 0.00133414<br>0.000781949<br>0.000115876<br>6.60037E-06<br>6.34008E-06<br>4.78854E-09<br>2.79077E-07<br>3.06371E-08<br>0<br>0<br>0<br>1.25411E-09<br>5.78990E-12                                                                                                       | FG to JT Skid                                  | VLVE-101                   | XPC-GL                    | 0.0016574<br>0.00036410<br>6.01508E-0<br>2.33176E-0<br>6.08980E-0<br>2.26390E-0<br>2.30422E-0<br>8.61971E-0                                                                                               |
| ple Fraction  ethane chane copane Butane 2-Dimethylpropane 2-Dimethylbutane 3-Dimethylbutane 3-Dimethylbutane 6-Methylpentane exame 7 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                           | 4.13162E-08<br>1.36531E-07<br>3.49863E-08<br>1.87662E-09<br>3.44020E-09<br>4.08394E-13<br>1.53041E-10<br>1.17946E-11<br>0<br>0                                                                                                                                                                     | VSSL-201<br>                       | Cold Sep                | Flash Gas to Flare                                                      | -                                            | 5.67866E-05<br>0.000103867<br>1.43745E-05<br>1.54374E-06<br>7.68042E-07<br>5.92568E-10<br>4.58274E-08<br>6.57255E-10                                                                                                                                                                                   | MIX-100  6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                              | VLVE-100                  | 0.00133662<br>0.000779918<br>0.000115509<br>6.56530E-06<br>6.32936E-06<br>4.76671E-09<br>2.78226E-07<br>3.06765E-08<br>0<br>0<br>0<br>1.25619E-09<br>5.79503E-12                                                                                                                | XPC-GL<br>JT Valve 1  0.00187086 0.000386294 5.78743E-05 2.29574E-06 5.22625E-06 2.06468E-09 1.90974E-07 6.17681E-08 0 0 0 3.54875E-09                                                                                                                                   | Final Cut                              | 0.00133414<br>0.000781949<br>0.000115876<br>6.60037E-06<br>6.34008E-06<br>4.78854E-09<br>2.79077E-07<br>3.06371E-08<br>0<br>0                                                                                                                                          | FG to JT Skid                                  | VLVE-101                   | XPC-GL                    | 0.0016574<br>0.00036410<br>6.01508E-0<br>2.33176E-0<br>6.08980E-0<br>2.26390E-0<br>2.30422E-0<br>8.61971E-0                                                                                               |
| pase: Aqueous Liquid  pole Fraction  ethane  thane opane Butane Butane 2-Dimethylpropane Pentane 2-Dimethylbutane 3-Dimethylbutane 3-Dimethylbutane 66 Methylpentane exane 7 3 9 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                           | 4.13162E-08<br>1.36531E-07<br>3.49863E-08<br>1.87662E-09<br>3.44020E-09<br>4.08394E-13<br>1.53041E-10<br>1.17946E-11<br>0<br>0<br>0<br>5.18493E-13<br>3.09590E-14<br>7.71558E-16                                                                                                                   | VSSL-201<br>                       | Cold Sep                | Flash Gas to Flare                                                      | -                                            | 5.67866E-05<br>0.000103867<br>1.43745E-05<br>1.54374E-06<br>7.68042E-07<br>5.92568E-10<br>4.58274E-08<br>6.57255E-10<br>0<br>0<br>0<br>2.89591E-11<br>2.32386E-13<br>1.89328E-15                                                                                                                       | MIX-100  6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                              | VLVE-100                  | 0.00133662<br>0.000779918<br>0.000115509<br>6.56530E-06<br>6.32936E-06<br>4.76671E-09<br>2.78226E-07<br>3.06765E-08<br>0<br>0<br>1.25619E-09<br>5.79503E-12<br>1.72397E-13<br>0                                                                                                 | XPC-GL<br>JT Valve 1  0.00187086 0.000386294 5.78743E-05 2.29574E-06 5.22625E-06 2.06468E-09 1.90974E-07 6.17681E-08 0 0 3.54875E-09 1.62978E-11 1.15804E-12                                                                                                             | Final Cut                              | 0.00133414<br>0.000781949<br>0.000115876<br>6.60037E-06<br>6.34008E-06<br>4.78854E-09<br>2.79077E-07<br>3.06371E-08<br>0<br>0<br>0<br>1.25411E-09<br>5.78990E-12<br>1.71756E-13<br>0                                                                                   | FG to JT Skid                                  | VLVE-101                   | XPC-GL                    | 0.0016574<br>0.00036410<br>6.01508E-0<br>2.33176E-0<br>6.08980E-0<br>2.26390E-0<br>2.30422E-0<br>8.61971E-0<br>5.16814E-0<br>2.36298E-1<br>1.92556E-1                                                     |
| ple Fraction  ethane chane copane cutane Butane 2-Dimethylpropane 2-Dimethylbutane 3-Dimethylbutane 3-Dimethylbutane 3-Dimethylbutane 3-Dimethylbutane 3-Dimethylbutane 3-Dimethylbutane 3-Dimethylbutane 3-Dimethylbutane 3-Dimethylbutane 3-Dimethylpentane 2-Dimethylpentane 3-Dimethylpentane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                           | 4.13162E-08<br>1.36531E-07<br>3.49863E-08<br>1.87662E-09<br>3.44020E-09<br>4.08394E-13<br>1.53041E-10<br>1.17946E-11<br>0<br>0<br>5.18493E-13<br>3.09590E-14<br>7.71558E-16<br>0                                                                                                                   | VSSL-201<br>                       | Cold Sep                | Flash Gas to Flare                                                      | -                                            | VSSL-101  5.67866E-05 0.000103867 1.43745E-05 1.54374E-06 7.68042E-07 5.92568E-10 4.58274E-08 6.57255E-10 0 0 2.89591E-11 2.32386E-13 1.89328E-15 0 0 7.57940E-07                                                                                                                                      | MIX-100  5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                              | VLVE-100                  | 0.00133662 0.000779918 0.000115509 6.56530E-06 6.32936E-06 4.76671E-09 2.78226E-07 3.06765E-08 0 0 1.25619E-09 5.79503E-12 1.72397E-13 0 0 3.25601E-05                                                                                                                          | XPC-GL<br>JT Valve 1  0.00187086 0.000386294 5.78743E-05 2.29574E-06 5.22625E-06 2.06468E-09 1.90974E-07 6.17681E-08 0 0 3.54875E-09 1.62978E-11 1.15804E-12 0 6.77079E-05                                                                                               | Final Cut                              | 0.00133414<br>0.000781949<br>0.000115876<br>6.60037E-06<br>6.34008E-06<br>4.78854E-09<br>2.79077E-07<br>3.06371E-08<br>0<br>0<br>0<br>1.25411E-09<br>5.78990E-12<br>1.71756E-13<br>0<br>0                                                                              | FG to JT Skid                                  | VLVE-101                   | XPC-GL                    | 0.0016574<br>0.00036410<br>6.01508E-0<br>2.33176E-0<br>6.08980E-0<br>2.26390E-0<br>2.30422E-0<br>8.61971E-0<br>5.16814E-0<br>2.36298E-1<br>1.92556E-1                                                     |
| pase: Aqueous Liquid  pole Fraction  ethane  chane copane Butane Butane 2-Dimethylpropane 2-entane Pentane 2-Dimethylbutane 3-Dimethylbutane 3-Dimethylbutane 3-Dimethylbutane 3-Dimethylbutane 3-Dimethylbutane 3-Dimethylbutane 3-Dimethylbutane 3-Dimethylpentane 6-Company - Company - Com |                                                                           | 4.13162E-08<br>1.36531E-07<br>3.49863E-08<br>1.87662E-09<br>3.44020E-09<br>4.08394E-13<br>1.53041E-10<br>1.17946E-11<br>0<br>0<br>0<br>5.18493E-13<br>3.09590E-14<br>7.71558E-16<br>0<br>0                                                                                                         | VSSL-201<br>                       | Cold Sep                | Flash Gas to Flare                                                      | -                                            | VSSL-101  5.67866E-05 0.000103867 1.43745E-05 1.54374E-06 7.68042E-07 5.92568E-10 4.58274E-08 6.57255E-10 0 0 0 2.89591E-11 2.32386E-13 1.89328E-15 0 7.57940E-07 0.000312140                                                                                                                          | MIX-100  5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                              | VLVE-100                  | 0.00133662 0.000779918 0.000115509 6.56530E-06 6.32936E-06 4.76671E-09 2.78226E-07 3.06765E-08 0 0 1.25619E-09 5.79503E-12 1.72397E-13 0 3.25601E-05 0.000457472                                                                                                                | XPC-GL<br>JT Valve 1  0.00187086 0.000386294 5.78743E-05 2.29574E-06 5.22625E-06 2.06468E-09 1.90974E-07 6.17681E-08 0 0 3.54875E-09 1.62978E-11 1.15804E-12 0 6.77079E-05 0.000304443                                                                                   | Final Cut                              | 0.00133414<br>0.000781949<br>0.000115876<br>6.60037E-06<br>6.34008E-06<br>4.78854E-09<br>2.79077E-07<br>3.06371E-08<br>0<br>0<br>1.25411E-09<br>5.78990E-12<br>1.71756E-13<br>0<br>0<br>3.24800E-05<br>0.000457953                                                     | FG to JT Skid                                  | VLVE-101                   | XPC-GL                    | 0.0016574<br>0.00036410<br>6.01508E-0<br>2.33176E-0<br>6.08980E-0<br>2.26390E-0<br>2.30422E-0<br>8.61971E-0<br>5.16814E-0<br>2.36298E-1<br>1.92556E-1<br>5.48797E-0<br>0.00026765                         |
| pase: Aqueous Liquid  pole Fraction  ethane hane opane Sutane Butane 2-Dimethylpropane Pentane 2-Dimethylbutane 3-Dimethylbutane 3-Dimethylbutane 66 Methylpentane exane 7 8 9 10 trogen arbon Dioxide ater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                           | 4.13162E-08<br>1.36531E-07<br>3.49863E-08<br>1.87662E-09<br>3.44020E-09<br>4.08394E-13<br>1.53041E-10<br>1.17946E-11<br>0<br>0<br>5.18493E-13<br>3.09590E-14<br>7.71558E-16<br>0                                                                                                                   | VSSL-201<br>                       | Cold Sep                | Flash Gas to Flare                                                      | -                                            | VSSL-101  5.67866E-05 0.000103867 1.43745E-05 1.54374E-06 7.68042E-07 5.92568E-10 4.58274E-08 6.57255E-10 0 0 0 2.89591E-11 2.32386E-13 1.89328E-15 0 7.57940E-07 0.000312140 0.989785                                                                                                                 | MIX-100  6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                              | VLVE-100                  | 0.00133662 0.000779918 0.000115509 6.56530E-06 6.32936E-06 4.76671E-09 2.78226E-07 3.06765E-08 0 0 1.25619E-09 5.79503E-12 1.72397E-13 0 0 3.25601E-05                                                                                                                          | XPC-GL<br>JT Valve 1  0.00187086 0.000386294 5.78743E-05 2.29574E-06 5.22625E-06 2.06468E-09 1.90974E-07 6.17681E-08 0 0 3.54875E-09 1.62978E-11 1.15804E-12 0 6.77079E-05 0.000304443 0.984856                                                                          | Final Cut                              | 0.00133414<br>0.000781949<br>0.000115876<br>6.60037E-06<br>6.34008E-06<br>4.78854E-09<br>2.79077E-07<br>3.06371E-08<br>0<br>0<br>0<br>1.25411E-09<br>5.78990E-12<br>1.71756E-13<br>0<br>0                                                                              | FG to JT Skid                                  | VLVE-101                   | XPC-GL                    | 0.0016574<br>0.00036410<br>6.01508E-0<br>2.33176E-0<br>6.08980E-0<br>2.26390E-0<br>2.30422E-0<br>8.61971E-0<br>5.16814E-0<br>2.36298E-1<br>1.92556E-1<br>5.48797E-0<br>0.00026765                         |
| plase: Aqueous Liquid  cole Fraction  ethane chane copane Butane Butane 2-Dimethylpropane Pentane 2-Dimethylbutane 3-Dimethylbutane 3-Dimethylbutane 3-Dimethylbutane 66 Methylpentane exane 7 8 9 10 itrogen carbon Dioxide ater exygen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                           | 4.13162E-08<br>1.36531E-07<br>3.49863E-08<br>1.87662E-09<br>3.44020E-09<br>4.08394E-13<br>1.53041E-10<br>1.17946E-11<br>0<br>0<br>0<br>5.18493E-13<br>3.09590E-14<br>7.71558E-16<br>0<br>0                                                                                                         | VSSL-201<br>                       | Cold Sep                | Flash Gas to Flare                                                      | -                                            | VSSL-101  5.67866E-05 0.000103867 1.43745E-05 1.54374E-06 7.68042E-07 5.92568E-10 4.58274E-08 6.57255E-10 0 0 0 2.89591E-11 2.32386E-13 1.89328E-15 0 7.57940E-07 0.000312140                                                                                                                          | MIX-100  6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                              | VLVE-100                  | 0.00133662 0.000779918 0.000115509 6.56530E-06 6.32936E-06 4.76671E-09 2.78226E-07 3.06765E-08 0 0 1.25619E-09 5.79503E-12 1.72397E-13 0 3.25601E-05 0.000457472 0.987836                                                                                                       | 0.00187086 0.000386294 5.78743E-05 2.29574E-06 5.22625E-06 2.06468E-09 1.90974E-07 6.17681E-08 0 0 3.54875E-09 1.62978E-11 1.15804E-12 0 6.77079E-05 0.000304443 0.984856                                                                                                | Final Cut                              | 0.00133414<br>0.000781949<br>0.000115876<br>6.60037E-06<br>6.34008E-06<br>4.78854E-09<br>2.79077E-07<br>3.06371E-08<br>0<br>0<br>1.25411E-09<br>5.78990E-12<br>1.71756E-13<br>0<br>0<br>3.24800E-05<br>0.000457953                                                     | FG to JT Skid                                  | VLVE-101                   | XPC-GL                    | 0.0016574<br>0.0016574<br>0.00036410<br>6.01508E-0<br>2.33176E-0<br>6.08980E-0<br>2.26390E-0<br>2.30422E-0<br>8.61971E-0<br>5.16814E-0<br>2.36298E-1<br>1.92556E-1<br>5.48797E-0<br>0.00026765<br>0.98398 |
| nase: Aqueous Liquid  lethane thane thane ropane Butane 2-Dimethylpropane Pentane 2-Dimethylbutane 3-Dimethylbutane 3-Dimethylbutane 66 Methylpentane exane 7 8 9 10 itrogen arbon Dioxide // ater xygen leOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                           | 4.13162E-08 1.36531E-07 3.49863E-08 1.87662E-09 3.44020E-09 4.08394E-13 1.53041E-10 1.17946E-11 0 0 5.18493E-13 3.09590E-14 7.71558E-16 0 0 1.70573E-10 6.30411E-07 0.997563 0 0.00243593                                                                                                          | VSSL-201                           | Cold Sep<br>VLVE-100    | Flash Gas to Flare<br>VSSL-101                                          | <br>SAT-1                                    | 5.67866E-05 0.000103867 1.43745E-05 1.54374E-06 7.68042E-07 5.92568E-10 4.58274E-08 6.57255E-10 0 0 2.89591E-11 2.32386E-13 1.89328E-15 0 0 7.57940E-07 0.000312140 0.989785                                                                                                                           | MIX-100  6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | JT Skid Drain                                  | VLVE-100<br>XPC-GL        | 0.00133662<br>0.000779918<br>0.000115509<br>6.56530E-06<br>6.32936E-06<br>4.76671E-09<br>2.78226E-07<br>3.06765E-08<br>0<br>0<br>1.25619E-09<br>5.79503E-12<br>1.72397E-13<br>0<br>3.25601E-05<br>0.000457472<br>0.987836<br>0                                                  | XPC-GL<br>JT Valve 1  0.00187086 0.000386294 5.78743E-05 2.29574E-06 5.22625E-06 2.06468E-09 1.90974E-07 6.17681E-08 0 0 3.54875E-09 1.62978E-11 1.15804E-12 0 6.77079E-05 0.000304443 0.984856 0 0.0124489                                                              | Final Cut                              | 0.00133414<br>0.000781949<br>0.000115876<br>6.60037E-06<br>6.34008E-06<br>4.78854E-09<br>2.79077E-07<br>3.06371E-08<br>0<br>0<br>1.25411E-09<br>5.78990E-12<br>1.71756E-13<br>0<br>3.24800E-05<br>0.000457953<br>0.987838<br>0                                         | FG to JT Skid                                  | VLVE-101                   | XPC-GL<br>VLVE-101        | 0.0016574<br>0.0016574<br>0.00036410<br>6.01508E-0<br>2.33176E-0<br>6.08980E-0<br>2.26390E-0<br>2.30422E-0<br>8.61971E-0<br>5.16814E-0<br>2.36298E-1<br>1.92556E-1<br>5.48797E-0<br>0.00026765<br>0.98398 |
| lethane thane ropane Butane -Butane 2-Dimethylpropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                           | 4.13162E-08 1.36531E-07 3.49863E-08 1.87662E-09 3.44020E-09 4.08394E-13 1.53041E-10 1.17946E-11 0 0 5.18493E-13 3.09590E-14 7.71558E-16 0 1.70573E-10 6.30411E-07 0.997563                                                                                                                         | VSSL-201                           | Cold Sep<br>VLVE-100    | Flash Gas to Flare<br>VSSL-101                                          | -                                            | VSSL-101  5.67866E-05 0.000103867 1.43745E-05 1.54374E-06 7.68042E-07 5.92568E-10 4.58274E-08 6.57255E-10 0 0 0 2.89591E-11 2.32386E-13 1.89328E-15 0 7.57940E-07 0.000312140 0.989785                                                                                                                 | MIX-100  6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                              | VLVE-100<br>XPC-GL        | 0.00133662<br>0.000779918<br>0.000115509<br>6.56530E-06<br>6.32936E-06<br>4.76671E-09<br>2.78226E-07<br>3.06765E-08<br>0<br>0<br>1.25619E-09<br>5.79503E-12<br>1.72397E-13<br>0<br>3.25601E-05<br>0.000457472<br>0.987836<br>0                                                  | XPC-GL<br>JT Valve 1  0.00187086 0.000386294 5.78743E-05 2.29574E-06 5.22625E-06 2.06468E-09 1.90974E-07 6.17681E-08 0 0 3.54875E-09 1.62978E-11 1.15804E-12 0 6.77079E-05 0.000304443 0.984856                                                                          | Final Cut                              | 0.00133414<br>0.000781949<br>0.000115876<br>6.60037E-06<br>6.34008E-06<br>4.78854E-09<br>2.79077E-07<br>3.06371E-08<br>0<br>0<br>1.25411E-09<br>5.78990E-12<br>1.71756E-13<br>0<br>3.24800E-05<br>0.000457953<br>0.987838                                              | FG to JT Skid                                  | VLVE-101                   | XPC-GL                    | 0.0016574<br>0.0016574<br>0.00036410<br>6.01508E-0<br>2.33176E-0<br>6.08980E-0<br>2.26390E-0<br>2.30422E-0<br>8.61971E-0<br>5.16814E-0<br>2.36298E-1<br>1.92556E-1<br>5.48797E-0<br>0.00026765<br>0.98398 |
| ple Fraction  Sthane Sthane Spane Sp | Status: From Block:                                                       | 4.13162E-08 1.36531E-07 3.49863E-08 1.87662E-09 3.44020E-09 4.08394E-13 1.53041E-10 1.17946E-11 0 0 0 5.18493E-13 3.09590E-14 7.71558E-16 0 1.70573E-10 6.30411E-07 0.997563 0 0.00243593  API Liquid Loadout Solved MIX-103                                                                       | VSSL-201 API Vapor Solved VSSL-201 | Cold Sep<br>VLVE-100    | Flash Gas to Flare VSSL-101  - Flash Tank Gas Solved Flash Gas to Flare | <br>SAT-1                                    | VSSL-101  5.67866E-05 0.000103867 1.43745E-05 1.54374E-06 7.68042E-07 5.92568E-10 4.58274E-08 6.57255E-10 0 0 0 2.89591E-11 2.32386E-13 1.89328E-15 0 7.57940E-07 0.000312140 0.989785 0 0.00972459  KMT Cold Sep Water Flowrate                                                                       | MIX-100  5 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 0 | NGL Stream from KMT Model Solved               | VLVE-100<br>XPC-GL        | 0.00133662 0.000779918 0.000115509 6.56530E-06 6.32936E-06 4.76671E-09 2.78226E-07 3.06765E-08 0 0 1.25619E-09 5.79503E-12 1.72397E-13 0 3.25601E-05 0.000457472 0.987836 0 0.00942847  Post-JT Solved JT Valve 1                                                               | 0.00187086 0.000386294 5.78743E-05 2.29574E-06 5.22625E-06 2.06468E-09 1.90974E-07 6.17681E-08 0 0 3.54875E-09 1.62978E-11 1.15804E-12 0 6.77079E-05 0.000304443 0.984856 0 0.0124489  Pre-JT Solved XPC-GL                                                              | Final Cut   To Fuel  Solved Final Cut  | 0.00133414 0.000781949 0.000115876 6.60037E-06 6.34008E-06 4.78854E-09 2.79077E-07 3.06371E-08 0 0 1.25411E-09 5.78990E-12 1.71756E-13 0 3.24800E-05 0.000457953 0.987838 0 0.00942590  Water Solved Cold Sep                                                          | FG to JT Skid VSSL-100  1 Scived FG to JT Skid | VLVE-101 2 Solved VLVE-101 | XPC-GL<br>VLVE-101        | 0.0016574 0.00036410 6.01508E-0 2.33176E-0 6.08980E-0 2.26390E-0 2.30422E-0 8.61971E-0  5.16814E-0 2.36298E-1 1.92556E-1  5.48797E-0 0.00026765 0.98398 0.013602                                          |
| ple Fraction  ethane chane cha | Status: From Block: To Block: Units                                       | 4.13162E-08 1.36531E-07 3.49863E-08 1.87662E-09 3.44020E-09 4.08394E-13 1.53041E-10 1.17946E-11 0 0 0 5.18493E-13 3.09590E-14 7.71558E-16 0 1.70573E-10 6.30411E-07 0.997563 0 0.00243593  API Liquid Loadout Solved MIX-103                                                                       | VSSL-201 API Vapor Solved VSSL-201 | Cold Sep<br>VLVE-100    | Flash Gas to Flare VSSL-101  - Flash Tank Gas Solved                    | SAT-1  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | VSSL-101  5.67866E-05 0.000103867 1.43745E-05 1.54374E-06 7.68042E-07 5.92568E-10 4.58274E-08 6.57255E-10 0 0 0 2.89591E-11 2.32386E-13 1.89328E-15 0 7.57940E-07 0.000312140 0.989785 0 0.00972459  KMT Cold Sep Water Flowrate Solved VSSL-101                                                       | MIX-100  MIX-100  MIX-100  MO  MO  MO  MO  MO  MO  MO  MO  MO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NGL Stream from KMT Model Solved JT Skid Drain | VLVE-100<br>XPC-GL        | 0.00133662 0.000779918 0.000115509 6.56530E-06 6.32936E-06 4.76671E-09 2.78226E-07 3.06765E-08 0 0 1.25619E-09 5.79503E-12 1.72397E-13 0 3.25601E-05 0.000457472 0.987836 0 0.00942847  Post-JT Solved JT Valve 1 Cold Sep                                                      | 0.00187086 0.000386294 5.78743E-05 2.29574E-06 5.22625E-06 2.06468E-09 1.90974E-07 6.17681E-08 0 0 3.54875E-09 1.62978E-11 1.15804E-12 0 6.77079E-05 0.000304443 0.984856 0 0.0124489  Pre-JT Solved XPC-GL JT Valve 1                                                   | Final Cut   To Fuel  Solved  Final Cut | 0.00133414 0.000781949 0.000115876 6.60037E-06 6.34008E-06 4.78854E-09 2.79077E-07 3.06371E-08 0 0 1.25411E-09 5.78990E-12 1.71756E-13 0 3.24800E-05 0.000457953 0.987838 0 0.00942590  Water Solved Cold Sep LCV                                                      | FG to JT Skid<br>VSSL-100                      | VLVE-101 2 Solved          | XPC-GL<br>VLVE-101        | 0.0016574 0.00036410 6.01508E-0 2.33176E-0 6.08980E-0 2.26390E-0 2.30422E-0 8.61971E-0  5.16814E-0 2.36298E-1 1.92556E-1  5.48797E-0 0.00026765 0.98398 0.013602                                          |
| ple Fraction  ethane chane cha | Status: From Block: To Block: Units                                       | ## A.13162E-08 1.36531E-07 3.49863E-08 1.87662E-09 3.44020E-09 4.08394E-13 1.53041E-10 1.17946E-11 0 0 0 5.18493E-13 3.09590E-14 7.71558E-16 0 1.70573E-10 6.30411E-07 0.997563 0 0.00243593  ### API Liquid Loadout Spilved MIX-103 85.2769                                                       | VSSL-201 API Vapor Solved VSSL-201 | Cold Sep<br>VLVE-100    | Flash Gas to Flare VSSL-101  - Flash Tank Gas Solved Flash Gas to Flare | SAT-1  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | VSSL-101  5.67866E-05 0.000103867 1.43745E-05 1.54374E-06 7.68042E-07 5.92568E-10 4.58274E-08 6.57255E-10 0 0 0 2.89591E-11 2.32386E-13 1.89328E-15 0 7.57940E-07 0.000312140 0.989785 0 0.00972459  KMT Cold Sep Water Flowrate Solved VSSL-101                                                       | MIX-100  MIX-100  MIX-100  MIX-100  MIX-100  MEOH  Solved  MIX-100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NGL Stream from KMT Model Solved JT Skid Drain | VLVE-100<br>XPC-GL        | 0.00133662 0.000779918 0.000115509 6.56530E-06 6.32936E-06 4.76671E-09 2.78226E-07 3.06765E-08 0 0 1.25619E-09 5.79503E-12 1.72397E-13 0 3.25601E-05 0.000457472 0.987836 0 0.00942847  Post-JT Solved JT Valve 1 Cold Sep                                                      | 0.00187086 0.000386294 5.78743E-05 2.29574E-06 5.22625E-06 2.06468E-09 1.90974E-07 6.17681E-08 0 0 3.54875E-09 1.62978E-11 1.15804E-12 0 6.77079E-05 0.000304443 0.984856 0 0.0124489  Pre-JT Solved XPC-GL JT Valve 1                                                   | Final Cut   To Fuel  Solved  Final Cut | 0.00133414 0.000781949 0.000115876 6.60037E-06 6.34008E-06 4.78854E-09 2.79077E-07 3.06371E-08 0 0 1.25411E-09 5.78990E-12 1.71756E-13 0 3.24800E-05 0.000457953 0.987838 0 0.00942590  Water Solved Cold Sep LCV                                                      | FG to JT Skid VSSL-100  1 Scived FG to JT Skid | VLVE-101 2 Solved VLVE-101 | XPC-GL<br>VLVE-101        | 0.0016574 0.00036410 6.01508E-0 2.33176E-0 6.08980E-0 2.26390E-0 2.30422E-0 8.61971E-0 5.48797E-0 0.00026765 0.98398 0.013602 4 Solved Gas Gas 2 @ XPO XPC-GL                                             |
| passe: Aqueous Liquid  pole Fraction  ethane hane copane Butane 2-Dimethylpropane Pentane 2-Dimethylbutane 3-Dimethylbutane 3-Dimethylbutane 3-Dimethylbutane 66 Methylpentane exane 7 3 9 10 trogen arbon Dioxide atter exygen eOH  rocess Streams roperties hase: Aqueous Liquid  roperty emperature ressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Status: From Block: To Block: Units                                       | ## A.13162E-08 4.13162E-08 1.36531E-07 3.49863E-08 1.87662E-09 3.44020E-09 4.08394E-13 1.53041E-10 1.17946E-11 0 0 0 5.18493E-13 3.09590E-14 7.71558E-16 0 0 1.70573E-10 6.30411E-07 0.997563 0 0.00243593  ### API Liquid Loadout Solvet MIX-103 85.2769 -0.975949                                | VSSL-201 API Vapor Solved VSSL-201 | Cold Sep<br>VLVE-100    | Flash Gas to Flare VSSL-101  - Flash Tank Gas Solved Flash Gas to Flare | SAT-1  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | VSSL-101  5.67866E-05 0.000103867 1.43745E-05 1.54374E-06 7.68042E-07 5.92568E-10 4.58274E-08 6.57255E-10 0 0 0 2.89591E-11 2.32386E-13 1.89328E-15 0 7.57940E-07 0.000312140 0.989785 0 0.00972459  KMT Cold Sep Water Flowrate Solved VSSL-101                                                       | MIX-100  MIX-100  MIX-100  MO  MO  MO  MO  MO  MO  MO  MO  MO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NGL Stream from KMT Model Solved JT Skid Drain | VLVE-100<br>XPC-GL        | 0.00133662 0.000779918 0.000115509 6.56530E-06 6.32936E-06 4.76671E-09 2.78226E-07 3.06765E-08 0 0 1.25619E-09 5.79503E-12 1.72397E-13 0 3.25601E-05 0.000457472 0.987836 0 0.00942847  Post-JT Solved JT Valve 1 Cold Sep                                                      | 0.00187086 0.000386294 5.78743E-05 2.29574E-06 5.22625E-06 2.06468E-09 1.90974E-07 6.17681E-08 0 0 3.54875E-09 1.62978E-11 1.15804E-12 0 6.77079E-05 0.000304443 0.984856 0 0.0124489  Pre-JT Solved XPC-GL JT Valve 1                                                   | Final Cut   To Fuel  Solved  Final Cut | 0.00133414 0.000781949 0.000115876 6.60037E-06 6.34008E-06 4.78854E-09 2.79077E-07 3.06371E-08 0 0 1.25411E-09 5.78990E-12 1.71756E-13 0 3.24800E-05 0.000457953 0.987838 0 0.00942590  Water Solved Cold Sep LCV                                                      | FG to JT Skid VSSL-100  1 Scived FG to JT Skid | VLVE-101 2 Solved VLVE-101 | XPC-GL<br>VLVE-101        | 0.0016574 0.00036410 6.01508E-0 2.33176E-0 6.08980E-0 2.26390E-0 2.30422E-0 8.61971E-0 5.16814E-0 2.36298E-1 1.92556E-1 5.48797E-0 0.00026765 0.98398 0.013602 4 Solved Gas Gas 2 @ XPO XPC-GL            |
| pethane dethane dethan | Status: From Block: To Block: Units                                       | ## A.13162E-08 1.36531E-07 3.49863E-08 1.87662E-09 3.44020E-09 4.08394E-13 1.53041E-10 1.17946E-11 0 0 0 5.18493E-13 3.09590E-14 7.71558E-16 0 1.70573E-10 6.30411E-07 0.997563 0 0.00243593  ### API Liquid Loadout Spilved MIX-103 85.2769                                                       | VSSL-201 API Vapor Solved VSSL-201 | Cold Sep<br>VLVE-100    | Flash Gas to Flare VSSL-101  - Flash Tank Gas Solved Flash Gas to Flare | SAT-1  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | VSSL-101  5.67866E-05 0.000103867 1.43745E-05 1.54374E-06 7.68042E-07 5.92568E-10 4.58274E-08 6.57255E-10 0 0 0 0 2.89591E-11 2.32386E-13 1.89328E-15 0 7.57940E-07 0.000312140 0.989785 0 0.00972459  KMT Cold Sep Water Flowrate Solved VSSL-101                                                     | MIX-100  MIX-100  MIX-100  MIX-100  MIX-100  MEOH  Solved  MIX-100  MIX-100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NGL Stream from KMT Model Solved JT Skid Drain | VLVE-100<br>XPC-GL        | 0.00133662 0.000779918 0.000115509 6.56530E-06 6.32936E-06 4.76671E-09 2.78226E-07 3.06765E-08 0 0 1.25619E-09 5.79503E-12 1.72397E-13 0 3.25601E-05 0.000457472 0.987836 0 0.00942847  Post-JT Solved JT Valve 1 Cold Sep                                                      | 0.00187086 0.000386294 5.78743E-05 2.29574E-06 5.22625E-06 2.06468E-09 1.90974E-07 6.17681E-08 0 0 3.54875E-09 1.62978E-11 1.15804E-12 0 6.77079E-05 0.000304443 0.984856 0 0.0124489  Pre-JT Solved XPC-GL JT Valve 1                                                   | Final Cut   To Fuel  Solved  Final Cut | 0.00133414 0.000781949 0.000115876 6.60037E-06 6.34008E-06 4.78854E-09 2.79077E-07 3.06371E-08 0 0 1.25411E-09 5.78990E-12 1.71756E-13 0 3.24800E-05 0.000457953 0.987838 0 0.00942590  Water Solved Cold Sep LCV                                                      | FG to JT Skid VSSL-100  1 Scived FG to JT Skid | VLVE-101 2 Solved VLVE-101 | XPC-GL<br>VLVE-101        | 0.0016574 0.00036410 6.01508E-0 2.33176E-0 6.08980E-0 2.26390E-0 2.30422E-0 8.61971E-0 5.16814E-0 2.36298E-1 1.92556E-1 5.48797E-0 0.00026765 0.98398 0.013602 4 Solved Gas Gas 2 @ XPO XPC-GL            |
| ole Fraction  ethane chane chane chane chane copane Butane 2-Dimethylpropane 2-Entane Pentane 2-Dimethylbutane 3-Dimethylbutane 3-Dimethylbutane 3-Dimethylbutane 66 Methylpentane exane 7 8 9 10 trogen arbon Dioxide cater axygen eOH  rocess Streams roperties nase: Aqueous Liquid roperty emperature ressure ole Fraction Vapor olecular Weight ass Density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Status: From Block: To Block: Units Fpsig Ib/Ibmol Ib/ft^3                | ## A.13162E-08 4.13162E-08 1.36531E-07 3.49863E-08 1.87662E-09 3.44020E-09 4.08394E-13 1.53041E-10 1.17946E-11 0 0 0 5.18493E-13 3.09590E-14 7.71558E-16 0 0 1.70573E-10 6.30411E-07 0.997563 0 0.00243593  ### API Liquid Loadout Solvell MIX-103  85.2769 -0.975949 0 18.0495 62.0776            | VSSL-201 API Vapor Solved VSSL-201 | Cold Sep<br>VLVE-100    | Flash Gas to Flare VSSL-101  - Flash Tank Gas Solved Flash Gas to Flare | SAT-1  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 5.67866E-05 0.000103867 1.43745E-05 1.54374E-06 7.68042E-07 5.92568E-10 4.58274E-08 6.57255E-10 0 0 2.89591E-11 2.32386E-13 1.89328E-15 0 0 7.57940E-07 0.000312140 0.989785 0 0.00972459  KMT Cold Sep Water Flowrate Solved VSSL-101 -33.2032 3 0 18.1614 62.4957                                    | MIX-100  MIX-100  MIX-100  MIX-100  MIX-100  MEOH  Solved  MIX-100  MIX-100  MIX-100  MIX-100  MIX-100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NGL Stream from KMT Model Solved JT Skid Drain | VLVE-100<br>XPC-GL        | 0.00133662 0.000779918 0.000115509 6.56530E-06 6.32936E-06 4.76671E-09 2.78226E-07 3.06765E-08 0 0 1.25619E-09 5.79503E-12 1.72397E-13 0 3.25601E-05 0.000457472 0.987836 0 0.00942847  Post-JT Solved JT Valve 1 Cold Sep  -33.0030 325 0 18.1701 62.3804                      | 0.00187086 0.000386294 5.78743E-05 2.29574E-06 5.22625E-06 2.06468E-09 1.90974E-07 6.17681E-08 0 0 3.54875E-09 1.62978E-11 1.15804E-12 0 6.77079E-05 0.000304443 0.984856 0 0.0124489  Pre-JT Solven XPC-GL JT Valve 1  29 1299.4 0 18.2013 62.2578                      | To Fuel Solved Final Cut               | 0.00133414 0.000781949 0.000115876 6.60037E-06 6.34008E-06 4.78854E-09 2.79077E-07 3.06371E-08 0 0 1.25411E-09 5.78990E-12 1.71756E-13 0 0 3.24800E-05 0.000457953 0.987838 0 0.00942590  Water Solved Cold Sep LCV  -33.2258 323 0 18.1701 62.3800                    | FG to JT Skid VSSL-100  1 Scived FG to JT Skid | VLVE-101 2 Solved VLVE-101 | XPC-GL<br>VLVE-101        | 0.0016574 0.00036410 6.01508E-0 2.33176E-0 6.08980E-0 2.26390E-0 2.30422E-0 8.61971E-0 5.16814E-0 2.36298E-1 1.92556E-1 5.48797E-0 0.00026765 0.98398 0.013602 4 Solveni Gas Gas 2 @ XPO XPC-GL           |
| plane in a see: Aqueous Liquid  plane in a see: Aqueous Liquid  pethane in a see: Aqueous Liquid  pethane in a see: Aqueous Liquid  pentane in a see: Aqueous Liquid  pentane in a see: Aqueous Liquid  perty in a see: Aqueou | Status: From Block: To Block: Units  F psig Ib/Ibmol Ib/ft^3 Ib/h         | ## A.13162E-08 4.13162E-08 1.36531E-07 3.49863E-08 1.87662E-09 3.44020E-09 4.08394E-13 1.53041E-10 1.17946E-11 0 0 0 5.18493E-13 3.09590E-14 7.71558E-16 0 0 1.70573E-10 6.30411E-07 0.997563 0 0.00243593  ### API Liquid Loadout Solved MIX-103  85.2769 -0.975949 0 18.0495 62.0776 1.31257     | VSSL-201 Solved VSSL-201           | Cold Sep<br>VLVE-100    | Flash Gas to Flare VSSL-101  - Flash Tank Gas Solved Flash Gas to Flare | SAT-1  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | VSSL-101  5.67866E-05 0.000103867 1.43745E-05 1.54374E-06 7.68042E-07 5.92568E-10 4.58274E-08 6.57255E-10 0 0 0 2.89591E-11 2.32386E-13 1.89328E-15 0 0 7.57940E-07 0.000312140 0.989785 0 0.00972459  KMT Cold Sep Water Flowrate Solved VSSL-101  -33.2032 3 0 18.1614 62.4957 1.45492               | MIX-100  MIX-100  MIX-100  MIX-100  MIX-100  MIX-100  MEOH  Solved  MIX-100  MIX-100  MIX-100  MIX-100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NGL Stream from KMT Model Solved JT Skid Drain | VLVE-100<br>XPC-GL        | 0.00133662 0.000779918 0.000115509 6.56530E-06 6.32936E-06 4.76671E-09 2.78226E-07 3.06765E-08 0 0 1.25619E-09 5.79503E-12 1.72397E-13 0 3.25601E-05 0.000457472 0.987836 0 0.00942847  Post-JT Solved JT Valve 1 Cold Sep  -33.0030 325 0 18.1701 62.3804 0.329018             | 0.00187086 0.000386294 5.78743E-05 2.29574E-06 5.22625E-06 2.06468E-09 1.90974E-07 6.17681E-08 0 0 3.54875E-09 1.62978E-11 1.15804E-12 0 6.77079E-05 0.000304443 0.984856 0 0.0124489  Pre-JT Solvest XPC-GL JT Valve 1  29 1299.4 0 18.2013 62.2578 0.150709            | Final Cut   To Fuel  Solved Final Cut  | 0.00133414 0.000781949 0.000115876 6.60037E-06 6.34008E-06 4.78854E-09 2.79077E-07 3.06371E-08 0 0 1.25411E-09 5.78990E-12 1.71756E-13 0 0 3.24800E-05 0.000457953 0.987838 0 0.00942590  Water Solved Cold Sep LCV  -33.2258 323 0 18.1701 62.3800 0.329223           | FG to JT Skid VSSL-100  1 Scived FG to JT Skid | VLVE-101 2 Solved VLVE-101 | XPC-GL<br>VLVE-101        | 0.0016574 0.00036410 6.01508E-0 2.33176E-0 6.08980E-0 2.26390E-0 2.30422E-0 8.61971E-0 5.16814E-0 2.36298E-1 1.92556E-1 5.48797E-0 0.00026769 0.98398 0.013602 4 Solved Gas Gas 2 @ XPC XPC-GL            |
| ple Fraction  ethane chane chane copane dutane Butane 2-Dimethylpropane 2-Dimethylpropane 2-Dimethylbutane 3-Dimethylbutane 3 | Status: From Block: To Block: Units  F psig  Ib/Ibmol Ib/ft^3 Ib/h MMSCFD | ## A.13162E-08 1.36531E-07 3.49863E-08 1.87662E-09 3.44020E-09 4.08394E-13 1.53041E-10 1.17946E-11 0 0 0 5.18493E-13 3.09590E-14 7.71558E-16 0 0 1.70573E-10 6.30411E-07 0.997563 0 0.00243593  ### API Liquid Loadout Solved MIX-103  ### 85.2769 -0.975949 0 18.0495 62.0776 1.31257 0.000662310 | VSSL-201 API Vapor Solved VSSL-201 | Cold Sep<br>VLVE-100    | Flash Gas to Flare VSSL-101  - Flash Tank Gas Solved Flash Gas to Flare | SAT-1  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | VSSL-101  5.67866E-05 0.000103867 1.43745E-05 1.54374E-06 7.68042E-07 5.92568E-10 4.58274E-08 6.57255E-10 0 0 0 0 2.89591E-11 2.32386E-13 1.89328E-15 0 0 7.57940E-07 0.000312140 0.989785 0 0.00972459  KMT Cold Sep Water Flowrate Solved VSSL-101  -33.2032 3 0 18.1614 62.4957 1.45492 0.000729618 | MIX-100  MIX-100  MIX-100  MIX-100  MIX-100  MIX-100  MEOH  Solved  MIX-100  MIX-100  MIX-100  MIX-100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NGL Stream from KMT Model Solved JT Skid Drain | VLVE-100<br>XPC-GL        | 0.00133662 0.000779918 0.000115509 6.56530E-06 6.32936E-06 4.76671E-09 2.78226E-07 3.06765E-08 0 0 1.25619E-09 5.79503E-12 1.72397E-13 0 3.25601E-05 0.000457472 0.987836 0 0.00942847  Post-JT Solved JT Valve 1 Cold Sep  -33.0030 325 0 18.1701 62.3804 0.329018 0.000164918 | 0.00187086 0.000386294 5.78743E-05 2.29574E-06 5.22625E-06 2.06468E-09 1.90974E-07 6.17681E-08 0 0 3.54875E-09 1.62978E-11 1.15804E-12 0 6.77079E-05 0.000304443 0.984856 0 0.0124489  Pre-JT Solved XPC-GL JT Valve 1  29 1299.4 0 18.2013 62.2578 0.150709 7.54125E-05 | Final Cut   To Fuel  Solved Final Cut  | 0.00133414 0.000781949 0.000115876 6.60037E-06 6.34008E-06 4.78854E-09 2.79077E-07 3.06371E-08 0 0 1.25411E-09 5.78990E-12 1.71756E-13 0 3.24800E-05 0.000457953 0.987838 0 0.00942590  Water Solved Cold Sep LCV  -33.2258 323 0 18.1701 62.3800 0.329223 0.000165021 | FG to JT Skid VSSL-100  1 Scived FG to JT Skid | VLVE-101 2 Solved VLVE-101 | XPC-GL<br>VLVE-101        | 0.0016574 0.00036410 6.01508E-0 2.33176E-0 6.08980E-0 2.26390E-0 2.30422E-0 8.61971E-0 5.16814E-0 2.36298E-1 1.92556E-1 5.48797E-0 0.00026769 0.98398 0.013602 4 Solived Gas Gas 2 @ XPC XPC-GL           |
| ole Fraction  ethane chane chane chane chane copane Butane Butane 2-Dimethylpropane Pentane 2-Dimethylbutane 3-Dimethylbutane 3-Dimethylbutane 3-Dimethylbutane 66 Methylpentane exane 7 8 9 10 ttrogen carbon Dioxide cater exygen eOH  rocess Streams roperties case: Aqueous Liquid coperty emperature cessure cole Fraction Vapor colecular Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Status: From Block: To Block: Units  F psig Ib/Ibmol Ib/ft^3 Ib/h         | ## A.13162E-08 4.13162E-08 1.36531E-07 3.49863E-08 1.87662E-09 3.44020E-09 4.08394E-13 1.53041E-10 1.17946E-11 0 0 0 5.18493E-13 3.09590E-14 7.71558E-16 0 0 1.70573E-10 6.30411E-07 0.997563 0 0.00243593  ### API Liquid Loadout Solved MIX-103  85.2769 -0.975949 0 18.0495 62.0776 1.31257     | VSSL-201 API Vapor Solved VSSL-201 | Cold Sep<br>VLVE-100    | Flash Gas to Flare VSSL-101  - Flash Tank Gas Solved Flash Gas to Flare | SAT-1  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | VSSL-101  5.67866E-05 0.000103867 1.43745E-05 1.54374E-06 7.68042E-07 5.92568E-10 4.58274E-08 6.57255E-10 0 0 0 0 0 7.57940E-07 0.000312140 0.989785 0 0.00972459  KMT Cold Sep Water Flowrate Solved VSSL-101  -33.2032 3 0 18.1614 62.4957 1.45492 0.000729618 0.00292314                            | MIX-100  MIX-100  MIX-100  MIX-100  MIX-100  MIX-100  MIX-100  MO  MIX-100  MO  MIX-100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NGL Stream from KMT Model Solved JT Skid Drain | VLVE-100<br>XPC-GL        | 0.00133662 0.000779918 0.000115509 6.56530E-06 6.32936E-06 4.76671E-09 2.78226E-07 3.06765E-08 0 0 1.25619E-09 5.79503E-12 1.72397E-13 0 3.25601E-05 0.000457472 0.987836 0 0.00942847  Post-JT Solved JT Valve 1 Cold Sep  -33.0030 325 0 18.1701 62.3804 0.329018             | 0.00187086 0.000386294 5.78743E-05 2.29574E-06 5.22625E-06 2.06468E-09 1.90974E-07 6.17681E-08 0 0 3.54875E-09 1.62978E-11 1.15804E-12 0 6.77079E-05 0.000304443 0.984856 0 0.0124489  Pre-JT Solvest XPC-GL JT Valve 1  29 1299.4 0 18.2013 62.2578 0.150709            | Final Cut   To Fuel Solved Final Cut   | 0.00133414 0.000781949 0.000115876 6.60037E-06 6.34008E-06 4.78854E-09 2.79077E-07 3.06371E-08 0 0 1.25411E-09 5.78990E-12 1.71756E-13 0 0 3.24800E-05 0.000457953 0.987838 0 0.00942590  Water Solved Cold Sep LCV  -33.2258 323 0 18.1701 62.3800 0.329223           | FG to JT Skid VSSL-100  1 Scived FG to JT Skid | VLVE-101 2 Solved VLVE-101 | XPC-GL<br>VLVE-101        | 0.0016574 0.00036410 6.01508E-0 2.33176E-0 6.08980E-0 2.26390E-0 2.30422E-0 8.61971E-0 5.16814E-0 2.36298E-1 1.92556E-1 5.48797E-0 0.00026765 0.98398 0.013602 4 Solved Gas Gas 2 @ XPC                   |

SolvedSolvedSolvedSolvedSolvedSolvedSolvedVLVE-100JT Valve 1XPC-GLFinal CutCold SepFG to JT SkidVLVE-101XPC-GLGas Gas 2 @ XPC

Solved

VSSL-201 Cold Sep Flash Gas to Flare --

Solved Solved

Solved

Solved

Solved

Status:

nase: Nonspecific Liquid From Block:

Composition

Solved

MIX-103

| 5                               | 6                          | 7                          | 9                                | 10                                  | 11                                 | 12                         | 16                            | 17                              | 18                 | 19                    | 20                     | 21                         | 22                             | 104                           | 123                           | 124                           | 125                           | 126                           | 129                           |
|---------------------------------|----------------------------|----------------------------|----------------------------------|-------------------------------------|------------------------------------|----------------------------|-------------------------------|---------------------------------|--------------------|-----------------------|------------------------|----------------------------|--------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|
| Solved MIX-100 Gas Gas 2 @ XPC  | Solved<br>SAT-1<br>MIX-100 | Solved Cold Sep JT Valve 2 | Solved Gas Gas 2 @ XPC Final Cut | Solved  JT Valve 2  Gas Gas 2 @ XPC | Solved Water to Flare KOD VSSL-101 | Solved<br>LCV<br>          | Solved<br>VSSL-101<br>MIX-105 | Solved<br>VSSL-100<br>SAT-1     | Solved<br>VSSL-100 | Solved<br><br>MIX-105 | Solved<br>Flare        | Solved<br>MIX-105<br>Flare | Solved<br>VSSL-101<br>TANK-100 | Solved<br>MIX-102<br>VSSL-201 | Solved<br>TANK-100<br>MIX-102 | Solved<br>TANK-100<br>MIX-102 | Solved<br>TANK-100<br>MIX-102 | Solved<br>TANK-100<br>MIX-103 | Salved<br>VSSL-201<br>MIX-103 |
| 0.610508                        | 0.611107                   | 0.763850                   | 0.763850                         | 0.763850                            | V33L-101                           | 0.00133414                 | 0.465670                      | 0.611164                        |                    | 0*                    | 0                      | 0.0298979                  | 3.19476E-05                    |                               | 0.243192                      |                               |                               |                               | 6.04743E-06                   |
| 0.206967<br>0.105201            | 0.207170<br>0.105304       | 0.161620<br>0.0317773      | 0.161620<br>0.0317773            | 0.161620<br>0.0317773               |                                    | 0.000781949<br>0.000115876 | 0.353565<br>0.136021          | 0.207189<br>0.105314            |                    | 0*<br>0*              | 0                      | 0.0227003<br>0.00873313    | 6.53922E-05<br>2.06061E-05     | 0.00934922<br>0.00294609      | 0.463980<br>0.156401          | 0.00211252<br>0.000503427     | 0.00211252<br>0.000503427     | 0                             | 1.99840E-05<br>5.12093E-06    |
| 0.00943948<br>0.0273634         | 0.00944876<br>0.0273902    | 0.00101962<br>0.00220461   | 0.00101962<br>0.00220461         | 0.00101962<br>0.00220461            |                                    | 6.60037E-06<br>6.34008E-06 | 0.00634750<br>0.0139721       | 0.00944963<br>0.0273928         |                    | 0*<br>0*              | 0                      | 0.000407536<br>0.000897067 | 1.46447E-06<br>1.92928E-06     | 0.000275832                   | 0.0117810<br>0.0148261        | 2.51840E-05<br>4.42249E-05    | 2.51840E-05<br>4.42249E-05    | 0                             | 2.74680E-07<br>5.03541E-07    |
| 2.76182E-05<br>0.00331055       |                            | 8.61521E-05                | 1.73622E-06<br>8.61521E-05       | 1.73622E-06<br>8.61521E-05          |                                    | 4.78854E-09<br>2.79077E-07 | 0.000786655                   | 2.76478E-05<br>0.00331410       |                    | 0*<br>0*              | 0                      | 2.85047E-07<br>5.05065E-05 | 5.55017E-10<br>1.30933E-07     | 1.87196E-05                   | 4.67302E-06<br>0.00106014     | 6.23068E-09<br>2.14256E-06    | 6.23068E-09<br>2.14256E-06    |                               | 5.97764E-11<br>2.24005E-08    |
| 0.00415351                      | 0.00415759                 | 8.27616E-05<br>0           | 8.27616E-05<br>0                 | 8.27616E-05<br>0                    |                                    | 3.06371E-08<br>0           | 0.000843708                   | 0.00415797                      |                    | 0*<br>0*              | 0                      | 5.41695E-05<br>0           | 2.11016E-08<br>0               | 3.01692E-06<br>0              | 0.000182445                   | 1.60830E-07<br>0              | 1.60830E-07<br>0              | 0                             | 1.72638E-09<br>0              |
| 0                               | 0                          | 0                          | 0                                | 0                                   |                                    | 0                          | 0                             | 0                               |                    | 0*<br>0*              | 0                      | 0                          | 0                              | 0                             | 0                             | 0                             | 0                             | 0                             | 0                             |
| 0.000927475                     |                            |                            | 3.81160E-06                      | 3.81160E-06                         |                                    | 1.25411E-09                |                               |                                 |                    | 0°<br>0*              | 0                      | 3.96807E-06                | 1.49154E-09                    |                               | 1.31278E-05                   |                               | 7.67607E-09                   | 0                             | 7.58917E-11                   |
| 1.26028E-05<br>7.00528E-06<br>0 |                            |                            | 1.48890E-08<br>1.91650E-09       | 1.48890E-08<br>1.91650E-09<br>0     |                                    | 5.78990E-12<br>1.71756E-13 | 4.31592E-06<br>6.39355E-07    | 1.26163E-05<br>7.01281E-06<br>0 |                    | 0*<br>0*              | 0                      | 2.77100E-07<br>4.10492E-08 | 1.24613E-10<br>5.43518E-12     | 1.78161E-08<br>7.77075E-10    | 1.10814E-06<br>4.90224E-08    | 4.60636E-10<br>9.11841E-12    | 4.60636E-10<br>9.11841E-12    | 0                             | 4.53146E-12<br>1.12933E-13    |
| 0<br>0.0239047                  | 0<br>0.0239282             | 0<br>0<br>0.0318013        | 0<br>0.0318013                   | 0<br>0.0318013                      |                                    | 0<br>0<br>3.24800E-05      | 0<br>0<br>0.00821928          | 0<br>0.0239304                  |                    | 0*<br>0.79*           | 0<br>0<br>0.723695     | 0<br>0.739806              | 0<br>2.88134E-07               | 0<br>0<br>4.11949E-05         | 0<br>0.00239799               | 0<br>0<br>3.68006E-06         | 0<br>0<br>3.68006E-06         | 0                             | 0<br>0<br>2.49667E-08         |
| 0.00705002<br>0.000147286       | 0.00705695<br>0.000147430  | 0.00752875                 | 0.00752875<br>1.37412E-05        | 0.00752875<br>1.37412E-05           |                                    | 0.000457953<br>0.987838    | 0.0136993                     | 0.00705760<br>5.51525E-05       |                    | 0.73<br>0*<br>0*      | 0.105796<br>0.166364   | 0.000879548<br>4.75518E-05 | 3.16850E-05<br>0.997407        | 0.00453005<br>0.937622        | 0.0605011<br>0.0438794        | 0.00363912                    | 0.00363912<br>0.951848        | 0<br>0.997828                 | 9.22730E-05<br>0.959060       |
| 0.000981354                     | 0                          | 0<br>1.06600E-05           | 0<br>1.06600E-05                 | 0<br>1.06600E-05                    |                                    | 0.00942590                 | 0                             | 0                               |                    | 0.21*<br>0*           | 0.00414528             | 0.196517<br>4.10949E-06    | 0.00243955                     | 0.0404368                     | 0.00177976                    | 0.0410522                     | 0.0410522                     | 0.00217191                    | 0<br>0.0408161                |
|                                 |                            |                            |                                  |                                     |                                    |                            |                               |                                 |                    |                       |                        |                            |                                |                               |                               |                               |                               |                               |                               |
| 5<br>Solved                     | 6<br>Solved                | 7<br>Solved                | 9<br>Solved                      | 10<br>Solved                        | 11<br>Solved                       | 12<br>Solved               | 16<br>Solved                  | 17<br>Solved                    | 18<br>Solved       | 19<br>Solved          | 20<br>Solved           | 21<br>Solved               | 22<br>Solved                   | 104<br>Solved                 | 123<br>Solved                 | 124<br>Solved                 | 125<br>Solved                 | 126<br>Solved                 | 129<br>Solved                 |
| MIX-100<br>Gas Gas 2 @ XPC      | SAT-1<br>MIX-100           | Cold Sep<br>JT Valve 2     | Gas Gas 2 @ XPC<br>Final Cut     | JT Valve 2 Gas Gas 2 @ XPC          | Water to Flare KOD<br>VSSL-101     | LCV<br>                    | VSSL-101<br>MIX-105           |                                 | VSSL-100           | <br>MIX-105           | Flare                  | MIX-105<br>Flare           | VSSL-101<br>TANK-100           | MIX-102<br>VSSL-201           | TANK-100<br>MIX-102           | TANK-100<br>MIX-102           | TANK-100<br>MIX-102           | TANK-100<br>MIX-103           | VSSL-201<br>MIX-103           |
| 116.189                         | 119.027                    | -33.2258                   | 190.053                          | -47.7785                            |                                    | -33.1974                   | -10.8800                      | 119.027                         |                    | 70*                   | 3720.42                | 55.8884                    | -10.8800                       | 84.9385                       | 85.2806                       | 85.2806                       | 85.2806                       | 85.2806                       | 84.9385                       |
| 1300                            | 1340.68<br>1               | 323<br>1                   | 205.4                            | 210*<br>0.999995                    | 0                                  | 3*<br>0.00226810           | 3                             | 1340.68<br>1                    | 1340.68            | 200*<br>1             | 0*<br>1                | 3*<br>1                    | 3                              | -0.975949<br>0.0233757        | -0.975949<br>1                | -0.975949<br>0.00735111       | -0.975949<br>0.00735111       | -0.975949<br>0                | -0.975949<br>0                |
| 24.4318<br>7.51193              | 24.4243<br>7.68395         | 19.9378<br>1.74174         | 19.9378<br>0.644005              | 19.9378<br>1.14256                  |                                    | 18.1701<br>20.8733         | 26.2531<br>0.0976159          | 24.4249<br>7.68424              |                    | 28.8503<br>1.09524    | 28.0589<br>0.00919109  | 28.6836<br>0.0918199       | 18.0517<br>62.6179             | 18.9018<br>1.85496            | 29.9645<br>0.0707585          | 18.7257<br>5.48114            | 18.7257<br>5.48114            | 18.0457<br>62.0828            | 18.5906<br>61.3450            |
| 3222.54<br>1.20129              | 3218.39<br>1.20011         | 1934.45<br>0.883658        | 1934.45<br>0.883658              | 1934.45<br>0.883658                 | 0                                  | 0.329223<br>0.000165021    | 246.765<br>0.0856066          | 3218.18<br>1.2                  | 0                  | 3952.50<br>1.24774    | 4199.26<br>1.36303     | 4199.26<br>1.33335         | 1.31295<br>0.000662419         | 0.00961572<br>4.63322E-06     | 0.000238841<br>7.25950E-08    | 3.15773E-05<br>1.53582E-08    | 0.00934530<br>4.54527E-06     | 1.30333<br>0.000657785        | 0.00923632<br>4.52492E-06     |
| 17.1939<br>0.691910             | 17.1835<br>0.693719        | 11.4675<br>0.844683        | 11.4675<br>0.977257              | 11.4675<br>0.887049                 | 0                                  | 0.000664666<br>0.00336578  | 1.31268<br>0.988161           | 17.1831<br>0.693710             | 0                  | 9.12269<br>0.994938   | 10.1530<br>1.00012     | 10.4354<br>0.999146        | 0.00262847<br>0.00105922       | 2.04470E-05<br>0.0239208      | 1.16014E-06<br>0.993485       | 6.49500E-08<br>0.00801495     | 1.92220E-05<br>0.00801495     | 0.00260803<br>0.000681926     | 1.87995E-05<br>0.000711410    |
| 0.843567                        | 0.843309                   | 0.688402                   | 0.688402                         |                                     |                                    |                            | 0.906452                      | 0.843329                        |                    | 0.996127              | 0.968801               | 0.990370                   | 1.00400                        |                               | 1.03460                       |                               |                               | 0.995415                      | 0.983585                      |
| 5                               | 6                          | 7                          | 9                                | 10                                  | 11                                 | 12                         | 16                            | 17                              | 18                 | 19                    | 20                     | 21                         | 22                             | 104                           | 123                           | 124                           | 125                           | 126                           | 129                           |
| Solved<br>MIX-100               | Solved<br>SAT-1            | Solved<br>Cold Sep         | Solved<br>Gas Gas 2 @ XPC        | Solved<br>JT Valve 2                | Solved<br>Water to Flare KOD       | Solved<br>LCV              | Solved<br>VSSL-101            | Solved<br>VSSL-100              | Solved<br>VSSL-100 | Solved<br>            | Solved<br>Flare        | Solved<br>MIX-105          | Solved<br>VSSL-101             | Solved<br>MIX-102             | Solved<br>TANK-100            | Solved<br>TANK-100            | Solved<br>TANK-100            | Solved<br>TANK-100            | Solved<br>VSSL-201            |
| Gas Gas 2 @ XPC                 | MIX-100                    | JT Valve 2                 | Final Cut                        | Gas Gas 2 @ XPC                     | VSSL-101                           |                            | MIX-105                       | SAT-1                           |                    | MIX-105               |                        | Flare                      | TANK-100                       | VSSL-201                      | MIX-102                       | MIX-102                       | MIX-102                       | MIX-103                       | MIX-103                       |
| 0.610508<br>0.206967            | 0.611107<br>0.207170       | 0.763850<br>0.161620       | 0.763850<br>0.161620             | 0.763854<br>0.161620                |                                    | 0.563221<br>0.298590       | 0.465670<br>0.353565          | 0.611164<br>0.207189            |                    | 0                     | 0                      | 0.0298979<br>0.0227003     |                                | 0.195147<br>0.399120          | 0.243192<br>0.463980          | 0.104206<br>0.285439          | 0.104206<br>0.285439          |                               |                               |
| 0.105201<br>0.00943948          | 0.105304                   | 0.0317773<br>0.00101962    | 0.0317773<br>0.00101962          | 0.0317775<br>0.00101963             |                                    | 0.0447884<br>0.00224552    | 0.136021<br>0.00634750        | 0.105314<br>0.00944963          |                    | 0                     | 0                      | 0.00873313<br>0.000407536  |                                | 0.125818<br>0.00894561        | 0.156401<br>0.0117810         | 0.0681071<br>0.00341166       | 0.0681071<br>0.00341166       |                               |                               |
| 0.0273634<br>2.76182E-05        | 0.0273902<br>2.76453E-05   | 1.73622E-06                | 0.00220461<br>1.73622E-06        | 0.00220462<br>1.73623E-06           |                                    | 0.00246553<br>1.84631E-06  |                               | 0.0273928<br>2.76478E-05        |                    | 0                     | 0                      | 0.000897067<br>2.85047E-07 |                                | 0.0117789<br>3.39212E-06      | 0.0148261<br>4.67302E-06      | 0.00598133<br>8.45562E-07     | 0.00598133<br>8.45562E-07     |                               |                               |
| 0.00331055<br>0.00415351        |                            | 8.61521E-05<br>8.27616E-05 | 8.61521E-05<br>8.27616E-05       | 8.61525E-05<br>8.27621E-05          |                                    | 0.000103631<br>1.32315E-05 | 0.000786655<br>0.000843708    | 0.00331410 0.00415797           |                    | 0                     | 0                      | 5.05065E-05<br>5.41695E-05 |                                | 0.000799881 0.000128990       | 0.00106014<br>0.000182445     | 0.000290356<br>2.18385E-05    | 0.000290356<br>2.18385E-05    |                               |                               |
| 0                               | 0                          | 0                          | 0                                | 0                                   |                                    | 0                          | 0                             | 0                               |                    | 0                     | 0                      | 0                          |                                | 0                             | 0                             | 0                             | 0                             |                               |                               |
| 0.000927475                     | 0<br>0.000928386           | 0<br>3 81160F-06           | 0<br>3.81160E-06                 | 0<br>3.81162E-06                    |                                    | 0<br>5 40730F-07           | 0<br>6.18040E-05              | 0 000928472                     |                    | 0                     | 0                      | 0<br>3.96807E-06           |                                | 0<br>9 11945F-06              | 0<br>1.31278E-05              | 0<br>1.04302E-06              | 0<br>1.04302E-06              |                               |                               |
| 1.26028E-05<br>7.00528E-06      | 1.26152E-05                | 1.48890E-08                | 1.48890E-08<br>1.91650E-09       | 1.48890E-08<br>1.91651E-09          |                                    |                            | 4.31592E-06                   | 1.26163E-05<br>7.01281E-06      |                    | 0                     |                        |                            |                                | 7.61977E-07<br>3.32382E-08    | 1.10814E-06<br>4.90224E-08    | 6.26113E-08<br>1.23984E-09    | 6.26113E-08<br>1.23984E-09    |                               |                               |
| 0                               | 0                          | 0                          | 0                                | 0                                   |                                    | 0<br>0                     | 0<br>0                        | 0                               |                    | 0                     | 0                      | 0                          |                                | 0                             | 0                             | 0                             | 0                             |                               |                               |
| 0.0239047<br>0.00705002         | 0.0239282<br>0.00705695    | 0.0318013<br>0.00752875    | 0.0318013<br>0.00752875          | 0.0318014<br>0.00752879             |                                    | 0.0139973<br>0.0742517     | 0.00821928<br>0.0136993       | 0.0239304<br>0.00705760         |                    | 0.79<br>0             | 0.723695<br>0.105796   | 0.739806<br>0.000879548    |                                | 0.00176125<br>0.189938        | 0.00239799<br>0.0605011       | 0.000499655<br>0.464614       | 0.000499655<br>0.464614       |                               |                               |
| 0.000147286<br>0                | 0.000147430<br>0           | 1.37412E-05<br>0           | 1.37412E-05<br>0                 | 8.51367E-06<br>0                    |                                    | 0.000229381<br>0           | 0.000740634<br>0              | 5.51525E-05<br>0                |                    | 0<br>0.21             | 0.166364<br>0.00414528 | 4.75518E-05<br>0.196517    |                                | 0.0419574<br>0                | 0.0438794<br>0                | 0.0424925<br>0                | 0.0424925<br>0                |                               |                               |
| 0.000981354                     | 0                          | 1.06600E-05                | 1.06600E-05                      | 1.05717E-05                         |                                    | 9.18126E-05                | 6.40067E-05                   | 0                               |                    | 0                     | 0                      | 4.10949E-06                |                                | 0.0245907                     | 0.00177976                    | 0.0249351                     | 0.0249351                     |                               |                               |
| 5                               | 6                          | 7                          | 9                                | 10                                  | 11                                 | 12                         | 16                            | 17                              | 18                 | 19                    | 20                     | 21                         | 22                             | 104                           | 123                           | 124                           | 125                           | 126                           | 129                           |
| Solved<br>MIX-100               | Solved<br>SAT-1            | Solved<br>Cold Sep         | Solved<br>Gas Gas 2 @ XPC        | Solved<br>JT Valve 2                | Solved<br>Water to Flare KOD       | Solved<br>LCV              | Solved<br>VSSL-101            | Solved<br>VSSL-100              | Solved<br>VSSL-100 | Solved                | Solved<br>Flare        | Solved<br>MIX-105          | Solved<br>VSSL-101             | Solved<br>MIX-102             | Solved<br>TANK-100            | Solved<br>TANK-100            | Solved<br>TANK-100            | Solved<br>TANK-100            | Solved<br>VSSL-201            |
| Gas Gas 2 @ XPC                 |                            |                            |                                  | Gas Gas 2 @ XPC                     | VSSL-101                           |                            | MIX-105                       | SAT-1                           |                    | MIX-105               |                        | Flare                      | TANK-100                       |                               | MIX-102                       | MIX-102                       | MIX-102                       | MIX-103                       | MIX-103                       |
| 116.189<br>1300                 | 119.027<br>1340.68         | -33.2258<br>323            | 190.053<br>205.4                 | -47.7785<br>210                     |                                    | -33.1974<br>3              | -10.8800<br>3                 | 119.027<br>1340.68              |                    | 70<br>200             | 3720.42<br>0           | 55.8884<br>3               |                                | 84.9385<br>-0.975949          | 85.2806<br>-0.975949          | 85.2806<br>-0.975949          | 85.2806<br>-0.975949          |                               |                               |
| 1<br>24.4318                    | 1<br>24.4243               | 1<br>19.9378               | 19.9378                          | 19.9379                             |                                    | 23.9381                    | 1<br>26.2531                  | 24.4249                         |                    | 1<br>28.8503          | 28.0589                | 28.6836                    |                                | 31.9048                       | 1<br>29.9645                  | 35.8523                       | 1<br>35.8523                  |                               |                               |
| 7.51193<br>3222.54              | 7.68395<br>3218.39         | 1.74174<br>1934.45         | 0.644005<br>1934.45              | 1.14256<br>1934.44                  |                                    | 0.0935076<br>0.000983752   | 0.0976159<br>246.765          | 7.68424<br>3218.18              |                    | 3952.50               | 0.00919109<br>4199.26  | 0.0918199<br>4199.26       |                                | 0.0753793<br>0.000379401      | 0.0707585<br>0.000238841      | 0.0845972<br>4.44433E-07      | 0.0845972<br>0.000131530      |                               |                               |
| 1.20129<br>17.1939              | 1.20011<br>17.1835         | 0.883658<br>11.4675        | 0.883658<br>11.4675              | 0.883653<br>11.4675                 |                                    | 3.74283E-07<br>5.27503E-06 | 0.0856066                     | 1.2<br>17.1831                  |                    | 1.24774<br>9.12269    | 1.36303<br>10.1530     | 1.33335<br>10.4354         |                                | 1.64752E-06                   |                               | 1.57059E-09                   | 3.34128E-08<br>4.64816E-07    |                               |                               |
| 0.691910<br>0.843567            | 0.693719<br>0.843309       | 0.844683<br>0.688402       | 0.977257<br>0.688402             | 0.887054<br>0.688402                |                                    | 0.989834<br>0.826522       | 0.988161<br>0.906452          | 0.693710<br>0.843329            |                    | 0.994938<br>0.996127  | 1.00012<br>0.968801    | 0.999146<br>0.990370       |                                | 0.993596<br>1.10159           | 0.993485<br>1.03460           | 0.994248<br>1.23789           | 0.994248<br>1.23789           |                               |                               |
|                                 |                            |                            |                                  | 10                                  | 11                                 |                            |                               |                                 |                    |                       |                        | 21                         | 22                             | 104                           | 123                           | 124                           | 125                           | 126                           | 129                           |

125

| Solved          |         |            |                 |                 |                    |     |          |          |          |         |       |         |          |          |          |          |          |          | Solved   |
|-----------------|---------|------------|-----------------|-----------------|--------------------|-----|----------|----------|----------|---------|-------|---------|----------|----------|----------|----------|----------|----------|----------|
| MIX-100         | SAT-1   | Cold Sep   | Gas Gas 2 @ XPC | JT Valve 2      | Water to Flare KOD | LCV | VSSL-101 | VSSL-100 | VSSL-100 |         | Flare | MIX-105 | VSSL-101 | MIX-102  | TANK-100 | TANK-100 | TANK-100 | TANK-100 | VSSL-201 |
| Gas Gas 2 @ XPC | MIX-100 | JT Valve 2 | Final Cut       | Gas Gas 2 @ XPC | VSSL-101           |     | MIX-105  | SAT-1    |          | MIX-105 |       | Flare   | TANK-100 | VSSL-201 | MIX-102  | MIX-102  | MIX-102  | MIX-103  | MIX-103  |

| 5               | 6       | 7          | 9               | 10              | 11                 | 12     | 16       | 17       | 18       | 19      | 20     | 21      | 22       | 104      | 123      | 124      | 125      | 126      | 129      |
|-----------------|---------|------------|-----------------|-----------------|--------------------|--------|----------|----------|----------|---------|--------|---------|----------|----------|----------|----------|----------|----------|----------|
| Solved          | Solved  | Solved     | Solved          | Solved          | Solved             | Solved | Solved   | Solved   | Solved   | Solved  | Solved | Solved  | Solved   | Solved   | Solved   | Solved   | Solved   | Solved   | Solved   |
| MIX-100         | SAT-1   | Cold Sep   | Gas Gas 2 @ XPC | JT Valve 2      | Water to Flare KOD | LCV    | VSSL-101 | VSSL-100 | VSSL-100 |         | Flare  | MIX-105 | VSSL-101 | MIX-102  | TANK-100 | TANK-100 | TANK-100 | TANK-100 | VSSL-201 |
| Gas Gas 2 @ XPC | MIX-100 | JT Valve 2 | Final Cut       | Gas Gas 2 @ XPC | VSSL-101           |        | MIX-105  | SAT-1    |          | MIX-105 |        | Flare   | TANK-100 | VSSL-201 | MIX-102  | MIX-102  | MIX-102  | MIX-103  | MIX-103  |

| 5               | 6       | 7          | 9               | 10                         | 11                 | 12                         | 16       | 17       | 18       | 19      | 20     | 21      | 22                      | 104                        | 123      | 124                        | 125                        | 126                       | 129                        |
|-----------------|---------|------------|-----------------|----------------------------|--------------------|----------------------------|----------|----------|----------|---------|--------|---------|-------------------------|----------------------------|----------|----------------------------|----------------------------|---------------------------|----------------------------|
| Solved          | Solved  | Solved     | Solved          | Solved                     | Solved             | Solved                     | Solved   | Solved   | Solved   | Solved  | Solved | Solved  | Solved                  | Solved                     | Solved   | Solved                     | Solved                     | Solved                    | Solved                     |
| MIX-100         | SAT-1   | Cold Sep   | Gas Gas 2 @ XPC | JT Valve 2                 | Water to Flare KOD | LCV                        | VSSL-101 | VSSL-100 | VSSL-100 |         | Flare  | MIX-105 | VSSL-101                | MIX-102                    | TANK-100 | TANK-100                   | TANK-100                   | TANK-100                  | VSSL-201                   |
| Gas Gas 2 @ XPC | MIX-100 | JT Valve 2 | Final Cut       | Gas Gas 2 @ XPC            | VSSL-101           |                            | MIX-105  | SAT-1    |          | MIX-105 |        | Flare   | TANK-100                | VSSL-201                   | MIX-102  | MIX-102                    | MIX-102                    | MIX-103                   | MIX-103                    |
|                 |         |            |                 |                            |                    |                            |          |          |          |         |        |         |                         |                            |          |                            |                            |                           |                            |
|                 |         |            |                 | 0.00124370                 |                    | 5.68288E-05                |          |          |          |         |        |         |                         | 6.04743E-06                |          | 3.23614E-06                |                            |                           | 6.04743E-06                |
|                 |         |            |                 | 0.000959787                |                    | 0.000104956                |          |          |          |         |        |         |                         | 1.99840E-05                |          | 1.43307E-05                |                            | 0                         |                            |
|                 |         |            |                 | 0.000166363                |                    | 1.43241E-05                |          |          |          |         |        |         |                         | 5.12093E-06                |          | 2.78460E-06                | 2.78460E-06                | 0                         |                            |
|                 |         |            |                 | 1.28035E-05<br>1.01636E-05 |                    | 1.51075E-06<br>7.49712E-07 |          |          |          |         |        |         |                         | 2.74680E-07                |          | 1.05234E-07<br>2.57355E-07 | 1.05234E-07<br>2.57355E-07 |                           | 2.74680E-07                |
|                 |         |            |                 | 8.64944E-09                |                    | 6.02290E-10                |          |          |          |         |        |         |                         | 5.03541E-07<br>5.97764E-11 |          | 2.57355E-07<br>1.49776E-11 |                            |                           | 5.03541E-07<br>5.97764E-11 |
|                 |         |            |                 | 5.19860E-07                |                    | 4.41318E-08                |          |          |          |         |        |         | 1.30933E-07             |                            |          | 8.18192E-09                | 8.18192E-09                |                           | 2.24005E-08                |
|                 |         |            |                 | 4.66996E-08                |                    | 6.28287E-10                |          |          |          |         |        |         |                         | 1.72638E-09                |          | 2.95173E-10                |                            | 0                         | 1.72638E-09                |
|                 |         |            |                 | 0                          |                    | 0                          |          |          |          |         |        |         | 0                       | 0                          |          | 0                          | 0                          | 0                         | 0                          |
|                 |         |            |                 | 0                          |                    | 0                          |          |          |          |         |        |         | 0                       | 0                          |          | 0                          | 0                          | 0                         | 0                          |
|                 |         |            |                 | 0                          |                    | 0                          |          |          |          |         |        |         | 0                       | 0                          |          | 0                          | 0                          | 0                         | 0                          |
|                 |         |            |                 | 0                          |                    | 0                          |          |          |          |         |        |         | 0                       | 0                          |          | 0                          | 0                          | 0                         | 0                          |
|                 |         |            |                 | 2.18663E-09                |                    | 2.77428E-11                |          |          |          |         |        |         | 1.49154E-09             | 7.58917E-11                |          | 8.76417E-12                | 8.76417E-12                | 0                         | 7.58917E-11                |
|                 |         |            |                 | 1.20028E-11                |                    | 1.79545E-13                |          |          |          |         |        |         | 1.24613E-10             | 4.53146E-12                |          | 3.75883E-13                |                            | 0                         |                            |
|                 |         |            |                 | 3.76923E-13                |                    | 1.52454E-15                |          |          |          |         |        |         | 5.43518E-12             | 1.12933E-13                |          | 4.27142E-15                | 4.27142E-15                | 0                         | 1.12933E-13                |
|                 |         |            |                 | 0                          |                    | 0                          |          |          |          |         |        |         | 0                       | 0                          |          | 0                          | 0                          | 0                         | 0                          |
|                 |         |            |                 | 0                          |                    | 0                          |          |          |          |         |        |         | 0                       | 0                          |          | 0                          | 0                          | 0                         | 0                          |
|                 |         |            |                 | 2.93497E-05                |                    | 7.34531E-07                |          |          |          |         |        |         | 2.88134E-07             |                            |          | 7.09168E-09                | 7.09168E-09                | 0                         | 2.49667E-08                |
|                 |         |            |                 | 0.000479730                |                    | 0.000290201<br>0.990084    |          |          |          |         |        |         | 3.16850E-05<br>0.997407 |                            |          | 0.000225346                |                            | 0 007838                  |                            |
|                 |         |            |                 | 0.980510<br>0              |                    | 0.990064                   |          |          |          |         |        |         | 0.997407                | 0.959060                   |          | 0.958582                   | 0.958582                   | 0.997828                  | 0.959060                   |
|                 |         |            |                 | 0.0165874                  |                    | 0.00944712                 |          |          |          |         |        |         | 0.00243955              | 0.0408161                  |          | 0.0411715                  | · ·                        | 0.00217191                | 0.0408161                  |
|                 |         |            |                 | 0.0100014                  |                    | 0.00044712                 |          |          |          |         |        |         | 0.002+0000              | 0.0400101                  |          | 0.0411110                  | 0.0411710                  | 0.00217101                | 0.0400101                  |
|                 |         |            |                 |                            |                    |                            |          |          |          |         |        |         |                         |                            |          |                            |                            |                           |                            |
| 5               | 6       | 7          | 9               | 10                         | 11                 | 12                         | 16       | 17       | 18       | 19      | 20     | 21      | 22                      | 104                        | 123      | 124                        | 125                        | 126                       | 129                        |
| Solved          | Solved  | Solved     | Solved          | Solved                     | Solved             | Solved                     | Solved   | Solved   | Solved   | Solved  | Solved | Solved  | Solved                  | Solved                     | Solved   | Solved                     | Solved                     | Solved                    | Solved                     |
| MIX-100         | SAT-1   | Cold Sep   | Gas Gas 2 @ XPC | JT Valve 2                 | Water to Flare KOD | LCV                        | VSSL-101 | VSSL-100 | VSSL-100 |         | Flare  | MIX-105 | VSSL-101                | MIX-102                    | TANK-100 | TANK-100                   | TANK-100                   | TANK-100                  | VSSL-201                   |
| Gas Gas 2 @ XPC | MIX-100 | JT Valve 2 | Final Cut       | Gas Gas 2 @ XPC            | VSSL-101           |                            | MIX-105  | SAT-1    |          | MIX-105 |        | Flare   | TANK-100                | VSSL-201                   | MIX-102  | MIX-102                    | MIX-102                    | MIX-103                   | MIX-103                    |
|                 |         |            |                 |                            |                    |                            |          |          |          |         |        |         |                         |                            |          |                            |                            |                           |                            |
|                 |         |            |                 | -47.7785                   |                    | -33.1974                   |          |          |          |         |        |         | -10.8800                | 84.9385                    |          | 85.2806                    | 85.2806                    | 85.2806                   | 84.9385                    |
|                 |         |            |                 | 210                        |                    | 3                          |          |          |          |         |        |         | 3                       | -0.975949                  |          | -0.975949                  | -0.975949                  | -0.975949                 | -0.975949                  |
|                 |         |            |                 | 0                          |                    | 0                          |          |          |          |         |        |         | 0                       | 0                          |          | 0                          | 0                          | 0                         | 0                          |
|                 |         |            |                 | 18.2751                    |                    | 18.1570                    |          |          |          |         |        |         | 18.0517                 | 18.5906                    |          | 18.5989                    | 18.5989                    | 18.0457                   | 18.5906                    |
|                 |         |            |                 | 62.2327                    |                    | 62.4988                    |          |          |          |         |        |         | 62.6179                 | 61.3450                    |          | 61.3388                    | 61.3388                    | 62.0828                   | 61.3450                    |
|                 |         |            |                 | 0.00945347                 |                    | 0.328239                   |          |          |          |         |        |         | 1.31295                 |                            |          | 3.11328E-05                |                            | 1.30333                   | 0.00923632                 |
|                 |         |            |                 | 4.71125E-06                |                    | 0.000164646                |          |          |          |         |        |         |                         | 4.52492E-06                |          | 1.52453E-08                | 4.51186E-06                | 0.000657785               |                            |
|                 |         |            |                 | 1.91547E-05<br>0.0149276   |                    | 0.000659391<br>0.00112329  |          |          |          |         |        |         |                         | 1.87995E-05<br>0.000711410 |          | 6.33794E-08                | 1.87571E-05                | 0.00260803<br>0.000681926 | 1.87995E-05<br>0.000711410 |
|                 |         |            |                 | 0.997819                   |                    | 1.00208                    |          |          |          |         |        |         | 1.00400                 | 0.000711410                |          | 0.000711353<br>0.983486    | 0.000711353                | 0.000661926               | 0.000711410                |
|                 |         |            |                 | 0.01018                    |                    | 1.00200                    |          |          |          |         |        |         | 1.00400                 | 0.300000                   |          | 0.303400                   | 0.300400                   | 0.330413                  | 0.300000                   |

# **Tank Losses Report**

|                                                                                                                                                                                                                         |                                                                                                    | TANK-100               |                                                                                      |                                  |                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------|----------------------------------|--------------------------|
|                                                                                                                                                                                                                         |                                                                                                    | I ANN-100              |                                                                                      |                                  |                          |
| ient Name:                                                                                                                                                                                                              | Kinder Morgan                                                                                      |                        |                                                                                      | Job:                             | 06904.28 KM Silurian Com |
| ocation:                                                                                                                                                                                                                | Williams County, North Dakota                                                                      |                        |                                                                                      | Modified:                        | 6/10/2025 13:26          |
| owsheet:                                                                                                                                                                                                                | JT Skid_Combustor                                                                                  |                        |                                                                                      | Status:                          | Solved 2:02 PM, 6/10/2   |
|                                                                                                                                                                                                                         |                                                                                                    |                        |                                                                                      |                                  |                          |
|                                                                                                                                                                                                                         |                                                                                                    | Stream Connect         |                                                                                      |                                  |                          |
| Stream                                                                                                                                                                                                                  | Connection Type                                                                                    | Other Block            | Stream                                                                               | Connection Type                  | Other Block              |
| 22                                                                                                                                                                                                                      | Inlet                                                                                              | VSSL-101               | 123                                                                                  | Flashing Losses Stream           | MIX-102                  |
| 124                                                                                                                                                                                                                     | Working Losses Stream                                                                              | MIX-102                | 125                                                                                  | Standing Losses Stream           | MIX-102                  |
| 126                                                                                                                                                                                                                     | Residual Liquid Stream                                                                             | MIX-103                |                                                                                      |                                  |                          |
|                                                                                                                                                                                                                         | Working                                                                                            | and Standing Propa     | rtice : Seeler Dete                                                                  |                                  |                          |
| ank Coometry                                                                                                                                                                                                            |                                                                                                    | and Standing Prope     |                                                                                      | Co                               | n o                      |
| ank Geometry<br>nell Length                                                                                                                                                                                             | Vertical Cylinder<br>20* ft                                                                        |                        | Roof Type<br>Slope of Coned Roof                                                     | Co<br>0.06                       |                          |
| nell Diameter                                                                                                                                                                                                           | 12* ft                                                                                             |                        | Breather Vent Pressure                                                               |                                  | 03 psi                   |
| umber of Storage Tanks                                                                                                                                                                                                  | 12 it                                                                                              |                        | Breather Vacuum Pressure                                                             |                                  | 03 psi                   |
| aximum Fraction Fill of Tank                                                                                                                                                                                            | 0.9                                                                                                |                        | Location                                                                             | -0.<br>Williston, N              |                          |
| verage Fraction Fill of Tank                                                                                                                                                                                            | 0.5                                                                                                |                        | Time Frame                                                                           | VVIIIIstori, N<br>Ju             |                          |
| inimum Fraction Fill of Tank                                                                                                                                                                                            | 0.5                                                                                                |                        | Known Liquid Bulk Temperature?                                                       | FAL                              |                          |
| aterial Category                                                                                                                                                                                                        | Light Organics*                                                                                    |                        | Liquid Bulk Temperature                                                              | 72.91                            |                          |
| sulation                                                                                                                                                                                                                | Uninsulated                                                                                        |                        | Use AP 42 Raoult's Vapor Pressure?                                                   | FALS                             |                          |
| blted or Riveted Construction?                                                                                                                                                                                          | FALSE                                                                                              |                        | Flashing Temperature                                                                 |                                  | 06 °F                    |
| apor Balanced Tank?                                                                                                                                                                                                     | FALSE                                                                                              |                        | Average Daily Maximum Ambient Temperature                                            |                                  | 2.9 °F                   |
| nown Sum of Increases in Liquid Level?                                                                                                                                                                                  | FALSE                                                                                              |                        | Average Daily Minimum Ambient Temperature  Average Daily Minimum Ambient Temperature |                                  | 6.6 °F                   |
| um of Increases in Liquid Level                                                                                                                                                                                         | 1.63504 ft/yr                                                                                      |                        | Atmospheric Pressure at Tank Location                                                |                                  | 72 psia                  |
| nell Color                                                                                                                                                                                                              | Tan*                                                                                               |                        | Daily Solar Insolation                                                               |                                  | 54 Btu/(day*ft^2)        |
| nell Paint Condition                                                                                                                                                                                                    | Average                                                                                            |                        | Average Wind Speed                                                                   |                                  | 3.3 mph                  |
| pof Color                                                                                                                                                                                                               | Tan*                                                                                               |                        | Include Short Term Emissions                                                         | FAL                              |                          |
| pof Paint Condition                                                                                                                                                                                                     | Average                                                                                            |                        |                                                                                      | 1712                             |                          |
|                                                                                                                                                                                                                         |                                                                                                    |                        |                                                                                      |                                  |                          |
|                                                                                                                                                                                                                         |                                                                                                    |                        |                                                                                      |                                  |                          |
|                                                                                                                                                                                                                         | Compo                                                                                              | sition Subset Proper   | ties : Scalar Data                                                                   |                                  |                          |
| mponent Subset                                                                                                                                                                                                          | Compo                                                                                              | sition Subset Proper   |                                                                                      | Selected Speci                   | es                       |
| omponent Subset<br>omic Basis                                                                                                                                                                                           |                                                                                                    | sition Subset Proper   | ties : Scalar Data Species in Results Fraction Denominator                           | Selected Speci<br>Selected Speci |                          |
|                                                                                                                                                                                                                         | VOCs                                                                                               | sition Subset Proper   | Species in Results                                                                   |                                  |                          |
|                                                                                                                                                                                                                         | VOCs<br>FALSE                                                                                      | sition Subset Proper   | Species in Results Fraction Denominator                                              |                                  |                          |
| omic Basis                                                                                                                                                                                                              | VOCs<br>FALSE                                                                                      | ·                      | Species in Results Fraction Denominator                                              |                                  |                          |
|                                                                                                                                                                                                                         | VOCs<br>FALSE<br>Composi                                                                           | ·                      | Species in Results Fraction Denominator                                              |                                  |                          |
| omic Basis  Index  Methane                                                                                                                                                                                              | VOCs FALSE  Composi Selected Components  FALSE                                                     | ·                      | Species in Results Fraction Denominator                                              |                                  |                          |
| Index  Methane Ethane                                                                                                                                                                                                   | VOCs FALSE  Composite Selected Components  FALSE FALSE                                             | ·                      | Species in Results Fraction Denominator                                              |                                  |                          |
| Index  Methane Ethane Propane                                                                                                                                                                                           | VOCs FALSE  Composit Selected Components  FALSE FALSE TRUE                                         | ·                      | Species in Results Fraction Denominator                                              |                                  |                          |
| Index  Methane Ethane Propane i-Butane                                                                                                                                                                                  | VOCs FALSE  Composit Selected Components  FALSE FALSE TRUE TRUE                                    | ·                      | Species in Results Fraction Denominator                                              |                                  |                          |
| Index  Methane Ethane Propane i-Butane n-Butane                                                                                                                                                                         | VOCs FALSE  Composit Selected Components  FALSE FALSE TRUE TRUE TRUE TRUE                          | ·                      | Species in Results Fraction Denominator                                              |                                  |                          |
| Index  Methane Ethane Propane i-Butane n-Butane 2,2-Dimethylpropane                                                                                                                                                     | VOCs FALSE  Composit  Selected Components  FALSE FALSE TRUE TRUE TRUE TRUE TRUE                    | ·                      | Species in Results Fraction Denominator                                              |                                  |                          |
| Index  Methane Ethane Propane i-Butane n-Butane 2,2-Dimethylpropane i-Pentane                                                                                                                                           | VOCs FALSE  Composit  Selected Components  FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU      | ·                      | Species in Results Fraction Denominator                                              |                                  |                          |
| Index  Methane Ethane Propane i-Butane n-Butane 2,2-Dimethylpropane i-Pentane n-Pentane                                                                                                                                 | VOCs FALSE  Composi  Selected Components  FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU       | ·                      | Species in Results Fraction Denominator                                              |                                  |                          |
| Index  Methane Ethane Propane i-Butane n-Butane 2,2-Dimethylpropane i-Pentane n-Pentane 2,2-Dimethylbutane                                                                                                              | VOCs FALSE  Composi  Selected Components  FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU       | ·                      | Species in Results Fraction Denominator                                              |                                  |                          |
| Index  Methane Ethane Propane i-Butane n-Butane 2,2-Dimethylpropane i-Pentane n-Pentane 2,2-Dimethylbutane 2,3-Dimethylbutane                                                                                           | VOCs FALSE  Composi  Selected Components  FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU       | ·                      | Species in Results Fraction Denominator                                              |                                  |                          |
| Index  Methane Ethane Propane i-Butane n-Butane 2,2-Dimethylpropane i-Pentane n-Pentane 2,2-Dimethylbutane 2,3-Dimethylbutane i-C6                                                                                      | VOCs FALSE  Composi  Selected Components  FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU       | ·                      | Species in Results Fraction Denominator                                              |                                  |                          |
| Index  Methane Ethane Propane i-Butane n-Butane 2,2-Dimethylpropane i-Pentane n-Pentane 2,2-Dimethylbutane 2,3-Dimethylbutane i-C6 3-Methylpentane                                                                      | VOCs FALSE  Composi  Selected Components  FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU       | ·                      | Species in Results Fraction Denominator                                              |                                  |                          |
| Index  Methane Ethane Propane i-Butane n-Butane 2,2-Dimethylpropane i-Pentane n-Pentane 2,2-Dimethylbutane 2,3-Dimethylbutane i-C6 3-Methylpentane Hexane                                                               | VOCs FALSE  Composi  Selected Components  FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU       | ·                      | Species in Results Fraction Denominator                                              |                                  |                          |
| Index  Methane Ethane Propane i-Butane n-Butane 2,2-Dimethylpropane i-Pentane n-Pentane 2,2-Dimethylbutane 2,3-Dimethylbutane i-C6 3-Methylpentane Hexane C7                                                            | VOCs FALSE  Composi  Selected Components  FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU       | ·                      | Species in Results Fraction Denominator                                              |                                  |                          |
| Index  Methane Ethane Propane i-Butane n-Butane 2,2-Dimethylpropane i-Pentane n-Pentane 2,2-Dimethylbutane 2,3-Dimethylbutane i-C6 3-Methylpentane Hexane C7 C8                                                         | VOCs FALSE  Composi  Selected Components  FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU       | ·                      | Species in Results Fraction Denominator                                              |                                  |                          |
| Index  Methane Ethane Propane i-Butane n-Butane 2,2-Dimethylpropane i-Pentane n-Pentane 2,2-Dimethylbutane 2,3-Dimethylbutane i-C6 3-Methylpentane Hexane C7 C8 C9                                                      | VOCs FALSE  Composi  Selected Components  FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU       | ·                      | Species in Results Fraction Denominator                                              |                                  |                          |
| Index  Methane Ethane Propane i-Butane n-Butane 2,2-Dimethylpropane i-Pentane n-Pentane 2,2-Dimethylbutane 2,3-Dimethylbutane i-C6 3-Methylpentane Hexane C7 C8 C9 C10                                                  | VOCs FALSE  Composi  Selected Components  FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU       | ·                      | Species in Results Fraction Denominator                                              |                                  |                          |
| Index  Methane Ethane Propane i-Butane n-Butane 2,2-Dimethylpropane i-Pentane n-Pentane 2,2-Dimethylbutane 2,3-Dimethylbutane i-C6 3-Methylpentane Hexane C7 C8 C9 C10 Nitrogen                                         | VOCs FALSE  Composi  Selected Components  FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU       | ·                      | Species in Results Fraction Denominator                                              |                                  |                          |
| Index  Methane Ethane Propane i-Butane n-Butane 2,2-Dimethylpropane i-Pentane n-Pentane 2,2-Dimethylbutane 2,3-Dimethylbutane i-C6 3-Methylpentane Hexane C7 C8 C9 C10 Nitrogen Carbon Dioxide                          | VOCs FALSE  Composi  Selected Components  FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU       | ·                      | Species in Results Fraction Denominator                                              |                                  |                          |
| Index  Methane Ethane Propane i-Butane n-Butane 2,2-Dimethylpropane i-Pentane n-Pentane 2,2-Dimethylbutane 2,3-Dimethylbutane 2,3-Dimethylbutane i-C6 3-Methylpentane Hexane C7 C8 C9 C10 Nitrogen Carbon Dioxide Water | VOCs FALSE  Composi  Selected Components  FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU       | ·                      | Species in Results Fraction Denominator                                              |                                  |                          |
| Index  Methane Ethane Propane i-Butane n-Butane 2,2-Dimethylpropane i-Pentane n-Pentane 2,2-Dimethylbutane 2,3-Dimethylbutane i-C6 3-Methylpentane Hexane C7 C8 C9 C10 Nitrogen Carbon Dioxide Water Oxygen             | VOCs FALSE  Composi  Selected Components  FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU       | ·                      | Species in Results Fraction Denominator                                              |                                  |                          |
| Index  Methane Ethane Propane i-Butane n-Butane 2,2-Dimethylpropane i-Pentane n-Pentane 2,2-Dimethylbutane 2,3-Dimethylbutane 2,3-Dimethylbutane i-C6 3-Methylpentane Hexane C7 C8 C9 C10 Nitrogen Carbon Dioxide Water | VOCs FALSE  Composi  Selected Components  FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU       | ·                      | Species in Results Fraction Denominator                                              |                                  |                          |
| Index  Methane Ethane Propane i-Butane n-Butane 2,2-Dimethylpropane i-Pentane n-Pentane 2,2-Dimethylbutane 2,3-Dimethylbutane i-C6 3-Methylpentane Hexane C7 C8 C9 C10 Nitrogen Carbon Dioxide Water Oxygen             | VOCs FALSE  Composi  Selected Components  FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU       | tion Subset Propertie  | Species in Results Fraction Denominator  Ses: Tabulated Data                         |                                  |                          |
| Index  Methane Ethane Propane i-Butane n-Butane 2,2-Dimethylpropane i-Pentane n-Pentane 2,2-Dimethylbutane 2,3-Dimethylbutane i-C6 3-Methylpentane Hexane C7 C8 C9 C10 Nitrogen Carbon Dioxide Water Oxygen MeOH        | VOCs FALSE  Composi  Selected Components  FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU | ·                      | Species in Results Fraction Denominator  s: Tabulated Data  calar Data               | Selected Speci                   | es                       |
| Index  Methane Ethane Propane i-Butane n-Butane 2,2-Dimethylpropane i-Pentane n-Pentane 2,2-Dimethylbutane 2,3-Dimethylbutane i-C6 3-Methylpentane Hexane C7 C8 C9 C10 Nitrogen Carbon Dioxide Water Oxygen             | VOCs FALSE  Composi  Selected Components  FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU       | tion Subset Properties | Species in Results Fraction Denominator  Ses: Tabulated Data                         | Selected Speci                   |                          |

| Vapor Space Expansion Factor                               | 1 1/day      | Tank Roof Height                          | 0.375 ft         |
|------------------------------------------------------------|--------------|-------------------------------------------|------------------|
| Vented Vapor Saturation Factor                             | 0.130936     | Tank Shell Radius                         | 6 ft             |
| Vapor Space Outage                                         | 10.125 ft    | Vapor Molecular Weight                    | 29.8655 lb/lbmol |
| Average Daily Vapor Temperature Range                      | 38.6999 °R   | Average Vapor Temperature                 | 537.965 °R       |
| Average Daily Vapor Pressure Range                         | 2.64317 psi  | Average Daily Ambient Temperature         | 529.42 °R        |
| Breather Vent Pressure Setting Range                       | 0.06 psi     | Net Working Loss Throughput               | 184.918 ft^3/yr  |
| Vapor Pressure at Average Daily Liquid Surface Temperature | 12.3687 psia | Working Loss Turnover (Saturation) Factor | 1                |
| Average Daily Liquid Surface Temperature                   | 535.276 °R   | Number of Turnovers per Year              | 0.102190         |
| Average Daily Ambient Temperature Range                    | 26.3 °R      | Annual Net Throughput                     | 32.9388 bbl/yr   |
| Tank Roof Surface Solar Absorptance                        | 0.49         | Maximum Liquid Height                     | 18 ft            |
| Tank Shell Surface Solar Absorptance                       | 0.49         | Minimum Liquid Height                     | 2 ft             |
| Vapor Pressure at Maximum Liquid Surface Temperature       | 13.7200 psia | Working Loss Product Factor               | 1                |
| Vapor Pressure at Minimum Liquid Surface Temperature       | 11.0768 psia | Vent Setting Correction Factor            | 1                |
| Maximum Liquid Surface Temperature                         | 544.951 °R   | Annual Net Throughput Per Tank            | 32.9388 bbl/yr   |
| Minimum Liquid Surface Temperature                         | 525.601 °R   |                                           | -                |

# Results Properties : Scalar Data Flashing Losses 0.00164351 lb/d Standing Losses per Tank 0.0160713 lb/d Working Losses 5.43039E-05 lb/d Flashing Losses per Tank 0.00164351 lb/d Standing Losses 0.0160713 lb/d Working and Standing Losses 0.0161256 lb/d Working Losses per Tank 5.43039E-05 lb/d Working and Standing Losses per Tank 0.0161256 lb/d

| Results Properties : Tabulated Data |                            |                           |                            |                                        |  |  |
|-------------------------------------|----------------------------|---------------------------|----------------------------|----------------------------------------|--|--|
|                                     | Flashing Losses Mass Flows | Working Losses Mass Flows | Standing Losses Mass Flows | forking and Standing Losses Mass Flows |  |  |
| Index                               | lb/d                       | lb/d                      | lb/d                       | lb/d                                   |  |  |
| Propane                             | 0.00131932                 | 8.98419E-07               | 0.00026588                 | 7 0.000266786                          |  |  |
| i-Butane                            | 0.000130990                | 5.92398E-08               | 1.75320E-0                 | 5 1.75913E-05                          |  |  |
| n-Butane                            | 0.000164847                | 1.04029E-07               | 3.07875E-0                 | 5 3.08916E-05                          |  |  |
| 2,2-Dimethylpropane                 | 6.44970E-08                | 1.81933E-11               | 5.38432E-0                 | 9 5.40251E-09                          |  |  |
| i-Pentane                           | 1.46320E-05                | 6.25619E-09               | 1.85152E-0                 | 6 1.85778E-06                          |  |  |
| n-Pentane                           | 2.51810E-06                | 4.69617E-10               | 1.38983E-0                 | 7 1.39453E-07                          |  |  |
| 2,2-Dimethylbutane                  | 0                          | 0                         |                            | 0 0                                    |  |  |
| 2,3-Dimethylbutane                  | 0                          | 0                         |                            | 0 0                                    |  |  |
| i-C6                                | 0                          | 0                         |                            | 0 0                                    |  |  |
| 3-Methylpentane                     | 0                          | 0                         |                            | 0 0                                    |  |  |
| Hexane                              | 2.16416E-07                | 2.67713E-11               | 7.92297E-0                 | 9 7.94974E-09                          |  |  |
| C7                                  | 2.12414E-08                | 1.86802E-12               | 5.52841E-1                 | 0 5.54709E-10                          |  |  |
| C8                                  | 1.07123E-09                | 4.21542E-14               | 1.24756E-1                 | 1 1.25177E-11                          |  |  |
| C9                                  | 0                          | 0                         |                            | 0 0                                    |  |  |
| C10                                 | 0                          | 0                         |                            | 0 0                                    |  |  |
| MeOH                                | 1.09092E-05                | 5.32355E-05               | 0.015755                   | 1 0.0158083                            |  |  |

Notes:

# **APPENDIX B**



# Commercial Proposal

Sonic Flare System

with

The Model XD-1000 Duraspark Retractable Ignition System

**Project** Silurian Compressor Station

Customer Name Ross Group

**Customer Location** Williams County, North Dakota

**Quote** 25727 Rev.0







#### **Customer: Ross Group**

I am pleased to offer the following firm proposal for your consideration for the above referenced application. Thank you for considering Cimarron for this project and we are looking forward to working with you.

Headquartered in Houston, TX, with operations worldwide, we offer products and services with the mission of reducing greenhouse gas emissions for all markets as well as enabling our energy customers to safely and responsibly optimize hydrocarbon production, transportation, processing and storage through best-in-class solutions.

Please contact me if you have any questions or require additional information.

Regards,

Bryan Lunger Director Product Sales

Mobile: 918-607-3667 blunger@cimarron.com

Jose Wilson Torres Junior Applications Engineering

Mobile: 918-209-2104 jwilson@cimarron.com

|                                                                                                                                                                                                                                                                                                                                                                                       | oducts and Services                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Emissions Control                                                                                                                                                                                                                                                                                                                                                                     | Oil and Gas Processing                                                                                                                                                                                                                                                                                                       | Services                                                                                                                                                                                                                                                                                                                                          |
| Vapor Recovery Units:                                                                                                                                                                                                                                                                                                                                                                 | Production and processing:                                                                                                                                                                                                                                                                                                   | Field Services:                                                                                                                                                                                                                                                                                                                                   |
| Compression-base: Screw, Vane Compressors, Plunger Lift Pumps Activated Carbon-based Vapor Recovery Systems Enclosed Combustion: Quad O Combustors (98% DRE), Thermal Oxidizers, Vapor Combustion Units (99.9% DRE), CEBTM (99.99% DRE, low NOx) Biogas/RNG Combustion Units Smokeless Flares: High Efficiency Assisted (air, steam, gas), Utility, Derrick, Ground Flares, DreamDuo. | <ul> <li>Modular Production Packages</li> <li>Separator</li> <li>Gas Filtration</li> <li>Glycol Dehydration</li> <li>BTEX Eliminators</li> <li>Gas Production Units</li> <li>Oil and Gas Heaters</li> <li>Heater Treaters</li> <li>Vapor Recovery Towers</li> <li>Plunger Lift Pumps</li> <li>Engineering Studies</li> </ul> | <ul> <li>Startup &amp; Maintenance</li> <li>Spare parts</li> <li>Lease/Rentals</li> <li>LDAR Detection</li> <li>Emissions Consultation</li> <li>Automation:</li> <li>Burner Management<br/>Systems</li> <li>Emissions Control Real-time<br/>Monitoring</li> <li>DRE optimization (DRE-Max<sup>TM</sup>)</li> <li>Sytelink 360 Optilink</li> </ul> |

#### **Markets**

**Upstream:** Wellhead Oil and Gas Handling Production equipment, Vapor Recovery, Emissions Reduction and Destruction, Monitoring, Service and Preventative Maintenance

**Midstream:** Gas Processing applications, Dehydration, Fuel Gas Conditioning, Compressor Station, Service **Downstream:** Loading Terminal Vapor Combustors, Carbon Vapor Recovery, Refinery

**Expanded Focus Areas for Combustion Applications:** Biogas, Agricultural, Landfill, Wastewater Treatment, Coal Mines, Industrial, Aerospace

#### Need Parts? Call the Cimarron Parts Hotline 800-246-8208





# 1.0 Commercial

# 1.1 <u>Base Item Pricing/Delivery</u>

| Item | Description                           | Qty | Price<br>(Total) | Delivery<br>(weeks ARO*) |
|------|---------------------------------------|-----|------------------|--------------------------|
| 1-6  | Flare - Sonic - VMSA-06 Guyed 30' OAH | 1   | \$ 39,300        | 14                       |
| 7    | Horizontal Knockout Drum (KODH36x120) | 1   | \$ 39,600        | 14                       |

## 1.2 Optional Item Pricing/Delivery

| Item | Description                           | Qty | Price<br>(Total) | Delivery<br>(weeks ARO*) |
|------|---------------------------------------|-----|------------------|--------------------------|
| 8    | XD-1000 1 Pilot 1YR Spares Kit 120VAC | 1   | \$ 1,500         | 14                       |
| 9    | XD-1000 1 Pilot 2YR Spares Kit 120VAC | 1   | \$ 3,700         | 14                       |
| 10   | Pilot Gas Fuel Train                  | 1   | \$ 1,600         | 14                       |
| 11   | Deflagration Arrestor RF 6" CSxSST    | 1   | \$ 4,300         | 14                       |

## 1.3 Price Validity

Mar 2025 Update: Due to tariff uncertainty, proposal validity is 2 weeks.

Freight cost is currently estimated, and final cost is to be actual cost + markup, prior to/at time of shipment.

# 1.4 Terms / Delivery

| Delivery Schedule      |               |  |  |  |  |  |  |
|------------------------|---------------|--|--|--|--|--|--|
| Description            | Delivery      |  |  |  |  |  |  |
| Documentation Schedule | See Section 4 |  |  |  |  |  |  |
| Fabrication            | 14 weeks      |  |  |  |  |  |  |

#### **Terms**

**Ex-works:** Point of Manufacture, New Castle Oklahoma
Online T&Cs Link: <a href="https://cimarron.com/terms-and-conditions-v16-16-jan-2025/">https://cimarron.com/terms-and-conditions-v16-16-jan-2025/</a>





| Progress Payments (See T&C's in Section 7) |         |
|--------------------------------------------|---------|
| Description                                | Percent |
| Upon Order Acceptance                      | 50%     |
| Upon Notification of Readiness to Ship     | 50%     |

#### **Additional Notes**

- 1. The quoted delivery is based upon our current production schedule / shop load. An updated delivery schedule will be available at time of order.
- 2. If Cimarron does not receive approval for construction within 5 days of initial approval drawing submittal, the production schedule will be subject to change based upon shop load.
- 3. See section 4.0 for list of approval drawings.
- 4. ARAD, After Receipt of Approved Drawings, is defined as the date the customer has approved all project specific approval drawings for the products purchased as described in this proposal. The customer is allowed five business days to review drawings after submitted by Cimarron for approval before delivery dates are subject to change.
- 5. ARO, After Receipt of Order is defined as the date where the order has been accepted by both customer and Cimarron. Quoted Lead Time includes five business days for customer to review drawings after submitted by Cimarron for approval before delivery dates are subject to change.
- 6. Payment terms are only valid as long as client is approved for credit by Cimarron's financial institution. Three credit references and financial statements may be requested for this purpose.





# 2.0 Technical

# 2.1 <u>Process Conditions</u>

| Gas Composition     | Mole %                          | Comp<br>BD | Flash<br>Gas | - | Maximum Ro               | adiation Permitted             |
|---------------------|---------------------------------|------------|--------------|---|--------------------------|--------------------------------|
| Oxygen              | O <sub>2</sub>                  |            |              |   | Total Radiation          | 1500 BTU/HR.FT2                |
| Nitrogen            | N <sub>2</sub>                  | 2.84       | 1.11         |   | Distance from Flare Base | O FEET                         |
| Air                 | N <sub>2</sub> + O <sub>2</sub> |            |              |   | Solar Radiation          | 300 BTU/HR.FT2                 |
| Carbon Dioxide      | CO <sub>2</sub>                 | 0.84       | 1            |   | Site (                   | Conditions                     |
| Water               | H <sub>2</sub> O                | 0.01       |              |   | Ambient Temperature      | -22.7 / 98 ° F                 |
| Hydrogen            | H <sub>2</sub>                  |            |              |   | Elevation (above msl)    | 2355 FEET                      |
| Ammonia             | NH <sub>3</sub>                 |            |              |   | Humidity                 | 84 %                           |
| Carbon Monoxide     | CO                              |            |              |   | Seismic Classification   | Risk Category III Site Class D |
| Methanol            | CH <sub>4</sub> O               |            |              |   | Exp. / Importance Factor | -                              |
| Hydrogen Sulfide    | H <sub>2</sub> S                | 2 ppm      | 2 ppm        |   | Wind Speed for Radiation | 20 MPH                         |
| Methane             | CH <sub>4</sub>                 | 65.43      | 53.07        |   | Wind Speed for Structure | 118 MPH                        |
| Ethane              | C <sub>2</sub> H <sub>6</sub>   | 19.08      | 31.27        |   | Electrica                | l Classification               |
| Propane             | C <sub>3</sub> H <sub>8</sub>   | 8.57       | 11.4         |   | Outside Sterile Area     | Unclassified                   |
| I Butane            | C <sub>4</sub> H <sub>10</sub>  | 0.7        | 0.58         |   | Inside Sterile Area      | Unclassified                   |
| N Butane            | C <sub>4</sub> H <sub>10</sub>  | 1.97       | 1.4          |   | Utilitie                 | es Required                    |
| I Pentane           | C <sub>5</sub> H <sub>12</sub>  | 0.22       | 0.09         |   | Electricity              | Solar                          |
| N Pentane           | C <sub>5</sub> H <sub>12</sub>  | 0.27       | 0.1          |   | Pilot Gas Per Pilot      | 45 SCFH @ 8-10 PSIG/pilot      |
| Hexane              | C <sub>6</sub> H <sub>14</sub>  | 0.05       | 0.01         |   | Purge Gas                | 29 SCFH                        |
| Heptane             | C7H16                           |            |              |   |                          |                                |
| Octane              | C <sub>8</sub> H <sub>18</sub>  |            |              |   |                          |                                |
| N-Nonane            | C <sub>9</sub> H <sub>20</sub>  |            |              |   |                          |                                |
| N-Decane            | C <sub>10</sub> H <sub>22</sub> |            |              |   | Тур                      | e of Flare                     |
| Ethylene            | C <sub>2</sub> H <sub>4</sub>   |            |              |   | ⊠ Elevated               | ☐ Offshore                     |
| Propylene           | C₃H <sub>6</sub>                |            |              |   | ☐ Bio-Gas                | ☐ Multi-Point                  |
| Butene              | IC <sub>4</sub> H <sub>8</sub>  |            |              |   | ☐ Enclosed Flare         | ☐ Horizontal Flare             |
| Butylene            | NC <sub>4</sub> H <sub>8</sub>  |            |              |   | □ Rental                 | ☐ Portable                     |
| Pentene             | C <sub>5</sub> H <sub>10</sub>  |            |              |   | Suppor                   | t of Structure                 |
| Cyclopentane        | C <sub>5</sub> H <sub>10</sub>  |            |              |   | ☐ Self-Supported         | ☐ Derrick Supported            |
| Methylcyclopentane  | C <sub>6</sub> H <sub>12</sub>  |            |              |   | ⊠ Guyed                  | ☐ Boom Flare                   |
| Cyclohexane         | C <sub>6</sub> H <sub>12</sub>  |            |              |   | Flame Mo                 | onitoring System               |
| Methylcyclohexane   | C <sub>6</sub> H <sub>6</sub>   |            |              |   |                          | ☐ Infra-Red Monitor            |
| Cycloheptane        | C7H14                           |            |              |   | ☐ Ionization Rod         | ☐ Ultraviolet Monitor          |
| Acetylene           | C <sub>2</sub> H <sub>2</sub>   |            |              |   |                          | ystem Features                 |
| 1,2 Butadiene       | C <sub>4</sub> H <sub>6</sub>   |            |              |   |                          |                                |
| 1,3 Butadiene       | C <sub>4</sub> H <sub>6</sub>   |            |              |   | ⊠ Electric Spark         | □ Retractable                  |
| Benzene             | C <sub>6</sub> H <sub>6</sub>   |            |              |   | ☐ Flame Front Generator  | ☐ Self-Inspirating             |
| Toluene             | C <sub>7</sub> H <sub>8</sub>   |            |              |   |                          | moke Elimination               |
| Styrene             | C <sub>8</sub> H <sub>8</sub>   |            |              |   | ☐ Steam Assisted         | ☐ Air Assisted                 |
| Max Mass Flow Rate  | lb/hr                           | 14,128     | 856          |   | Sonic Flaring            | □ None                         |
| Max Vol. Flow Rate  | m                               | 17,120     | 300          |   | •                        | iency Required > 98%           |
| Gas Temperature     | ° F                             | 84         | 16           |   | 1                        | cessories                      |
| Required Pressure   | psig                            | 50         | 50           |   | ☐ Liquid Seal            |                                |
| Molecular Weight    | PaiA                            |            |              |   |                          | □ Deflagration Arrestor        |
| Lower Heating Value | D4. / f                         | 23.14      | 24.98        |   |                          | <u> </u>                       |
|                     | Btu/scf                         | 1204       | 1319         |   | ☐ Molecular Seal         | ☐ Ladders /Platforms           |
| Smokeless Flow*     | %                               | 100        | 100          |   | ☐ Export Packing         | □ ACWL                         |





# 2.2 <u>Technical Specifications</u>

# 2.2.1 <u>Base Scope of Supply</u>

| Item | Qty | VMSA-06 Sonic Flare Tip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | 1   | <ul> <li>4 feet x 6 inch Tip</li> <li>Spring-Actuated, Variable Crown Design</li> <li>Ultra-Low Radiation Design</li> <li>6 inch x 150# RF CS Mating Flange</li> <li>Tip Material - 304 Stainless Steel</li> </ul>                                                                                                                                                                                                                                                                                             |
| 2    | 1   | 26 Foot x 6 Inch (30 ft Total Height) Guyed Flare Riser                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      |     | <ul> <li>26 feet x 6 inch Main Waste Gas Riser</li> <li>6 inch x 150# RFWN Flange Inlet Connection</li> <li>Inlet Height: 9'-0"</li> <li>Guywire Eyelet Assembly</li> <li>Base Plate Assembly</li> <li>Material – API-5LB, A-53B and A-36 Carbon Steel</li> <li>Cimarron Standard On-Shore Paint System</li> </ul>                                                                                                                                                                                             |
| 3    | 1   | <ul> <li>XD-1000 Pilot</li> <li>24 VDC Power Default (Solar)</li> <li>Continuous Spark &amp; Constant Flame Pilot</li> <li>Fully Retractable to Grade for Ease of Maintenance</li> <li>High Energy Spark Type Pilot</li> <li>Type K Thermocouple (Dual Element)</li> <li>Transformer Enclosure Located at Grade</li> <li>Materials of Construction <ul> <li>Ignitor Head – 310 Stainless Steel</li> <li>Body – 316 Stainless Steel</li> <li>Transformer Enclosure – 304 Stainless Steel</li> </ul> </li> </ul> |
| 4    | 1   | <ul> <li>ARC Control System: (See description below)</li> <li>NEMA 4X Weatherproof Controls Enclosure with UL Certification</li> <li>Alarm and Pilot Status Outputs</li> <li>Auto-Ignition and temperature monitoring</li> <li>Opti Link 1000 Included with a Free 3 month Trial</li> <li>Self-Supporting Control Panel Stand for Weatherproof Enclosure</li> </ul>                                                                                                                                            |
| 5    | 1   | <ul> <li>Complete Guy-wire Package</li> <li>All Required Hardware</li> <li>Soil Anchors Included</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                    |
| 6    | 1   | <ul> <li>Retractability Package for 30 ft Flare</li> <li>Allows Pilot to be Maintained from Grade Level</li> <li>Electrical Wiring Harness with Pilot Gas Hose</li> <li>Track Assembly</li> <li>Manual Winch &amp; Pulley Assembly</li> <li>Winch Cable</li> </ul>                                                                                                                                                                                                                                             |





#### 7 1 HP Independent Horizontal Knockout Drum (KODH36x120):

- 10 Feet S/S X 36 Inch Diameter
- Horizontal Style With Saddles
- Lift Lugs
- Inlet Deflector and Outlet Diverter
- Rating per customer vessel data sheet
- 20" Manway Davit
- ASME SEC VIII DIV. 1 Design (Code Stamp)
- 6 INCH X 150#, RF Inlet Nozzle
- 6 INCH X 150#, RF Outlet Nozzle
- 1 Inch 3000# Drain Connection
- 1 Inch 3000# Connection for Relief Valve
- 2 Inch 3000# Liquid Outlet
- 2 Inch 3000# Connection for Level Controller
- 2 Inch 3000# Connection for Level Switch
- (2) 1/2 Inch 3000# Connections for Gauge Glass
- 3/4 Inch 3000# Connection for Temperature Indicator
- 1/2 Inch 3000# Connection for Pressure Indicator
- KOD Material: SA-516-70, SA-105, SA-106B
- Cimarron Standard Paint System





## ARControl™ BMS Pilot Control System Option

**ARCPIIot** 

#### ARControl™ Flare XD-1000 Pilot Control Upgrade

- Option upgrades legacy XC-1000 pilot control system with ARC BMS with Flare Firmware.
- Includes all necessary modifications for seamless plug and play: j-box, retractability, and wiring.
- Increase controller capabilities through firmware upgrades, no need to purchase a new model.
- Fully automated direct spark ignition with flame sensing capability for 2 pilots with one ARC box.
- Customer PLC compatibility through Modbus RS-485/SCADA communications with data logging capability.
- 12 / 24 VDC solar/pilot control valve options available.
- Class I Div 1 & Class I Div 2 approved configurations available. For Class 1 Div 1 classifications, controller to be mounted outside classified area using remote stand.

| Flare Firmware Features:     |
|------------------------------|
| Auto-Ignition                |
| Advanced Data Logging        |
| Modbus RTU over RS-485       |
| Temperature Monitoring       |
| Two Pilot Control Capability |

## Included

#### **Description**

ARController BMS with Flare Firmware

Ignitor and Install Kit

ARControl Solar Package 24VDC 180W - PN 150906











#### **DUAL FLARE PILOT** CONTROL

This advanced auto-reignition system with flame sensing capability will control up to 2 pilots and keep your equipment environmentally compliant.



# STANDARD

The ARControl system is proudly manufactured in the USA at our Wheat Ridge, CO facility. Our staff of experienced engineers oversees the design, manufacturing and testing of each product, giving ARControl unrivaled oversight.



#### STARTUP AND SERVICE

Technical Support Installation and Setup Maintenance Application Support Hardware Support **Guaranteed Warranty** 

# **ARCONTROL™ FLARE**

more than just...

# A DUAL PILOT FLARE CONTROLLER

ARControl™ is proud to introduce our Dual Pilot Flare Controller product firmware:

- · Up to two high-energy ignition outputs
- Up to two hot surface ignition outputs
- Dual pilot valve control
- Easily navigable user interface
- User configurable settings
- Alarm and dual pilot status outputs
- Modbus RTU over RS-485
- Permissive input
- Temperature flame detection Data logging
- Integrated solar charging
- 12 or 24 VDC
- -40°C to +60°C (-40°F to +140°F)
- Nema 4x Enclosure

ARControl Flare (Dual Pilot Flare Controller) provides automatic electronic or hot surface ignition for two flare pilots.

Utilizing thermocouple temperature flame sensing, ARControl Flare (Dual Pilot Flare Controller) is sure to safely ignite and maintain a pilot flame. Dual pilot valve outputs allow for pilot gas shutdown.

Alarm and dual pilot status outputs, Modbus communication, and data logging ensure that the status of equipment is easily and always known.

Made in USA.





Optilink 1000 PN: 1960-176

#### A Smart Flare or Combustor with Integrated Continuous Monitoring

- The Cimarron Smart Flare or Combustor is a standalone system that can eliminate fugitive emissions while continuously monitoring its performance.
- Cimarron Smart Flares and Combustors were designed with a control efficiency of 98%+.
- The Cimarron Smart Flare or Combustor is equipped with continuous pilot with pilot auto-reignition (BMS).
- The Cimarron Smart Flare or Combustor is equipped with a thermocouple for flame detection and it monitors the pilot status with digital records saved every 5 minutes or less
- The Cimarron Smart Flare or Combustor is flowmeter ready. An inlet gas flowmeter can be installed, and flow rates monitored and recorded through the Smart Flare. Alerts can be sent for out-of-range flow rates.
- The Cimarron Smart Air-Assisted Flare can use the information of the flowmeters to automatically adjust the VFD frequency and adjust the amount of air mixed with the inlet gas to prevent smoking and venting through overaeration.
- The Cimarron Smart Smart Flare or Combustor can monitor and send alerts to company control room and/or to the cloud for performance monitoring with actionable intelligence.
- Optilink 1000 units have 8 4-20mAmp analog and digital inputs, 2 RS485 Ports, and flexible programmable behavior environments that allow interoperability with boundless applications.
- All monitored data saved on secured Cimarron data cloud storage solution (redundant data storage).
- Performance guarantee requires Preventive Maintenance (PM monthly or quarterly).

#### Remote Management When You Need It

- Operational and maintenance alerts sent to mobile device or emails giving you latest status when you need
   it. Temperature and run time status reports sent in a periodicity you can set.
- If you need additional help with any technical matters, rest assured that our advanced remote monitoring
  and diagnostics capabilities enable us to identify and resolve any problems you may be experiencing quickly.
   This often eliminates the need for an on-site technician visit.
- Our experienced support team has the ability to monitor your connected devices, identify any that may be
  malfunctioning, and guide you through a speedy resolution process. We also perform a wide range of
  diagnostics to ensure you receive optimal service.

#### OOOOb and OOOOc compliance guarantee

- For emissions control and reduction to become an integral component of a sustainability strategy, it is crucial
  that your combustor and other emissions control equipment consistently operate at the intended level of
  performance and compliance, with credible supporting data.
- Cimarron's Sytelink360® Real Time Data Monitoring solution combines software, hardware, and field services support and provides customers with data feeds that enable equipment optimization, data quantification, performance guarantees, and emissions remote monitoring and management.
- Sytelink360® can operate on a standalone basis or as a complement to customers' systems, regulatory
  compliance, and sustainability programs to provide accurate and reliable data sets that increase production,
  reduce labor time, lower incident risk, and mitigate hazardous gas emissions.





|                                       | OFTI LINK 3000  OFTI LINK 3000 |  |  |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 20 20 20 20 20 20                     | Optilink 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| voltage operation                     | 12 or 24VDC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| N/OFF switch                          | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| icator                                | RGB LED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| AC AC AC AC AC AC                     | Polycarbonate, Door                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                                       | Pole or wall mount                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| uple input                            | 1 dedicated k-type thermocouple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| out channels                          | 8 galvanically isolated 4-20mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| out channels                          | 8 galvanically isolated digital input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| tput                                  | 1 galvanically isolated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| ts (MODBUS client)                    | 2 Galvanically isolated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| toring input voltage and current draw | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| datalogging                           | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| er support for cellular network       | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| chhoard                               | Voc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |





#### 2.2.2 Optional Items

| Item | Qty | Description                                                                                                                                                                                                                                                                                                                                       |
|------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8    | 1   | Lot of Spare Parts for Commissioning  • Please see Table 2.4                                                                                                                                                                                                                                                                                      |
| 9    | 1   | <ul> <li>Lot of Spare Parts for 2-Year Operation</li> <li>Please see Table 2.4</li> </ul>                                                                                                                                                                                                                                                         |
| 10   | 1   | <ul> <li>Pilot Gas Valve Train</li> <li>Aluminum Body Regulator</li> <li>Ball Valve and Strainer</li> <li>Pressure Gauge</li> </ul>                                                                                                                                                                                                               |
| 11   | 1   | <ul> <li>6" Deflagration Arrestor (Protego)</li> <li>Carbon Steel Housing / Stainless Steel Internals</li> <li>Eccentric Design</li> <li>6" Flanged Connections for In-line Installation</li> <li>To be Installed at Inlet Nozzle</li> <li>Any Deflagration Arrestor Pressure Drop shall be Additive to the Flare System Pressure Drop</li> </ul> |

## 2.3 Shipping Details

- ☑ Inland Freight Packing
- ☐ Export Packing \*

#### **Shipping Notes:**

- 1. All weights and dimensions are approximate for logistic purpose only. Actual weights and dimensions can be provided during detail engineering.
- 2. Sourcing locations are as indicated.
- 3. Flare tip and pilots will be packed in common wooden box.

<sup>\*</sup>Export packing and crating includes wooden box for flare tip and pilots suitable for sea / air freight. Export packing not applicable for non-technology items like flare stacks, structures, service piping and skids.





# 2.4 Recommended Spares List

| ARC-BMS Control System |                                               |          |         |  |  |
|------------------------|-----------------------------------------------|----------|---------|--|--|
| No.                    | Description                                   | Start-Up | 2 Years |  |  |
| 1                      | Module, BMS, CL1, DIV1, CSA Certified         | 0        | 1       |  |  |
| 2                      | Spark, Rod, Assy, 90-1/2", Duraspark          | 1        | 2       |  |  |
| 3                      | Thermocouple, Dual, Type-K,1/4"OD             | 1        | 1       |  |  |
| 4                      | Inspirator, 1", CK20, #53, Natural, Gas       | 0        | 1       |  |  |
| Model XD-1000 Pilot    |                                               |          |         |  |  |
| 5                      | Pilot Strainer - 1/2" THD SS, MUL             | 0        | 1       |  |  |
| 6                      | Connector, Male, 5/8" Tube x 3/4" MNPT        | 0        | 1       |  |  |
| 7                      | Connector, Male, 5/8" Tube x 1/2" MNPT        | 0        | 1       |  |  |
| 8                      | Ignition Transformer, Pri. 120VAC, Sec 10KVDC | 0        | 1       |  |  |
| 9                      | Spark Rod Assembly 90 1/2"                    | 0        | 1       |  |  |
| 10                     | Thermocouple, Type KK, Dual Ele. 1/4" x 116"  | 1        | 2       |  |  |
| 11                     | Ceramic Thermocouple Connector (Male)         | 1        | 2       |  |  |
| 12                     | Ceramic Thermocouple Connector (Female)       | 1        | 2       |  |  |
| 13                     | Pilot Inspirator                              | 0        | 1       |  |  |





# 3.0 Scope Responsibility Matrix

Cimarron considers the following responsibility matrix for the scope of supply listed in Section 2 of this proposal.

| No. | Description                                         | Cimarron | Customer | Remarks           |
|-----|-----------------------------------------------------|----------|----------|-------------------|
|     | SITE WORK / ASSEMBLY                                |          |          |                   |
| 1   | Flare Tip Installation                              |          | Х        |                   |
| 2   | Flare Riser Installation                            |          | Х        |                   |
| 3   | Area Lighting                                       |          | Х        |                   |
| 4   | Heat Tracing (If applicable)                        | N/A      | N/A      |                   |
| 5   | Erection & Installation                             |          | Х        |                   |
| 6   | Civil work including foundation and anchor bolts    |          | Х        |                   |
| 7   | Guywires Installation                               |          | Х        |                   |
| 8   | Emission Testing                                    | N/A      | N/A      |                   |
|     | FABRICATED EQUIPMENT & ENGINEERING                  |          |          |                   |
| 9   | Flare Stack                                         | Х        |          |                   |
| 10  | Flare Tip                                           | X        |          |                   |
| 11  | Pilot Ignitor Assembly                              | Х        |          |                   |
| 12  | Windshield (If applicable)                          | N/A      |          |                   |
| 13  | Blower Support Skid (If applicable)                 | N/A      |          |                   |
| 14  | Blower Ducting (If applicable)                      | N/A      |          |                   |
| 15  | Ladder and Platform(s)                              | N/A      |          |                   |
| 16  | Fuel Gas Skid (Assembled with Valves & Instruments) | X        |          |                   |
| 17  | Local Control Panel                                 | X        |          |                   |
| 18  | Stack Junction Box                                  | Х        |          |                   |
| 19  | Skid Junction Box                                   | N/A      |          |                   |
| 20  | Surface Preparation and Painting                    | X        |          | Cimarron Standard |
| 21  | Interconnecting piping from Skid to Stack           |          | X        |                   |
| 22  | Interconnect wiring from J-boxes to Panel           |          | X        |                   |
| 23  | Instrument Air from Fuel Control rack to equipment  |          | X        |                   |
| 24  | Waste gas piping upstream of Flare Stack Inlet      |          | Х        |                   |
| 25  | Utility piping on Flare Stack                       | N/A      |          |                   |
| 26  | Power Supply                                        |          | X        |                   |
| 27  | Power and Multi Core Cables                         |          | X        |                   |
| 28  | Cables from Control Panel to DCS                    |          | Χ        |                   |

**Note:** Any responsibility not addressed in the above matrix is not included in this proposal unless specifically addressed in scope of supply





# 4.0 Documentation

Cimarron considered only the following correspondence, documents, or specifications in development of proposed solution as presented in section 2. Any documents, specifications, or correspondence not listed below were not considered in this proposal. Exceptions or clarifications are noted below.

# 4.1 Quality/ Non-Destructive Testing

Cimarron will conduct the following quality checks/tests on the equipment on this project:

| No. | Туре                                            | Included | Extent                                                                                                                                                                                                                                                                                                                               | Notes                                                                                                  |
|-----|-------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| 1   | Visual Inspection                               | Yes      | Complete Package                                                                                                                                                                                                                                                                                                                     |                                                                                                        |
| 2   | Dimensional Check                               | Yes      | Complete Package                                                                                                                                                                                                                                                                                                                     |                                                                                                        |
| 3   | Factory Acceptance Test                         | Yes      | Complete Package                                                                                                                                                                                                                                                                                                                     |                                                                                                        |
| 4   | Dry Film Thickness                              | Yes      | Painted Carbon Steel only                                                                                                                                                                                                                                                                                                            |                                                                                                        |
| 5   | Radiography                                     | Yes      | 10% for Stack, 100% on buttwelds piping                                                                                                                                                                                                                                                                                              |                                                                                                        |
| 6   | Dye Penetrant<br>Examination**                  | No       | ☐ Lifting lug welds (Standard)☐ Other (specify>)                                                                                                                                                                                                                                                                                     |                                                                                                        |
| 7   | Ultrasonic Testing**                            | No       | ☐ Lifting lugs material (Standard)☐ Other (specify>)                                                                                                                                                                                                                                                                                 |                                                                                                        |
| 8   | Magnetic Particle<br>Examination**              | No       | ☐ Lifting lug welds ONLY (Standard)☐ Other welds (specify>)                                                                                                                                                                                                                                                                          |                                                                                                        |
| 9   | Hydrostatic Testing                             | No       | 1.3x MAWP for Pressure Vessels 1.5x MAWP for ASME Code Welded piping  ☐ 30 Minutes (Standard)  ☐ Other (specify>)                                                                                                                                                                                                                    | Threaded piping gets a pneumatic test (See No. 10)                                                     |
| 10  | Pneumatic Testing*<br>Per ASME B31.3 para 345.8 | No       | 10psig for 15 min for process piping,<br>10psig for 15 min for utility piping                                                                                                                                                                                                                                                        |                                                                                                        |
| 11  | Pneumatic Testing                               | Yes      | 10psig for 15 min for process piping,<br>10psig for 15 min for utility piping                                                                                                                                                                                                                                                        | Pilot gas train Only                                                                                   |
| 12  | Hardness / Impact<br>Testing**                  | No       | Welds (Standard)  □ Raw Material                                                                                                                                                                                                                                                                                                     |                                                                                                        |
| 13  | PMI (XRF Method)**                              | No       | ☐ Raw Material☐ Weld (PMI Weld Map included)                                                                                                                                                                                                                                                                                         |                                                                                                        |
| 14  | Pickling and Passivation**                      | No       | ☐ SS Tip + SS-SS welds ☐ SS Pilot + SS-SS welds ☐ SS Vessel + SS-SS welds ☐ SS Piping + SS-SS welds                                                                                                                                                                                                                                  |                                                                                                        |
| 15  | Material Test Reports                           | No       | <ul> <li>□ ASME pressure vessel – All Pressure</li> <li>Retaining Components</li> <li>□ ASME Piping – Pressure retaining parts</li> <li>□ Non-Code piping</li> <li>□ Valve bodies</li> <li>□ Thermowells</li> <li>□ Structural material</li> <li>□ Instrument bodies</li> <li>No MTRs provided for fasteners and gaskets.</li> </ul> | ☐ Heat numbers reference only.  ☐ Heat numbers reference + Drawing label identification index by part. |

<sup>\*</sup> Performed in assembled state as a complete package where possible.

<sup>\*\*</sup> Cimarron hires third party specialized contractors. Contractor report, approved by Cimarron QC will be provided.





# 4.2 Engineering, Project Documentation, Manufacturer's Record Book (MRB)

Cimarron will provide the following engineering and documentation along with the equipment on this project. Manufacturer's Record Book (MRB) will include the items checked " $\boxtimes$  = Yes" below:

| No. | Туре                                                                       | Customer Review Type | Included<br>in MRB? | Notes            |
|-----|----------------------------------------------------------------------------|----------------------|---------------------|------------------|
|     | Drawings, valve/instrument, and controls information                       |                      |                     |                  |
| 1.  | Piping And Instrumentation Diagram                                         | Information only     | □ Std.              |                  |
| 2.  | General Arrangement Drawing                                                | Information only     | □ Std.              |                  |
| 3.  | Control Panel Layout                                                       | Information only     | □ Std.              |                  |
| 4.  | Control Panel Wiring Diagrams                                              | Information only     | □ Std.              |                  |
| 5.  | Instrumentation OEM Brochures & Cut<br>Sheets                              | -                    | □ Std.              |                  |
| 6.  | Instrument Data Sheets (Data sheet offered per Cimarron standard template) | -                    |                     |                  |
|     | Analytical study reports                                                   |                      |                     |                  |
| 7.  | ASME Code Calculations (Pressure Vessels Only)                             | -                    | □ Std.              |                  |
| 8.  | Structural analysis report                                                 | -                    |                     |                  |
| 9.  | Wind analysis report                                                       | -                    |                     |                  |
| 10. | Lifting Analysis report                                                    | -                    |                     |                  |
| 11. | Seismic Analysis report                                                    | -                    |                     |                  |
|     | Quality documentation                                                      |                      |                     |                  |
| 12. | Certificate of Conformance                                                 | -                    | □ Std.              |                  |
| 13. | ASME Pressure Vessels U1A package                                          | -                    | □ Std.              |                  |
| 14. | Inspection and Testing plan (ITP)                                          | -                    |                     |                  |
| 15. | Welding Data (WPS/PQRs)                                                    | -                    |                     |                  |
| 16. | Welder Qualification Records - ASME<br>Code welding                        | -                    |                     |                  |
| 17. | Welder Qualification Records –<br>Structural welding                       | -                    |                     |                  |
| 18. | Weld Maps                                                                  | -                    |                     |                  |
| 19. | Quality Manual                                                             | -                    |                     |                  |
| 20. | Applicable NDE Procedures                                                  | -                    |                     |                  |
|     | Non-Destruction Examination Records                                        |                      |                     |                  |
| 21. | Visual Inspection report <sup>1</sup>                                      | Information only     | □ Std.              |                  |
| 22. | Paint Dry Film Thickness report <sup>1</sup>                               | Information only     | □ Std.              |                  |
| 23. | ASME Pressure Vessel NDE Report                                            | -                    |                     |                  |
| 24. | Material Test Reports (MTRs)                                               | -                    |                     | See 4.1.14 Above |

<sup>&</sup>lt;sup>1</sup> Provided in Cimarron's iForm or other internal formats.

Quote: ##### Rev #, 6/20/2025





|     |                                                                                                            |                  | 1      |  |
|-----|------------------------------------------------------------------------------------------------------------|------------------|--------|--|
| 25. | Hydrostatic Test report                                                                                    | -                |        |  |
| 26. | Pneumatic Test report                                                                                      | Information only |        |  |
| 27. | Factory Acceptance Test report                                                                             | Information only |        |  |
| 28. | Radiography report <sup>2</sup>                                                                            | -                |        |  |
| 29. | Dye Penetrant Examination report <sup>2</sup>                                                              | -                |        |  |
| 30. | Ultrasonic Testing report <sup>2</sup>                                                                     | -                |        |  |
| 31. | Magnetic Particle Examination report <sup>2</sup>                                                          | -                |        |  |
| 32. | Hardness / Impact Testing report <sup>2</sup>                                                              | -                |        |  |
| 33. | Positive Material Identification (PMI) report <sup>2</sup>                                                 | -                |        |  |
| 34. | Pickling and Passivation report <sup>2</sup>                                                               | -                |        |  |
|     | Operating Manual                                                                                           |                  |        |  |
| 35. | Operating & Maintenance (O&M)<br>Manual                                                                    | Information only | □ Std. |  |
| 36. | Control Narrative (Cimarron standard template for Process Controls in Cimarron Scope of Supply only)       |                  |        |  |
| 37. | Cause & Effect Diagrams (Cimarron standard template for Process Controls in Cimarron Scope of Supply only) |                  |        |  |

Quote: ##### Rev #, 6/20/2025

<sup>&</sup>lt;sup>2</sup> Cimarron hires third party specialized contractors. Contractor report, approved by Cimarron QC will be provided.





# 5.0 Specifications & Clarifications

# 5.1 Project Specifications

Cimarron proposal is based on the documents and specifications as listed below which define our proposal requirements for the material, fabrication, testing and inspection of the equipment, except as specifically stated or otherwise clarified in our proposal.

Only the documents/specifications listed below were considered in the proposal preparation. Cross-referenced documents are not considered.

| No. | Description                           | Document No | Rev No. |
|-----|---------------------------------------|-------------|---------|
| 1   | 06904.28 F-9000 Flare Datasheet Rev A | -           | Α       |
| 2   | 06904.28 V-9001 (Flare KOD) Rev A     | -           | Α       |

# 5.2 Custom Clarifications

1. None at this time.

# 5.3 Standard Clarifications

### 5.3.1 <u>Technical Clarifications</u>

- **Cimarron Standard Paint Clarifications:** On equipment quoted with Cimarron standard paint specifications (CIM-ENG-MECH-001 Rev. 6), the following clarifications are noted:
  - o Standard top coat: SW Polane 8890, Color: Enviro Green
  - Standard primer coat: SW 2.8 Epoxy Primer
  - Standard prep/paint: SSPC-SP3
  - The following surfaces shall not be coated or painted, unless otherwise specified: Porcelain, Gauge glasses, Meter faces, Valve stem and threads, Stainless Steel Nameplates, Aluminum and Stainless steel, Insulation or fireproofing, Galvanized steel and Concrete, transit, masonry, stucco, etc.
  - Factory finished equipment, including compressors, pumps, control valves, etc., will keep manufacturer standard coating unless otherwise specified
  - Touch-up paint for any damage to the equipment finish that may occur during shipment or installation is excluded from the scope of supply and pricing. Repair or application of touch-up paint is the responsibility of others unless stated otherwise in this proposal.
  - Painting or coating for stainless steel, internal surfaces of equipment, or galvanized equipment is excluded.

#### • Code Clarifications:

Cimarron uses welding processes that produce high quality welds with the metallurgical properties required for Cimarron Energy Systems fabricated equipment. Cimarron weld procedures and welders are qualified in accordance with A.S.M.E. Section IX. Qualifications to other codes and standards have not been considered. Cimarron standard weld procedures apply to our equipment, unless otherwise stated in our proposal. Any request to alter or modify our current weld





- procedures based upon clients' internal specifications is currently excluded from our scope of supply. If new procedures are requested by the client, price and delivery impact will apply.
- Pressure vessels with MAWP in excess of 15psig are designed and fabricated in compliance with ASME Boiler Pressure Vessel Code, Sect VIII Division 1. Piping is designed and fabricated in compliance with ASME B31.3 Process Piping code.

#### • Drawings & Documentation:

- o Plot Plan: Cimarron requests a site plan or layout prior to submission for GA approval to optimize connection and piping orientations.
- Preliminary Weights: Weights listed on drawings are for reference only and are not 100% accurate, as the weight of the welds required for that specific design are not included in the weights listed on drawings.
- o Proprietary Documentation: Fabrication drawings and proprietary calculations are excluded.

#### Electrical:

- o Interconnect Wire & Piping: No interconnecting piping, wire, or conduit is included between proposed equipment, unless otherwise indicated in the scope of work section of proposal.
- o PLC Program: If a PLC is provided with this project, the programming is the proprietary property of Cimarron and will remain in the sole ownership of Cimarron.

#### Installation:

- o Unless specifically listed in scope of supply, installation of equipment, including supply of cranes and/or personnel is excluded. General installation instructions and assembly drawings can be provided in the Installation and Operations Manual (IOM).
- o Bolt kits at battery limit flanged connections are excluded. These can be provided upon request.
- Material Certifications: Material certifications as per BSEN 10204, 3.2 (formerly 3.1a and 3.1c) are excluded.

#### • Structural Design:

- Civil Requirements: Unless specifically requested and addressed as compliant within this proposal, it is under the responsibility of the end user to determine compliance of any Cimarron supplied concrete blocks, pads, or slabs for the end user's specific civil requirements. Civil and foundation design for any equipment including anchor bolts or nuts, design of anchor bolt length or projection are excluded as this is part of civil engineering foundation design.
- Codes: Unless otherwise noted in this proposal, Cimarron uses the following structural codes in the design of this equipment. Customer specific structural studies and design can be accommodated upon request but may result in price/delivery impact.
  - General structural design standards shall be AISC 360-16.
  - Wind design criteria shall be done in accordance with ASCE 7-16.
  - Fatigue criteria shall be done in accordance with AISC 360-16.
  - Seismic criteria shall be done in accordance with IBC 2021/2018.
- External Loads: This design is exclusive of all external loadings due to piping or ducting. Wind, seismic and temperature loadings have been considered.
- o Guywire: Deadman design and any additional hardware not listed in the scope of supply is excluded.
- o Deflection: Standard deflection criterion for guyed stacks is L/100 and for self-supported stacks and derricks is L/133. No other deflection criteria are applicable.
- Special Tools: Special tools, such as Spreader Bars for lifting, are not included in the scope of supply, unless specifically listed.

### 5.3.2 Project Clarifications

#### • Engineering & Design Deliverables:

All datasheets, process calculations, drawings, and any other engineering deliverables will be provided in Cimarron's standard format (e.g., cover sheets, title blocks, drawing symbols, datasheet formatting, etc.) unless noted otherwise in this proposal. Pricing for using CUSTOMER or End User's formatting for documentation has not been considered. If customer specified drawing





or document format is required to be used by Cimarron, additional engineering and administration fees will be assessed. Doing so will also impact to the project schedule. A "change order" will be provided to the customer with those details upon such request. Drawing and Deliverable Review Cycle:

- Schedule includes a client review period not to exceed 1 week after submission of a document agreed upon to be submitted for approval. If Cimarron does not receive approval for construction within 1 week of initial approval drawing submittal, the production schedule will be subject to change based on shop load and change impact. Cimarron reserves the right to levy reasonable disruption charges to the customer which will include engineering, project management hours as a minimum if no procurement has been initiated.
- Approval drawings are sent to the customer with the exclusive intent of communicating the scope of supply included in the proposal and provide information such as mechanical and electrical tie points to the customer. Cimarron reserves the right to address comments received that seek to modify the scope of supply and those that are not related to the scope of supply separately with a "change order."
- All reviews, approvals, and other interface are to be directly with CUSTOMER for the scope
  of this proposal. If CUSTOMER is acting on the behalf of an end-user, all discussions, support,
  and assistance with end-user are under CUSTOMER scope. Cimarron can provide
  technical assistance not included within the scope of this proposal for an additional fee.
- For reviews returned by CUSTOMER as "Approved as Noted", "Approved with Comments", or "Reviewed", CUSTOMER understands that Cimarron will commence manufacturing and sourcing of approved scope not affected by open comments. Cimarron to provide final approved document to CUSTOMER assuming there is no further clarification required. The approval cycle will be defined as complete once Cimarron has returned the final approved document to the customer for information only.
- For reviews returned by CUSTOMER with the words "Rejected" or "Pending", Cimarron will address clarifications with the customer and submit a revised document for approval. This will commence an additional approval cycle.
- o If Cimarron has included a preliminary project schedule within or attached to this proposal, the schedule assumes parallel pathing fabrication drawings and long lead material procurement to compress where possible by allowing 1 cycle of approvals between CUSTOMER and Cimarron within the time allotted. Delivery subject to change if assumptions made are not complied to by CUSTOMER. The dates shown in the Project Schedule in are preliminary and subject to change depending on date of Cimarron's acceptance of the PO. However, the indicated durations in the Project Schedule still apply. A revised project schedule will be submitted prior to an officially scheduled kick-off meeting.

#### • Free Issued Scope:

- o In the event CUSTOMER is to free issue scope that is designed or engineered by Cimarron, the following protocol is in effect:
  - Cimarron supplies CUSTOMER with fab level drawings or specifications where applicable.
  - CUSTOMER receives approval from end user where applicable.
  - CUSTOMER procures or fabricates their scope as applicable above. Cimarron assists CUSTOMER with any questions or issues experienced during fabrication. Cimarron does not interface directly with the fabricator.
  - CUSTOMER will supply final end product to Cimarron within time specified in approved project schedule. CUSTOMER responsible for any cost or delivery impact to end user resulting from any issues not under Cimarron's responsibility under CUSTOMER scope.
  - Cimarron has authority to reject equipment supplied by CUSTOMER if it does not fall within Cimarron specification or Cimarron quality standards. Rework, delivery impact, or any other cost impact experienced if supplied scope not in compliance within Cimarron supplied fabrication drawings under CUSTOMER responsibility.





 Any deviations to drawings/specifications supplied to CUSTOMER for CUSTOMER supplied scope require Cimarron approval.

#### • Order of Precedence:

o In the event there is a redundancy or inconsistency between any documents attached, referred to, or appended to this proposal, the scope included in this proposal takes overall precedent.

#### • Start-Up and Testing Support:

- o Unless specifically noted, any HAZOP assistance beyond the agreed upon engineering deliverables provided in the scope is not included in the price of this proposal.
- Any on-site supervision/start-up test and training offered in this proposal is subject to the following clarifications:
  - Customer to supply date for site supervision/Startup to occur. Cimarron to agree on date.
     After time allotted in the proposal expires, Cimarron will begin charging day rates, regardless of delays or issues experienced outside of Cimarrons control or responsibility.
     Startup and site supervision is independent of any warranty claims.
- Offloading and installation of the equipment at the site is not within Cimarron's Scope of Work unless specifically noted in this proposal.
- o Field or emission testing of the unit is not within Cimarron's Scope of Work unless specifically noted in this proposal.
- Client to schedule Cimarron technician onsite prior to emission test and an engineering test is required to fine tune the equipment.

#### Technical Scope Changes:

- All scope change requests made by Customer will be addressed with a "change order." Based on the nature of change requested, Cimarron reserves the right to charge a minimum assessment fee of 8 hours of engineering/project management to evaluate the impact of the request. An exact estimate will be provided to the customer to approve prior to proceeding.
- A "change order" is defined as a document Cimarron uses to handle changes to the contract.
   Such document may be used to change any portion of the contract and must be approved by both parties. Unless exclusively noted, all prior agreed upon terms and conditions apply.





# 6.0 Domestic Field Service rates

Field services rates are not included in base offer. Same shall be chargeable extra at per diem rates as per below details:

| Permian/Delaw                 | vare Field Service Rates (Regular time)                     |
|-------------------------------|-------------------------------------------------------------|
| Field Tech                    | \$155.00                                                    |
| Automation/Lead Tech          | \$165.00                                                    |
| Mid-Co                        | on Service Rates (Regular time)                             |
| Field Tech                    | \$121.00                                                    |
| Lead Tech                     | \$135.00                                                    |
| VRU Tech                      | \$150.00                                                    |
| Automation Tech               | \$155.00                                                    |
| North Ec                      | ast Service Rates (Regular time)                            |
| Field/I&E Tech                | \$150.00                                                    |
| Rockie                        | s Service Rates (Regular time)                              |
| Field Tech                    | \$125.00                                                    |
| Bakke                         | n Service Rates (Regular time)                              |
| Field Tech                    | \$145.00                                                    |
|                               | Travel & Per Diem Rates                                     |
| Mileage                       | \$1.75 / mile                                               |
| Overnight                     | \$250.00 / night <u>or</u> Cost+10% GM whichever is greater |
| IQR                           | Emissions Services (LDAR)                                   |
| Direct Measurement (Per test) | \$2,000.00                                                  |
| DI&M (Per Hour)               | \$140.00                                                    |
| H2S Service (Per location)    | \$200.00                                                    |
| Gas Analysis (per sample)     | \$350.00                                                    |

#### Field Service Rate Clarifications

- Payment: All rates are in U.S. Dollars and are exclusive of applicable taxes
- Regular Time: Monday through Friday excluding U.S. holidays; between the hours of 7:00 AM to 4:00 PM
- Overtime Time: Work in excess of eight (8) hours per day and Saturday. Rates are 1.5x regular time rates.
- **Premium Time**: Sunday and U.S. Holidays. Rates are 2.0x regular time rates.
- **Standby Time**: Charged at applicable rate. Includes waiting on transportation, parts or materials, and delays by customer
- Travel Time: Charged at the applicable service rate or actual cost + 10% GM.
- After Hours Call-Out: A minimum of four (4) hours will be charged at the applicable service rate
- Mileage & Hot Shot: A fee of \$1.50 per mile will be charged for the use of Cimarron Energy' service trucks. A fee of \$2.25 per mile will be charged for the use of Cimarron Energy' F-550 service trucks. Hotshot will be charged at applicable travel rate.
- **Environmental:** Customer is responsible for proper disposal of all waste generated at the site. If requested, Cimarron will administer proper disposal of waste generated in accordance with applicable regulations at actual cost + 30% GM.
- Freight & Transport: Freight and handling charges for parts or equipment and other third-party services provided by Cimarron will be invoiced at cost + 10% GM Services
- Parts and Materials: Invoiced at the greater of replacement cost or Cimarron's list price unless otherwise auoted
- Third Party Services: Invoiced at actual cost + 10% GM.
- Rate Validity: Rates are subject to change without notice
- Fuel Surcharge: Up to 3% surcharge applied to all field tickets based on National Fuel Averages
  - Up to \$3.50: 1% / \$3.51 to \$4.00: 2% / \$4.01 and up: 3%



| ENGINE SPEED (rpm):      | 1200                    | NOx SELECTION (g/bhp-hr):             | <b>Customer Catalyst</b> |
|--------------------------|-------------------------|---------------------------------------|--------------------------|
| DISPLACEMENT (in3):      | 7040                    | COOLING SYSTEM:                       | JW, IC + OC              |
| COMPRESSION RATIO:       | 9.7:1                   | INTERCOOLER WATER INLET (°F):         | 130                      |
| IGNITION SYSTEM:         | ESM2                    | JACKET WATER OUTLET (°F):             | 180                      |
| EXHAUST MANIFOLD:        | Water Cooled            | JACKET WATER CAPACITY (gal):          | 100                      |
| COMBUSTION:              | Rich Burn, Turbocharged | AUXILIARY WATER CAPACITY (gal):       | 11                       |
| ENGINE DRY WEIGHT (lbs): | 24250                   | LUBE OIL CAPACITY (gal):              | 190                      |
| AIR/FUEL RATIO SETTING:  | 0.38% CO                | MAX. EXHAUST BACKPRESSURE (in. H2O):  | 20                       |
| ENGINE SOUND LEVEL (dBA) | 105                     | MAX. AIR INLET RESTRICTION (in. H2O): | 15                       |
| IGNITION TIMING:         | ESM2 Controlled         | EXHAUST SOUND LEVEL (dBA)             | 113                      |

| SITE | CON | NDIT | IONS: |
|------|-----|------|-------|
|      |     |      |       |

FUEL PRESSURE RANGE (psig):
FUEL HHV (BTU/ft3):
FUEL LHV (BTU/ft3): ALTITUDE (ft): MAXIMUM INLET AIR TEMPERATURE (°F): 2500 40 - 60 100 FUEL WKI: 1,273.8 59.8 1,151.5

| SITE | SPE | CIFIC | TECHNICAL | DATA |
|------|-----|-------|-----------|------|
|      |     |       |           |      |

| SITE SPECIFIC TECHNICAL DATA                  |           | MAX RATING<br>AT 100 °F | SITE RATING AT MAXIMUM INLET AIR<br>TEMPERATURE OF 100 °F |      |      |
|-----------------------------------------------|-----------|-------------------------|-----------------------------------------------------------|------|------|
| POWER RATING                                  | UNITS     | AIR TEMP                | 100%                                                      | 95%  | 50%  |
| CONTINUOUS ENGINE POWER                       | BHP       | 1900                    | 1900                                                      | 1805 | 950  |
| OVERLOAD                                      | % 2/24 hr | 0                       | 0                                                         | -    | -    |
| MECHANICAL EFFICIENCY (LHV)                   | %         | 34.2                    | 34.2                                                      | 34.1 | 31.7 |
| CONTINUOUS POWER AT FLYWHEEL                  | ВНР       | 1900                    | 1900                                                      | 1805 | 950  |
|                                               |           |                         |                                                           |      |      |
| based on no auxiliary engine driven equipment |           |                         |                                                           |      |      |

| AVAILABLE TURNDOWN SPEED RANGE | RPM | 900 - 1200 |
|--------------------------------|-----|------------|

| FUEL CONSUMPTION       |                            |               |      |      |      |      |
|------------------------|----------------------------|---------------|------|------|------|------|
| FUEL CONSUMPTION (LHV) |                            | BTU/BHP-hr    | 7457 | 7457 | 7474 | 8032 |
| FUEL CONSUMPTION (HHV) |                            | BTU/BHP-hr    | 8249 | 8249 | 8268 | 8885 |
| FUEL FLOW              | based on fuel analysis LHV | SCFM          | 205  | 205  | 195  | 110  |
| HEAT REJECTION         |                            |               |      |      |      |      |
| JACKET WATER (JW)      |                            | BTU/hr x 1000 | 3873 | 3873 | 3717 | 2291 |
| LUBE OIL (OC)          |                            | BTU/hr x 1000 | 498  | 498  | 491  | 403  |
| INTERCOOLER (IC)       |                            | BTU/hr x 1000 | 730  | 730  | 660  | 150  |
| EXHAUST                |                            | BTU/hr x 1000 | 3893 | 3893 | 3685 | 1975 |
| RADIATION              |                            | BTU/hr x 1000 | 613  | 613  | 605  | 544  |

| EMISSIONS (ENGINE OUT): |          |       |       |       |       |
|-------------------------|----------|-------|-------|-------|-------|
| NOx (NO + NO2)          | g/bhp-hr | 11.7  | 11.7  | 12.1  | 13.7  |
| CO                      | g/bhp-hr | 9.8   | 9.8   | 9.7   | 9.9   |
| THC                     | g/bhp-hr | 0.3   | 0.3   | 0.3   | 0.7   |
| NMHC                    | g/bhp-hr | 0.122 | 0.122 | 0.138 | 0.311 |
| NM,NEHC (VOC)           | g/bhp-hr | 0.049 | 0.049 | 0.056 | 0.125 |
| CO2                     | g/bhp-hr | 480   | 480   | 481   | 517   |
| CO2e (Methane GWP: 25)  | g/bhp-hr | 484   | 484   | 485   | 526   |
| CH2O                    | g/bhp-hr | 0.050 | 0.050 | 0.050 | 0.050 |
| CH4                     | g/bhp-hr | 0.14  | 0.14  | 0.16  | 0.35  |
|                         |          |       |       |       |       |

| AIR INTAKE / EXHAUST GAS                    |       |       |       |       |      |
|---------------------------------------------|-------|-------|-------|-------|------|
| INDUCTION AIR FLOW                          | SCFM  | 2652  | 2652  | 2524  | 1429 |
| EXHAUST GAS MASS FLOW                       | lb/hr | 12328 | 12328 | 11737 | 6643 |
| EXHAUST GAS FLOW at exhaust temp, 14.5 psia | ACFM  | 8783  | 8783  | 8331  | 4538 |
| EXHAUST TEMPERATURE                         | °F    | 1143  | 1143  | 1137  | 1077 |

| HEAT EXCHANGER SIZING <sup>12</sup>     |               |      |
|-----------------------------------------|---------------|------|
| TOTAL JACKET WATER CIRCUIT (JW)         | BTU/hr x 1000 | 4392 |
| TOTAL AUXILIARY WATER CIRCUIT (IC + OC) | BTU/hr x 1000 | 1393 |

| COOLING SYSTEM WITH ENGINE MOUNTED WATER PUMPS |      |     |
|------------------------------------------------|------|-----|
| JACKET WATER PUMP MIN. DESIGN FLOW             | GPM  | 450 |
| JACKET WATER PUMP MAX. EXTERNAL RESTRICTION    | psig | 16  |
| AUX WATER PUMP MIN. DESIGN FLOW                | GPM  | 79  |
| AUX WATER PUMP MAX. EXTERNAL RESTRICTION       | psig | 36  |



| FUEL COMPOSITION                          |               |               |          |                                                                                                   |                       |
|-------------------------------------------|---------------|---------------|----------|---------------------------------------------------------------------------------------------------|-----------------------|
| HYDROCARBONS:                             | Mole          | e or Volume % |          | FUEL:                                                                                             |                       |
| Methane                                   | CH4           | 69.24         |          | FUEL PRESSURE RANGE (psig):                                                                       | 40 - 60               |
| Ethane                                    | C2H6          | 19.311        |          | FUEL WKI:                                                                                         | 59.8                  |
| Propane                                   | C3H8          | 6.875         |          | . 022                                                                                             | 00.0                  |
| Iso-Butane                                | I-C4H10       | 0.456         |          | FUEL SLHV (BTU/ft3):                                                                              | 1131.47               |
| Normal Butane                             | N-C4H10       | 0.430         |          | FUEL SLHV (MJ/Nm3):                                                                               | 44.49                 |
| Iso-Pentane                               | I-C5H12       | 0.056         |          | TOLL SETTY (MO/MINS).                                                                             | 44.43                 |
|                                           | N-C5H12       | 0.052         |          | FUEL 111///DTU/#2\.                                                                               | 1151.51               |
| Normal Pentane                            |               |               |          | FUEL LHV (BTU/ft3):                                                                               |                       |
| Hexane                                    | C6H14         | 0.015         |          | FUEL LHV (MJ/Nm3):                                                                                | 45.28                 |
| Heptane                                   | C7H16         | 0             |          |                                                                                                   |                       |
| Ethene                                    | C2H4          | 0             |          | FUEL HHV (BTU/ft3):                                                                               | 1273.79               |
| Propene                                   | C3H6          | 0             |          | FUEL HHV (MJ/Nm3):                                                                                | 50.09                 |
|                                           | SUM HYDROCARB | ONS 96.916    |          | FUEL DENSITY (SG):                                                                                | 0.75                  |
| NON-HYDROCARBONS:                         |               |               |          |                                                                                                   |                       |
| Nitrogen                                  | N2            | 2.173         |          | Standard Conditions per ASTM D3588-91 [60°                                                        | F and 14.696psia] and |
| Oxygen                                    | O2            | 0             |          | ISO 6976:1996-02-01[25, V(0;101.325)].                                                            |                       |
| Helium                                    | He            | 0             |          | Based on the fuel composition, supply pressure<br>liquid hydrocarbons may be present in the fuel. |                       |
| Carbon Dioxide                            | CO2           | 0.912         |          | hydrocarbons are allowed in the fuel. The fuel                                                    |                       |
| Carbon Monoxide                           | CO            | 0             |          | liquid water. Waukesha recommends both of the                                                     |                       |
| Hydrogen                                  | H2            | 0             |          | <ol> <li>Dew point of the fuel gas to be at least 20°F</li> </ol>                                 |                       |
| Water Vapor                               | H2O           | 0             |          | measured temperature of the gas at the inlet o                                                    | f the engine fuel     |
| Water Vapor                               | 1120          | · ·           |          | regulator.  2) A fuel filter separator to be used on all fuels                                    | except commercial     |
|                                           | TOTAL FUEL    | 100           |          | quality natural gas.                                                                              | except commercial     |
|                                           | TOTALTOLL     | 100           |          | Refer to the 'Fuel and Lubrication' section of 'T                                                 | echnical Data' or     |
|                                           |               |               |          | contact the Waukesha Application Engineering                                                      |                       |
|                                           |               |               |          | additional information on fuels, or LHV and Wk * Trademark of INNIO Waukesha Gas Engines          |                       |
|                                           |               |               |          |                                                                                                   |                       |
| FUEL CONTAMINANTS  Total Sulfur Compounds |               | 0             | % volume | Total Sulfur Compounds                                                                            | 0 μg/BTU              |
| Total Halogen as Chloride                 |               | 0             | % volume | Total Halogen as Chloric                                                                          | 0 μg/BTU              |
| Total Ammonia                             |               | 0             | % volume | Total Ammonia                                                                                     | 0 μg/BTU              |
| <u>Siloxanes</u>                          |               |               |          | Total Siloxanes (as Si)                                                                           | 0 μg/BTU              |
| Tetramethyl silane                        |               | 0             | % volume | rotal ellerance (ac el)                                                                           | ο μg/2.0              |
| Trimethyl silanol                         |               | 0             | % volume |                                                                                                   |                       |
| Hexamethyldisiloxane (L2)                 |               | 0             | % volume | Calculated fuel contaminant analysi                                                               | is will donand on     |
|                                           | D3)           | 0             |          |                                                                                                   | •                     |
| Hexamethylcyclotrisiloxane (E             | J3)           | -             | % volume | the entered fuel composition and se                                                               | nectea erigirie       |
| Octamethyltrisiloxane (L3)                | (D4)          | 0             | % volume | model.                                                                                            |                       |
| Octamethylcyclotetrasiloxane              |               | 0             | % volume |                                                                                                   |                       |
| Decamethyltetrasiloxane (L4)              |               | 0             | % volume |                                                                                                   |                       |
| Decamethylcyclopentasiloxan               |               | 0             | % volume |                                                                                                   |                       |
| Dodecamethylpentasiloxane (               | . ,           | 0             | % volume |                                                                                                   |                       |
| Dodecamethylcyclohexasiloxa               | ane (D6)      | 0             | % volume |                                                                                                   |                       |
| Others                                    |               | 0             | % volume |                                                                                                   |                       |

No water or hydrocarbon condensates are allowed in the engine. Requires liquids removal.



#### **NOTES**

- 1. All data is based on engines with standard configurations unless noted otherwise.
- 2. Power rating is adjusted for fuel, site altitude, and site air inlet temperature, in accordance with ISO 3046/1 with tolerance of ± 3%.
- 3. Fuel consumption is presented in accordance with ISO 3046/1 with a tolerance of -0 / +5% at maximum rating. Fuel flow calculation based on fuel LHV and fuel consumption with a tolerance of -0/+5%. For sizing piping and fuel equipment, it is recommended to include the 5% tolerance.
- 4. Heat rejection tolerances are ± 30% for radiation, and ± 8% for jacket water, lube oil, intercooler, and exhaust energy.
- 5. Emission levels for engines with Waukesha supplied 3-way catalyst are given at catalyst outlet flange. For all other engine models, emission levels are given at engine exhaust outlet flange prior to any after treatment. Values are based on a new engine operating at indicated site conditions, and adjusted to the specified timing and air/fuel ratio at rated load. Catalyst out emission levels represent emission levels the catalyst is sized to achieve. Manual adjustment may be necessary to achieve compliance as catalyst/engine age. Catalyst-out emission levels are valid for the duration of the engine warranty. Emissions are at an absolute humidity of 75 grains H2O/lb (10.71 g H2O/kg) of dry air. Emission levels may vary subject to instrumentation, measurement, ambient conditions, fuel quality, and engine variation. Engine may require adjustment on-site to meet emission values, which may affect engine performance and heat output. NOx, CO, THC, NMHC, CO2, and CO2e emission levels are listed as a not to exceed limit, all other emission levels are estimated. CO2 emissions based on EPA Federal Register/Vol. 74, No. 209/Friday, October 30, 2009 Rules and Regulations 56398, 56399 (3) Tier 3 Calculation Methodology, Equation C-5.
- 6. Air flow is based on undried air with a tolerance of  $\pm$  7%.
- 7. Exhaust temperature given at engine exhaust outlet flange with a tolerance of ± 50°F (28°C).
- 8. Exhaust gas mass flow value is based on a "wet basis" with a tolerance of  $\pm$  7%
- 9. Inlet air restrictions based on full rated engine load. Exhaust backpressure based on 178.1 PSI BMEP and 1200 RPM. Refer to the engine specification section of Waukesha's standard technical data for more information.
- 10. Cooling circuit capacity, lube oil capacity, and engine dry weight values are typical.
- 11. Fuel must conform to Waukesha's "Gaseous Fuel Specification" S7884-7 or most current version. Fuel may require treatment to meet current fuel specification.
- 12. Heat exchanger sizing values given as the maximum heat rejection of the circuit, with applied tolerances and an additional 5% reserve factor.
- 13. Fuel volume flow calculation in english units is based on 100% relative humidity of the fuel gas at standard conditions of 60°F and 14.696 psia (29.92 inches of mercury: 101.325 kPa).
- 14. Fuel volume flow calculation in metric units is based on 100% relative humidity of the fuel gas at a combustion temperature of 25°C and metering conditions of 0°C and 101.325 kPa (14.696 psia; 29.92 inches of mercury). This is expressed as [25, V(0;101.325)].
- 15. Engine sound data taken with the microphone at 1 m (3.3 ft) from the side of the engine at the approximate front-to-back centerline. Microphone height was at intake manifold level. Engine sound pressure data may be different at front, back and opposite side locations. Exhaust sound data taken with microphone 1 meter (3.3 ft) away and 1 meter (3.3 ft) to the side of the exhaust outlet.
- 16. Due to variation between test conditions and final site conditions, such as exhaust configuration and background sound level, sound pressure levels under site conditions may be different than those tabulated above.
- 17. Cooling system design flow is based on minimum allowable cooling system flow. Cooling system maximum external restriction is defined as the allowable restriction at the minimum cooling system flow.
- 18. Continuous Power Rating: The highest load and speed that can be applied 24 hours per day, seven days per week, 365 days per year except for normal maintenance at indicated ambient reference conditions and fuel. No engine overload power rating is available.
- 19. emPact emission compliance available for entire range of operable fuels; however, fuel system and/or O2 set point may need to be adjusted in order to maintain compliance. VHP emPact particulate emissions measured as condensable PM2.5 per 40 CFR Part 1065 gravimetric reference method.
- 20. In cold ambient temperatures, heating of the engine jacket water, lube oil and combustion air may be required. See Waukesha Technical Data.
- 21. Available Turndown Speed Range refers to the constant torque speed range available. Reduced power may be available at speeds outside of this range. Contact application engineering.

#### SPECIAL REQUIREMENTS



| ENGINE SPEED (rpm):      | 1200                    | NOx SELECTION (g/bhp-hr):             | 0.15 NOx 0.30 CO |
|--------------------------|-------------------------|---------------------------------------|------------------|
| DISPLACEMENT (in3):      | 7040                    | COOLING SYSTEM:                       | JW, IC + OC      |
| COMPRESSION RATIO:       | 9.7:1                   | INTERCOOLER WATER INLET (°F):         | 130              |
| IGNITION SYSTEM:         | ESM2                    | JACKET WATER OUTLET (°F):             | 180              |
| EXHAUST MANIFOLD:        | Water Cooled            | JACKET WATER CAPACITY (gal):          | 100              |
| COMBUSTION:              | Rich Burn, Turbocharged | AUXILIARY WATER CAPACITY (gal):       | 11               |
| ENGINE DRY WEIGHT (lbs): | 24250                   | LUBE OIL CAPACITY (gal):              | 190              |
| AIR/FUEL RATIO SETTING:  | 0.38% CO                | MAX. EXHAUST BACKPRESSURE (in. H2O):  | 20               |
| ENGINE SOUND LEVEL (dBA) | 105                     | MAX. AIR INLET RESTRICTION (in. H2O): | 15               |
| IGNITION TIMING:         | ESM2 Controlled         | EXHAUST SOUND LEVEL (dBA)             | 113              |

**SITE CONDITIONS:** 

**EXHAUST** 

PM2.5/PM10

based on no auxiliary engine driven equipment

FUEL: ALTITUDE (ft): 2500
FUEL PRESSURE RANGE (psig): 40 - 60 MAXIMUM INLET AIR TEMPERATURE (°F): 100
FUEL HHV (BTU/ft3): 1,273.8
FUEL LHV (BTU/ft3): 1,151.5

#### SITE RATING AT MAXIMUM INLET AIR MAX RATING SITE SPECIFIC TECHNICAL DATA TEMPERATURE OF 100 °F AT 100 °F **POWER RATING** UNITS 95% AIR TEMP 100% CONTINUOUS ENGINE POWER BHP 1900 1900 1805 1425 OVERLOAD % 2/24 hr 0 0 MECHANICAL EFFICIENCY (LHV) 34.2 34.2 34.1 33.5 % CONTINUOUS POWER AT FLYWHEEL ВНР 1900 1900 1805 1425

### AVAILABLE TURNDOWN SPEED RANGE RPM 900 - 1200

| FUEL CONSUMPTION       |                            |                |      |      |      |      |
|------------------------|----------------------------|----------------|------|------|------|------|
| FUEL CONSUMPTION (LHV) |                            | BTU/BHP-hr     | 7457 | 7457 | 7474 | 7600 |
| FUEL CONSUMPTION (HHV) |                            | BTU/BHP-hr     | 8249 | 8249 | 8268 | 8408 |
| FUEL FLOW              | based on fuel analysis LHV | SCFM           | 205  | 205  | 195  | 157  |
|                        |                            |                |      |      | •    | •    |
| HEAT REJECTION         |                            |                |      |      |      |      |
| JACKET WATER (JW)      |                            | BTU/hr x 1000  | 3873 | 3873 | 3717 | 3085 |
| LUBE OIL (OC)          |                            | BTU/hr x 1000  | 498  | 498  | 491  | 457  |
| INTERCOOLER (IC)       |                            | BTII/hr v 1000 | 730  | 730  | 660  | 405  |

BTU/hr x 1000

3893

0.01

3893

0.01

3685

0.01

2888

0.01

| RADIATION                 | BTU/hr x 1000 | 613   | 613   | 605   | 577   |
|---------------------------|---------------|-------|-------|-------|-------|
| EMISSIONS (CATALYST OUT): |               |       |       |       |       |
| NOx (NO + NO2)            | g/bhp-hr      | 0.15  | 0.15  | 0.15  | 0.15  |
| co                        | g/bhp-hr      | 0.30  | 0.30  | 0.30  | 0.30  |
| THC                       | g/bhp-hr      | 0.18  | 0.18  | 0.21  | 0.31  |
| NMHC                      | g/bhp-hr      | 0.043 | 0.043 | 0.048 | 0.073 |
| NM,NEHC (VOC)             | g/bhp-hr      | 0.012 | 0.012 | 0.014 | 0.021 |
| CO2                       | g/bhp-hr      | 495   | 495   | 496   | 504   |
| CO2e (Methane GWP: 25)    | g/bhp-hr      | 497   | 497   | 499   | 508   |
| CH2O                      | g/bhp-hr      | 0.001 | 0.001 | 0.001 | 0.001 |
| CH4                       | g/bhp-hr      | 0.10  | 0.10  | 0.11  | 0.17  |
|                           |               |       |       |       |       |

| AIR INTAKE / EXHAUST GAS        |                    |       |       |       |      |
|---------------------------------|--------------------|-------|-------|-------|------|
| INDUCTION AIR FLOW              | SCFM               | 2652  | 2652  | 2524  | 2027 |
| EXHAUST GAS MASS FLOW           | lb/hr              | 12328 | 12328 | 11737 | 9423 |
| EXHAUST GAS FLOW at exhaust ten | np, 14.5 psia ACFM | 8783  | 8783  | 8331  | 6575 |
| EXHAUST TEMPERATURE             | °F                 | 1143  | 1143  | 1137  | 1110 |

g/bhp-hr

| HEAT EXCHANGER SIZING <sup>12</sup>     |               |      |
|-----------------------------------------|---------------|------|
| TOTAL JACKET WATER CIRCUIT (JW)         | BTU/hr x 1000 | 4392 |
| TOTAL AUXILIARY WATER CIRCUIT (IC + OC) | BTU/hr x 1000 | 1393 |

| COOLING SYSTEM WITH ENGINE MOUNTED WATER PUMPS |      |     |
|------------------------------------------------|------|-----|
| JACKET WATER PUMP MIN. DESIGN FLOW             | GPM  | 450 |
| JACKET WATER PUMP MAX. EXTERNAL RESTRICTION    | psig | 16  |
| AUX WATER PUMP MIN. DESIGN FLOW                | GPM  | 79  |
| AUX WATER PUMP MAX. EXTERNAL RESTRICTION       | psig | 36  |



| FUEL COMPOSITION                 |                  |         |          |                                                                                                                       |                       |
|----------------------------------|------------------|---------|----------|-----------------------------------------------------------------------------------------------------------------------|-----------------------|
| HYDROCARBONS:                    | Mole or V        | olume % |          | FUEL:                                                                                                                 |                       |
| Methane                          | CH4              | 69.24   |          | FUEL PRESSURE RANGE (psig):                                                                                           | 40 - 60               |
| Ethane                           | C2H6             | 19.311  |          | FUEL WKI:                                                                                                             | 59.8                  |
| Propane                          | C3H8             | 6.875   |          |                                                                                                                       |                       |
| Iso-Butane                       | I-C4H10          | 0.456   |          | FUEL SLHV (BTU/ft3):                                                                                                  | 1131.47               |
| Normal Butane                    | N-C4H10          | 0.911   |          | FUEL SLHV (MJ/Nm3):                                                                                                   | 44.49                 |
| Iso-Pentane                      | I-C5H12          | 0.056   |          |                                                                                                                       |                       |
| Normal Pentane                   | N-C5H12          | 0.052   |          | FUEL LHV (BTU/ft3):                                                                                                   | 1151.51               |
| Hexane                           | C6H14            | 0.015   |          | FUEL LHV (MJ/Nm3):                                                                                                    | 45.28                 |
| Heptane                          | C7H16            | 0       |          |                                                                                                                       |                       |
| Ethene                           | C2H4             | 0       |          | FUEL HHV (BTU/ft3):                                                                                                   | 1273.79               |
| Propene                          | C3H6             | 0       |          | FUEL HHV (MJ/Nm3):                                                                                                    | 50.09                 |
|                                  | SUM HYDROCARBONS | 96.916  |          | FUEL DENSITY (SG):                                                                                                    | 0.75                  |
| NON-HYDROCARBONS:                |                  |         |          |                                                                                                                       |                       |
| Nitrogen                         | N2               | 2.173   |          | Standard Conditions per ASTM D3588-91 [60°I                                                                           | F and 14.696psia] and |
| Oxygen                           | O2               | 0       |          | ISO 6976:1996-02-01[25, V(0;101.325)].  Based on the fuel composition, supply pressure                                | and temperature       |
| Helium                           | He               | 0       |          | liquid hydrocarbons may be present in the fuel.                                                                       |                       |
| Carbon Dioxide                   | CO2              | 0.912   |          | hydrocarbons are allowed in the fuel. The fuel                                                                        |                       |
| Carbon Monoxide                  | CO               | 0       |          | liquid water. Waukesha recommends both of th                                                                          |                       |
| Hydrogen                         | H2               | 0       |          | <ol> <li>Dew point of the fuel gas to be at least 20°F<br/>measured temperature of the gas at the inlet of</li> </ol> |                       |
| Water Vapor                      | H2O              | 0       |          | regulator.                                                                                                            |                       |
|                                  |                  |         |          | 2) A fuel filter separator to be used on all fuels                                                                    | except commercial     |
|                                  | TOTAL FUEL       | 100     |          | quality natural gas. Refer to the 'Fuel and Lubrication' section of 'To                                               | achnical Data! or     |
|                                  |                  |         |          | contact the Waukesha Application Engineering                                                                          |                       |
|                                  |                  |         |          | additional information on fuels, or LHV and WK                                                                        |                       |
|                                  |                  |         |          | * Trademark of INNIO Waukesha Gas Engines                                                                             | Inc.                  |
| FUEL CONTAMINANTS                |                  |         |          |                                                                                                                       |                       |
| Total Sulfur Compounds           |                  | 0       | % volume | Total Sulfur Compounds                                                                                                | 0 μg/BTU              |
| Total Halogen as Chloride        |                  | 0       | % volume | Total Halogen as Chloric                                                                                              | 0 μg/BTU              |
| Total Ammonia                    |                  | 0       | % volume | Total Ammonia                                                                                                         | 0 μg/BTU              |
| Siloxanes                        |                  |         |          | Total Siloxanes (as Si)                                                                                               | 0 μg/BTU              |
| Tetramethyl silane               |                  | 0       | % volume |                                                                                                                       |                       |
| Trimethyl silanol                |                  | 0       | % volume |                                                                                                                       |                       |
| Hexamethyldisiloxane (L2)        |                  | 0       | % volume | Calculated fuel contaminant analysis                                                                                  | s will depend on      |
| Hexamethylcyclotrisiloxane (D3)  |                  | 0       | % volume | the entered fuel composition and se                                                                                   | lected engine         |
| Octamethyltrisiloxane (L3)       |                  | 0       | % volume | model.                                                                                                                |                       |
| Octamethylcyclotetrasiloxane (D4 | 1)               | 0       | % volume |                                                                                                                       |                       |
| Decamethyltetrasiloxane (L4)     |                  | 0       | % volume |                                                                                                                       |                       |
| Decamethylcyclopentasiloxane (I  | D5)              | 0       | % volume |                                                                                                                       |                       |
| Dodecamethylpentasiloxane (L5)   |                  | 0       | % volume |                                                                                                                       |                       |
| Dodecamethylcyclohexasiloxane    |                  | 0       | % volume |                                                                                                                       |                       |
| Others                           |                  | 0       | % volume |                                                                                                                       |                       |

No water or hydrocarbon condensates are allowed in the engine. Requires liquids removal.



#### **NOTES**

- 1. All data is based on engines with standard configurations unless noted otherwise.
- 2. Power rating is adjusted for fuel, site altitude, and site air inlet temperature, in accordance with ISO 3046/1 with tolerance of ± 3%.
- 3. Fuel consumption is presented in accordance with ISO 3046/1 with a tolerance of -0 / +5% at maximum rating. Fuel flow calculation based on fuel LHV and fuel consumption with a tolerance of -0/+5%. For sizing piping and fuel equipment, it is recommended to include the 5% tolerance.
- 4. Heat rejection tolerances are ± 30% for radiation, and ± 8% for jacket water, lube oil, intercooler, and exhaust energy.
- 5. Emission levels for engines with Waukesha supplied 3-way catalyst are given at catalyst outlet flange. For all other engine models, emission levels are given at engine exhaust outlet flange prior to any after treatment. Values are based on a new engine operating at indicated site conditions, and adjusted to the specified timing and air/fuel ratio at rated load. Catalyst out emission levels represent emission levels the catalyst is sized to achieve. Manual adjustment may be necessary to achieve compliance as catalyst/engine age. Catalyst-out emission levels are valid for the duration of the engine warranty. Emissions are at an absolute humidity of 75 grains H2O/lb (10.71 g H2O/kg) of dry air. Emission levels may vary subject to instrumentation, measurement, ambient conditions, fuel quality, and engine variation. Engine may require adjustment on-site to meet emission values, which may affect engine performance and heat output. NOx, CO, THC, NMHC, CO2, and CO2e emission levels are listed as a not to exceed limit, all other emission levels are estimated. CO2 emissions based on EPA Federal Register/Vol. 74, No. 209/Friday, October 30, 2009 Rules and Regulations 56398, 56399 (3) Tier 3 Calculation Methodology. Equation C-5.
- 6. Air flow is based on undried air with a tolerance of  $\pm$  7%.
- 7. Exhaust temperature given at engine exhaust outlet flange with a tolerance of ± 50°F (28°C).
- 8. Exhaust gas mass flow value is based on a "wet basis" with a tolerance of  $\pm$  7%
- 9. Inlet air restrictions based on full rated engine load. Exhaust backpressure based on 178.1 PSI BMEP and 1200 RPM. Refer to the engine specification section of Waukesha's standard technical data for more information.
- 10. Cooling circuit capacity, lube oil capacity, and engine dry weight values are typical.
- 11. Fuel must conform to Waukesha's "Gaseous Fuel Specification" S7884-7 or most current version. Fuel may require treatment to meet current fuel specification.
- 12. Heat exchanger sizing values given as the maximum heat rejection of the circuit, with applied tolerances and an additional 5% reserve factor.
- 13. Fuel volume flow calculation in english units is based on 100% relative humidity of the fuel gas at standard conditions of 60°F and 14.696 psia (29.92 inches of mercury: 101.325 kPa).
- 14. Fuel volume flow calculation in metric units is based on 100% relative humidity of the fuel gas at a combustion temperature of 25°C and metering conditions of 0°C and 101.325 kPa (14.696 psia; 29.92 inches of mercury). This is expressed as [25, V(0;101.325)].
- 15. Engine sound data taken with the microphone at 1 m (3.3 ft) from the side of the engine at the approximate front-to-back centerline. Microphone height was at intake manifold level. Engine sound pressure data may be different at front, back and opposite side locations. Exhaust sound data taken with microphone 1 meter (3.3 ft) away and 1 meter (3.3 ft) to the side of the exhaust outlet.
- 16. Due to variation between test conditions and final site conditions, such as exhaust configuration and background sound level, sound pressure levels under site conditions may be different than those tabulated above.
- 17. Cooling system design flow is based on minimum allowable cooling system flow. Cooling system maximum external restriction is defined as the allowable restriction at the minimum cooling system flow.
- 18. Continuous Power Rating: The highest load and speed that can be applied 24 hours per day, seven days per week, 365 days per year except for normal maintenance at indicated ambient reference conditions and fuel. No engine overload power rating is available.
- 19. emPact emission compliance available for entire range of operable fuels; however, fuel system and/or O2 set point may need to be adjusted in order to maintain compliance. VHP emPact particulate emissions measured as condensable PM2.5 per 40 CFR Part 1065 gravimetric reference method.
- 20. In cold ambient temperatures, heating of the engine jacket water, lube oil and combustion air may be required. See Waukesha Technical Data.
- 21. Available Turndown Speed Range refers to the constant torque speed range available. Reduced power may be available at speeds outside of this range. Contact application engineering.

#### SPECIAL REQUIREMENTS

Requires option code 1008B/1008SB for 0.15 g/bhp-hr NOx 0.30 g/bhp-hr CO catalyst.



# **VHP Series Four L5794GSI**

With ESM2 and emPact Emission Control System

920 - 1380 BHP (686 - 1029 kWb)

#### **Technical Data**

| Cylinders                    | V12                                   |
|------------------------------|---------------------------------------|
| Piston<br>displacement       | 5788 cu. in. (95 L)                   |
| Compression ratio            | 8.25:1                                |
| Bore & stroke                | 8.5" x 8.5" (216 x 216<br>mm)         |
| Jacket water system capacity | 107 gal. (405 L)                      |
| Lube oil capacity            | 190 gal. (719 L)                      |
| Starting system              | 125 - 150 psi air/gas<br>24V electric |

#### Dimensions Ix wxh inch (mm)

147 (3734) x 85 (2159) x 97.83 (2485)

#### Weights lb (kg)

24,760 (11,230)



Engine supplied with 3-way catalyst but without exhaust piping. Engine-out and catalystout exhaust piping shown for illustrative purposes only.

INNIO's Waukesha\* VHP\* Series Four\* are the engines of choice for the harshest and most demanding gas compression, power generation and mechanical drive applications. The Series Four engines can reliably produce more power on hot field gases, at high altitudes, and in remote locations, all while delivering low emissions when paired with a 3-way catalyst (NSCR).

ESM\*2 is the next-generation engine controller, adding functionality and benefits to the proven ESM platform.

The ESM2 customer interface is a 12" full-color touch screen display panel that allows users to see all engine parameters, trend data, view manuals, and walk through troubleshooting steps, eliminating the need for a laptop computer.

ESM2 directly reads exhaust and main bearing temperatures sensors and adds crankcase pressure, boost pressure, and an oil pressure permissive for starting the engine to the list of sensors available with the previous version of ESM. Enhanced misfire detection can capture a single misfire event and an enhanced three-dimensional timing map allows for tighter engine control over the entire range of fuels.

Waukesha's emPact Emission Control System combines an engine, catalyst, and air/fuel ratio control, factorydesigned for optimal interaction and maximum performance. It consists of afactory supplied catalyst, pre- and post-catalyst oxygen sensing, and differential temperature and pressure sensors. emPact's closed-loop control system measures the engine exhaust and automatically adjusts the air/fuel ratio to keep the catalyst operating at maximum efficiency, even as speed, load, fuel, and ambient conditions change.



### **Performance Data**

| ntercoo                             | ler Water Temperature 130°F (54°C)          | 1200 RPM     | 1000 RPM     |
|-------------------------------------|---------------------------------------------|--------------|--------------|
|                                     | Power bhp (kWb)                             | 1380 (1029)  | 1150 (858)   |
|                                     | BSFC (LHV) Btu/bhp-hr (kJ/kWh)              | 7665 (10846) | 7496 (10602) |
|                                     | Fuel Consumption Btu/hr x 1000 (kW)         | 10578 (3100) | 8621 (2527)  |
| emPact<br>Catalyst-Out<br>Emissions | NOx g/bhp-hr (mg/Nm³ @ 5% O <sub>2</sub> )  | 0.5 (185)    |              |
|                                     | CO g/bhp-hr (mg/Nm³ @ 5% O₂)                | 1.0 (370)    |              |
|                                     | NMHC g/bhp-hr (mg/Nm³ @ 5% 0 <sub>2</sub> ) | 0.14 (58)    |              |
|                                     | THC g/bhp-hr (mg/Nm³ @ 5% O₂)               | 1.26 (477)   |              |
| <b>.</b>                            | NOx g/bhp-hr (mg/Nm³ @ 5% O <sub>2</sub> )  | 13.50 (5011) | 14.90 (5508) |
| Engine-Out<br>Emissions             | CO g/bhp-hr (mg/Nm³ @ 5% O₂)                | 10.50 (3770) | 10.10 (3734) |
|                                     | NMHC g/bhp-hr (mg/Nm³ @ 5% 0 <sub>2</sub> ) | 0.28 (105)   | 0.30 (110)   |
| ш —                                 | THC g/bhp-hr (mg/Nm³ @ 5% O <sub>2</sub> )  | 1.80 (682)   | 2.00 (733)   |
|                                     | Heat to Jacket Water Btu/hr x 1000 (kW)     | 3037 (890)   | 2512 (736)   |
| 0                                   | Heat to Lube Oil Btu/hr x 1000 (kW)         | 470 (138)    | 372 (109)    |
| Heat<br>Balance                     | Heat to Intercooler Btu/hr x 1000 (kW)      | 132 (39)     | 74 (22)      |
| - B                                 | Heat to Radiation Btu/hr x 1000 (kW)        | 674 (198)    | 605 (177)    |
|                                     | Total Exhaust Heat Btu/hr x 1000 (kW)       | 2959 (867)   | 2298 (674)   |
| - tt c                              | Induction Air Flow scfm (Nm³/hr)            | 2001 (3014)  | 1638 (2467)  |
| Intake/<br>Exhaust<br>System        | Exhaust Flow lb/hr (kg/hr)                  | 8984 (4075)  | 7355 (3336)  |
| = ₹ &                               | Exhaust Temperature °F (°C)                 | 1136 (613)   | 1077 (581)   |

All data according to full load and subject to technical development and modification.

emPact catalyst-out emissions valid from 100% - 75% load and 1200 rpm to 900 rpm and assume proper engine/catalyst maintenance and manual adjustment as necessary.

Consult your local Waukesha representative for system application assistance. The manufacturer reserves the right to change or modify without notice, the design or equipment specifications as herein set forth without incurring any obligation either with respect to equipment previously sold or in the process of construction except where otherwise specifically guaranteed by the manufacturer.

INNIO\* is a leading solutions provider of gas engines, power equipment, a digital platform and related services for power generation and gas compression at or near the point of use. With our Jenbacher\* and Waukesha\* product brands, INNIO pushes beyond the possible and looks boldly toward tomorrow. Our diverse portfolio of reliable, economical and sustainable industrial gas engines generates 200 kW to 10 MW of power for numerous industries globally. We can provide life cycle support to the more than 48,000 delivered gas engines worldwide. And, backed by our service network in more than 100 countries, INNIO connects with you locally for rapid response to your service needs. Headquartered in Jenbach, Austria, the business also has primary operations in Welland, Ontario, Canada, and Waukesha, Wisconsin, US.

IWK-119012-EN



© Copyright 2019 INNIO Waukesha Gas Engines Inc. Information provided is subject to change without notice. All values are design or typical values when measured under laboratory conditions.





Jeremy Horwitz Archrock Denver, CO

RE: Kinder Morgan - AROC Opp 150246 (2x 5794GSI) - Project Team Intros

Jeremy,

I am pleased to provide this guarantee based on the following information. If you have any questions or concerns please feel free to contact myself or any of my associates at DCL America.

Please note: This guarantee is subject to DCL's standard terms and conditions of sale attached. Copies of the limited warranty statement are available from DCL upon request (DCL doc. No. X0000-0000-K1).

Best Regards,

#### **Michael Kourkoubes**

Regional Sales Manager DCL America Inc. Cell: 713-897-1596

mkourkoubes@dcl-inc.com









| Cata                    | lyst Element (Table 1A)                                                |                   |  |  |
|-------------------------|------------------------------------------------------------------------|-------------------|--|--|
| Application             | tion Gas Compression                                                   |                   |  |  |
| Engine Model            | Waukesha L                                                             | Waukesha L5794GSI |  |  |
| Engine Mechanical Power | 1380 hp                                                                |                   |  |  |
| Fuel                    | NG (High BTU)                                                          |                   |  |  |
| Exhaust Flowrate        | 9166 lb/hr                                                             |                   |  |  |
| Exhaust Temperature     | 1176 de                                                                | 1176 deg. F       |  |  |
| Silencer Model          | EAS-3550-T-1212F-D2CEE                                                 |                   |  |  |
| Catalyst Model          | DCH3 (35.5")                                                           |                   |  |  |
| Catalyst Part Number    | A70YT-01-0426-0H33-01                                                  |                   |  |  |
| Number of Elements      | 2                                                                      |                   |  |  |
| Catalyst Code           | 26 / 300 cpsi                                                          |                   |  |  |
| Pre-Catalyst Emissions  | NOx                                                                    | 14.5              |  |  |
| g/bhp-h                 | СО                                                                     | 10.9              |  |  |
|                         | NMNEHC (VOC)                                                           | 0.299             |  |  |
| Post-Catalyst           | NOx                                                                    | <1.00             |  |  |
| g/bhp-h                 | СО                                                                     | <1.00             |  |  |
|                         | NMNEHC (VOC)                                                           | <0.70             |  |  |
| Limited Warranty        | (doc. X0000-0000-K1) one year or 8000 hours operation, whichever first |                   |  |  |



